Track Based Alignment for the Mu3e Pixel Detector

U. Hartenstein SFB School Boppard 2017

For the Mu3e Collaboration

The Mu3e Experiment

Mu3e - In the Standard Model

$$igg(\mu^+ o e^+ e^- e^+igg)$$

Mu3e - In the Standard Model

$$\left(\mu^+
ightarrow e^+ e^- e^+
ight)$$

Mu3e - In the Standard Model

$$\left(\mu^+
ightarrow e^+ e^- e^+
ight)$$

Beyond the Standard Model?

Motivation

- new physics?!
 - predictions from SUSY, Leptoquarks, ...
- current status (SINDRUM 1988): $\mathcal{BR} < 10^{-12}$

The Signal

Signal

- $\mu^+ \rightarrow e^+ e^- e^+$
- muons stopped and decay at rest \rightarrow three tracks
 - same time
 - common vertex

$$-\sum \mathbf{p_e} = 0$$
$$-\sum E_e = m_\mu$$

The Signal

Signal

- $\mu^+ \rightarrow e^+ e^- e^+$
- muons stopped and decay at rest \rightarrow three tracks
 - same time
 - common vertex
 - $-\sum_{e} \mathbf{p}_{e} = 0$

-
$$\sum E_e = m_\mu$$

Background

- internal conversion: $\mu^+ \rightarrow e^+ e^- e^+ + 2\nu$
 - missing momentum/energy
 - \rightarrow requires good momentum resolution
- random combinations
 - $\mu^+
 ightarrow e^+ + 2
 u$
 - e^+/e^- scattering
 - not the same vertex/time
 - \rightarrow requires good vertex/time resolution

The Detector

4/15

impossible to have sufficient alignment after construction!

Surface Deformations

Surface Deformations

- 50 µm chips won't be rigid!
- Idea: align not only for rotations and shifts but also for
 - surface deformations
 - temperature effects ($\Delta T \approx 70$ K)
 - $ightarrow \Delta x pprox 5\,\mu m$ for outer pixels

 $50\,\mu m$ silicon

Surface Deformations

- 50 µm chips won't be rigid!
- Idea: align not only for rotations and shifts but also for
 - surface deformations
 - temperature effects ($\Delta T \approx 70$ K)
 - $ightarrow \Delta x pprox 5\,\mu m$ for outer pixels
- 3rd order polynomials to model sensors

Misalignment

Misalignment

• perfect alignment

Misalignment

• perfect alignment

• misaligned sensors

Misalignment Studies

- alignment after construction is not sufficient
 - \rightarrow need for alignment algorithm
- for track based alignment tracks are needed!
- "how well (mechanically) aligned to be able to align (with software)?"

Momentum Reconstruction Efficiency

Randomly Misaligned Sensors

- normalised to the efficiency of a perfectly aligned detector
- efficiency plateau

Track Based Alignment

Track Based Alignment and the Software for it

• from misalignment studies derived goals:

 $\sigma_{position} \leq 80 \, \mu m$, $\sigma_{orientation} \leq 0.3^{\circ}$

 ${\ensuremath{\, \bullet }}$ with cameras, cosmics, lower rate, etc. this goal is possible

ightarrow track based alignment ightarrow σ pprox 2 μ m

Track Based Alignment and the Software for it

• from misalignment studies derived goals:

 $\sigma_{position} \leq 80 \, \mu m$, $\sigma_{orientation} \leq 0.3^{\circ}$

• with cameras, cosmics, lower rate, etc. this goal is possible

 \rightarrow track based alignment \rightarrow σ \approx 2 μm

- Mu3e software package
- General Broken Lines (GBL) (V. Blobel, C. Kleinwort, arXiv:1201.4320v1)
- Millepede-II (MP-II) (V. Blobel, C. Kleinwort, arXiv:1103.3909v1)

- multiple scattering & energy loss
 - \rightarrow advanced track models: e.g. GBL

V. Blobel, C. Kleinwort, arXiv:1201.4320v1

General Broken Lines Fit

- multiple scattering & energy loss
 - \rightarrow advanced track models: e.g. GBL
- track refit to account for multiple scattering
- complete covariance matrix of all track parameters at any point \rightarrow track based alignment with Millepede-II

V. Blobel, C. Kleinwort, arXiv:1201.4320v1

A least squares fit with a very large number of parameters

each track j has measurements: $m_{ij} \pm \sigma_{ij}$ and is modelled by $f_{ij}(\mathbf{q_j}, \mathbf{p})$

A least squares fit with a very large number of parameters

$$\chi^{2} = \sum_{j}^{tracks \ measurements} \left(\frac{m_{ij} - f_{ij}(\mathbf{q}_{j}, \mathbf{p})}{\sigma_{ij}}\right)^{2}$$

each track j has

- measurements: $m_{ij} \pm \sigma_{ij}$ and
- is modelled by $f_{ij}(\mathbf{q_j}, \mathbf{p})$
 - qj: track parameters
 - p: alignment parameters

A least squares fit with a very large number of parameters

$$\chi^{2} = \sum_{j}^{tracks} \sum_{i}^{measurements} \left(\frac{m_{ij} - f_{ij}(\mathbf{q}_{j}, \mathbf{p})}{\sigma_{ij}}\right)^{2}$$

• minimise χ^2

an example: using 1mio tracks to align 3000 sensors leads to

- 20 mio track parameters
- 45 000 alignment parameters

A least squares fit with a very large number of parameters

$$\chi^{2} = \sum_{j}^{tracks} \sum_{i}^{measurements} \left(\frac{m_{ij} - f_{ij}(\mathbf{q}_{j}, \mathbf{p})}{\sigma_{ij}}\right)^{2}$$

• minimise χ^2

an example: using 1mio tracks to align 3000 sensors leads to

- 20 mio track parameters
- 45 000 alignment parameters
 - \rightarrow invert a 20045000 \times 20045000 matrix

A least squares fit with a very large number of parameters

$$\chi^{2} = \sum_{j}^{tracks measurements} \left(\frac{m_{ij} - f_{ij}(\mathbf{q}_{j}, \mathbf{p})}{\sigma_{ij}}\right)^{2}$$

• minimise χ^2

an example: using 1mio tracks to align 3000 sensors leads to

- 20 mio track parameters
- 45 000 alignment parameters
 - \rightarrow invert a 20045000 \times 20045000 matrix
- MP-II \rightarrow reduction to 45000 \times 45000 (not solving for track parameters)

First Tests

- the "MuPix-Telescope" is frequently in use at MAMI
- alignment is already done with Millepede-II and GBL (python implementation)
- use MP-II within our software framework

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope
 - (2) simulate 10000 tracks

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope
 - (2) simulate 10000 tracks
 - (3) misalign inner telescope planes randomly

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope
 - (2) simulate 10000 tracks
 - (3) misalign inner telescope planes randomly

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope
 - (2) simulate 10000 tracks
 - (3) misalign inner telescope planes randomly

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope
 - (2) simulate 10000 tracks
 - (3) misalign inner telescope planes randomly

- do the following steps 1000 times:
 - (1) simulate a 4-plane telescope
 - (2) simulate 10000 tracks
 - (3) misalign inner telescope planes randomly

$$(\sigma_{x,y} = 100 \, \mu \text{m}, \, \sigma_{rot} = 10 \, \text{mrad})$$

- (4) fit tracks (GBL)
- (5) use Millepede-II implementation to align
- (6) compare to initial misalignment

Misalignment: Deviation from Nominal Alignment

Misalignment: Deviation from Nominal Alignment

Misalignment: Deviation from Nominal Alignment

Outlook

Status & Outlook

- misalignment Studies \checkmark
- basic software \checkmark
- testing for a (simulated) telescope \checkmark
- testing for the complete detector (\checkmark)
- alignment for surface deformations (the fundamentals are there)

Backup

Parametrization

- span sensors by two orthonormal vectors \boldsymbol{u} and \boldsymbol{v}
- use right-handed local coordinate system u, v, w
- w = w(u, v) parametrized with Legendre-polynomials and surface coefficients

Figure 1: Legendre-Plane: coefficients of $0 - 30 \mu m$

- spanned by two orthonormal vectors defining the local u- & v-coordinates
- *w*-coordinate defined via $u \times v$ with a value of h(u, v)

$$h(x,y) = \sum_{i=0}^{N} \sum_{j=0}^{i} c_{ij} P_{i-j}(x) P_j(y), \qquad (1)$$

with Legendre-ploynomials

I

$$P_n(x) = 2^n \sum_{k=0}^n \binom{n}{k} \binom{\frac{n+k-1}{2}}{n} x^k.$$
(2)

and surface coefficients c_{ij}

General Broken Lines Fit

V. Blobel, C. Kleinwort, arXiv:1201.4320v1

Alignment Procedure

Momentum Reconstruction Resolution

Randomly Misaligned Sensors

- momentum resolution from RMS of $p_{rec} p_{MC}$
- for random sensor shifts & rotations in MeV/c

The Detector

- barrel detector
 - two double layers of silicon sensors
 - scintillating fibre tracker & scintillating tiles (timing)

- hollow double cone target
- use re-curlers
 - allow precise momentum measurements

The Phases of the Mu3e Detector

