Measurement of the $\omega \to \pi^+\pi^-\pi^0$ Dalitz plot distribution with WASA-at-COSY

Lena Heijkenskjöld (JGU Mainz)

SFB 1044 School 31 August 2017

Presentation layout

- Introduction
 - What is a Dalitz plot?
 - $\, \circ \,$ Knowns/unknowns of $\omega \rightarrow \pi^+ \pi^- \pi^0$ dynamic
 - Why study it?

The experiment

- The data sets and event selection
- Dalitz plot analysis
 - Creating and filling the Dalitz plot
 - Experiment Theory comparison
 - Systematic checks
 - Results

Experime

What is a Dalitz plot?

$$\begin{split} \mathcal{M} \text{ given by two independent variables} \\ &\rightarrow 2 \text{D representation, e.g. } \mathcal{M}(\textit{s}_{12},\textit{s}_{23}) \\ &\frac{d^2 \Gamma}{d \textit{s}_{12} d \textit{s}_{23}} = \frac{1}{(2\pi)^3} \frac{1}{32m^3} |\mathcal{M}|^2 \end{split}$$

Experimer

Dalitz plot analysis 000000

What is a Dalitz plot?

$$\begin{split} \mathcal{M} \text{ given by two independent variables} \\ &\rightarrow 2 D \text{ representation, e.g. } \mathcal{M}(s_{12}, s_{23}) \\ & \frac{d^2 \Gamma}{ds_{12} ds_{23}} = \frac{1}{(2\pi)^3} \frac{1}{32m^3} |\mathcal{M}|^2 \end{split}$$

Common choice of variables when $m_1 = m_2 \approx m_3$

 $\begin{array}{c|c} \text{Dalitz plot introduction} & \text{Experiment} & \text{Dalitz plot analysis} \\ \hline \bullet \bullet & \bullet & \bullet \\ \hline \omega \to \pi^+ \pi^- \pi^0 \text{ dynamics} \end{array}$

Dalitz plot density distribution
$$\sim |\mathcal{M}(s_{12}, s_{23})|^2, \qquad |\mathcal{M}|^2 = 1$$
 : Phase space

Restrictions from quantum numbers

$$\omega: I(J^P) = 0(1^-) \ J_{3\pi} = 1 ext{ and } J_{2\pi} = 1$$

P - wave phase space
$$|\mathcal{M}|^2 = \mathcal{P} \propto |\mathbf{\bar{p}}_i \times \mathbf{\bar{p}}_j|^2$$

Restrictions from quantum numbers

$$\omega: I(J^P) = 0(1^-) \ J_{3\pi} = 1 ext{ and } J_{2\pi} = 1$$

P - wave phase space
$$|\mathcal{M}|^2 = \mathcal{P} \propto |\mathbf{\bar{p}}_i \times \mathbf{\bar{p}}_j|^2$$

 $\pi - \pi$ interactions

•
$$\pi - \pi$$
 rescattering

Predictions of $|\mathcal{M}(s_{12}, s_{23})|^2$ by:

1 Lagrangian approach¹ **2** Dispersion approach^{2,3} $\omega \longrightarrow \pi \pi$ $\pi V \rightarrow \pi \pi$ $\psi \longrightarrow \pi \pi \pi$

[Uppsala] C. Terschlüsen, B. Strandberg, S. Leupold, F. Eichstädt Eur.Phys.J. A49 (2013) 116
 [Bonn] S.P. Schneider, et al., Eur.Phys.J. C72 (2014) 2012

 3 [JPAC] Danilkin, et al. Phys. Rev. D91 (2015) 094029

Dalitz plot analysis

Why study $\omega \to \pi^+ \pi^- \pi^0$ dynamics

Study importance of hadronic final state interactions

Largest previous statistics \sim 4200 events. Unable to distinguish ρ onset.

Experimen 00

Dalitz plot analysis 000000

Why study $\omega \to \pi^+ \pi^- \pi^0$ dynamics

Study importance of hadronic final state interactions

Largest previous statistics \sim 4200 events. Unable to distinguish ρ onset.

Benchmark of/input to dispersion calculations of a_{μ}^{HLbL}

3-4 σ discrepancy in $a_{\mu}^{SM} - a_{\mu}^{exp}$ — Data driven efforts to reduce theoretical error ^{4,5}. ⁴ G. Colangelo, et al. Phys.Lett. B738 (2014) 6-12 ⁵ V. Pauk, et al., Phys.Rev. D90 (2014) no.11, 113012

Theory contribution	$a_{\mu}(\sigma_{a_{\mu}})\times 10^{11}$
QED ⁶ EW ⁷ Strong ⁸	115965218.178(0.077) 153.6(1.0)
HVP	6793.6(41.4)
HLbL	103(29)

Hadronic light-by-light scattering:

6 Aoyama, et al., Phys.Rev.Lett. 109 (2012) 111808 7 Gnendiger, et al., Phys.Rev. D88 (2013) 053005 9 Jegerlehner, arXiv:1705.00263 (hep-ph)

L. Heijkenskjöld ()

 $\omega \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot study

Experiment

Experimental setup

Experiment

Dalitz plot analysis 000000

Experimental setup

Collected data

 ${\sf p}+{\sf d}
ightarrow {}^3{\sf He}+\omega$

set A: $T_{beam} = 1.45 \text{ GeV}$ set B: $T_{beam} = 1.50 \text{ GeV}$

Analysed in my Ph.D. thesis

 $p + p \rightarrow p + p + \omega$ set C :T_{beam} = 2.063 GeV

Analysed in Ph.D. thesis of Siddhesh Sawant

Experiment

Dalitz plot analysis 000000

Selected data events

 $P_{in} = P_{out}$, 4C-fit

- 3 He/p,p candidate $\Delta E \Delta E$ cuts
- ${\scriptstyle \bullet \ }\pi^{+}\pi^{-}\gamma\gamma$ candidates
- π^0 candidates IM($\gamma\gamma$) cut
- Kinematic fit
 - Choose final track candidates
 - Test background hypothesis
 - Cut on $P(\chi^2)$ and improve kinematic resolution

Experiment

Dalitz plot analysis 000000

Selected data events

, 7 /

L. Heijkenskjöld ()

 $\omega \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot study

Experimer

Dalitz plot analysis

Creating the Dalitz plots

1D-representation for comparison

Experimer

Creating the Dalitz plots

Experimen

Creating the Dalitz plots

Experime

Experiment - Theory comparison

Experime

Experiment - Theory comparison

Fits to theory

- Lagrangian approach Uppsala
- Dispersion approach Bonn, JPAC

lpha differ by \sim factor 2

Experime

Experiment - Theory comparison

Fits to theory

- Lagrangian approach Uppsala
- Dispersion approach Bonn, JPAC

lpha differ by \sim factor 2

Fits to data

$$\chi^{2} = \chi^{2}_{A} + \chi^{2}_{B} + \chi^{2}_{C} \quad \text{where} \quad \chi^{2}_{A} = \sum_{i} \left(\underbrace{\tilde{N}_{iA} - \mathcal{N}_{A} \int_{i} (\mathcal{P} \cdot \mathcal{G}) dZ d\Phi}_{\tilde{\sigma}_{iA}} \right)$$
Sum over Dalitz plot bins

Experime

Check for systematic effects

Test of fit procedure

Fit to data simulated with P-wave only.

 \rightarrow No bias.

Experime

Check for systematic effects

Test of fit procedure

Experime

Check for systematic effects

Test of fit procedure

Experimer

Check for systematic effects

Test efficiency correction

 $\begin{array}{l} \mbox{Fit the Dalitz plot including a X- or Y-term in ϵ:} \\ \epsilon_i \rightarrow \epsilon_i \left(1 + \xi^{ABC} \cdot X\right) \quad \mbox{ or } \quad \epsilon_i \rightarrow \epsilon_i \left(1 + \zeta^{ABC} \cdot Y\right) \end{array} \end{array}$

 $ightarrow \zeta^{ABC}$ and ξ^A consistent with zero $\xi^B < 0$ and $\xi^C > 0$

Assuming charge symmetry, we applied correction to ϵ_i^{BC} .

Experimer

Check for systematic effects

Test efficiency correction

Fit the Dalitz plot including a X- or Y-term in ϵ : $\epsilon_i \rightarrow \epsilon_i (1 + \xi^{ABC} \cdot X)$ or $\epsilon_i \rightarrow \epsilon_i (1 + \zeta^{ABC} \cdot Y)$

> ζ^{ABC} and ξ^A consistent with zero $\xi^B < 0$ and $\xi^C > 0$

Assuming charge symmetry, we applied correction to ϵ_i^{BC} .

Test data consistency

Dalitz	plot	introduction	
000			

Results

Article: P. Adlarson et al, Phys. Lett. B 770 (2017), 418-425

Summary and outlook

- $\omega \to \pi^+\pi^-\pi^0$ studied by WASA-at-COSY
 - First observation of deviation from P-wave phase space
 - Benchmark lpha from theory

Higher statistics measurement

- β , γ ,...
- Increase precision for dispersive calculations

Summary and outlook

- $\omega \to \pi^+\pi^-\pi^0$ studied by WASA-at-COSY
 - First observation of deviation from P-wave phase space
 - Benchmark lpha from theory

Higher statistics measurement

- β , γ ,...
- Increase precision for dispersive calculations

Thank you for your attention!

Backup slides - Theory parametrisation fit

					-
	$lpha imes 10^3$	$\beta imes 10^3$	$\gamma imes 10^3$	$\delta imes 10^3$	
Uppsala	202	-	-	-	l i
Bonn	8496	-	-	-	100
JPAC	94	-	-	-	
Uppsala	190	54	-	-] 6
Bonn	7484	24 28	-	-	0
JPAC	84	28	-	-	
Uppsala	172	43	50	-	
Bonn	7381	24 28	3 6	-	
JPAC	80	27	8	-	
Uppsala	174	35	43	20	
Bonn	7483	21 24	02	78	4
JPAC	83	22	1	14	1 4

Backup slides - Event selection

• ³He/p,p candidate

Backup slides - Event selection

• 3 He/p,p candidate • $\pi^{+}\pi^{-}\gamma\gamma$ candidates

Backup slides – Event selection

- ³He/p,p candidate
- $\pi^+\pi^-\gamma\gamma$ candidates
- π^0 candidates

Backup slides - Event selection

- ³He/p,p candidate
- $\pi^+\pi^-\gamma\gamma$ candidates
- π^0 candidates
- Kinematic fit

 $\begin{array}{ll} \text{Constraint:} \ P_{in} = P_{out}, \\ \text{Hypothesis:} \ \ \begin{array}{l} pd \rightarrow {}^{3}\text{He}\pi^{+}\pi^{-}\gamma\gamma \\ pp \rightarrow pp\pi^{+}\pi^{-}\gamma\gamma \end{array} \end{array}$

- Choose final track candidates
- Test $\begin{array}{c} pd
 ightarrow {}^{3}{
 m He}\pi^{+}\pi^{-} \ pp
 ightarrow pp\pi^{+}\pi^{-} \end{array}$ hypothesis
- Cut on P(χ²)>0.05

Improve resolution for $X^{Rec} = T, \theta, \phi$

Dalitz plot analysis - Parametrisation

Fit method

$$\begin{aligned} \text{Parametrisation } \mathcal{P} & \cdot \mathcal{G}(Z, \Phi) \\ \mathcal{G}(Z, \Phi) = 1 + 2\alpha Z + 2\beta Z^{3/2} \sin(3\Phi) + 2\gamma Z^2 + 2\delta Z^{5/2} \sin(3\Phi) + \mathcal{O}(Z^3) \end{aligned}$$

$$\chi^{2} = \sum_{a=1}^{3} \sum_{ij} \left(\frac{\tilde{N}_{ij}^{a} - \mathcal{N}^{a}(H_{ij}^{(i)} + \alpha H_{ij}^{(ii)} + \beta H_{ij}^{(iii)} + \ldots)}{\tilde{\sigma}_{N_{ij}^{a}}} \right)^{2}$$

