Deeply Virtual Compton Scattering off the Neutron (6 GeV experiments)

Meriem BEN ALI LPC Clermont-Ferrand

Generalized Parton Distributions

ODVCS off the neutron motivation

Experimental setup

DVCS cross section extraction off the neutron

○ Summary

SFB School 2017

29 Aug-1 Sep 2017

Why study the nucleon structure?

Electromagnetic probe

Advantage: The electromagnetic probe is a powerful tool to probe the internal structure of the nucleon, it is elementary and understood probe

VCS &&Deep VCS

At high energy ($s > M^2$) and large $Q^2 > M^2$

The physical regime depends : the probe virtuality (Q^2) and the center of mass energy (s):

> At low energy

Generalized Parton Distribution GPDs

 Deep (Q²>>M²)
 Inelastic Scattering (DIS)
 Parton Distribution

Function (PDFs) (Longitudinal momentum distribution of the partons in the nucleon)

Non-correlated informations about the nucleon structure and they do not allow multidimensional description

Some exclusive reactions of deep inelastic scattering (like the DVCS) can measure new quantities: (Generalized Parton Distribution GPDs)

Generalized Parton Distribution GPDs

Generalized Parton Distribution GPDs

At leading order

4 chiral even GPDS : $H^{f}(x,\xi,t), E^{f}(x,\xi,t), \widetilde{H}^{f}(x,\xi,t), \widetilde{E}^{f}(x,\xi,t)$ Conserve the parton helicity

4 chiral odd (transversity) GPDs: $H_T^f(x,\xi,t), E_T^f(x,\xi,t), \widetilde{H}_T^f(x,\xi,t), \widetilde{E}_T^f(x,\xi,t)$ Flip the parton helicity

Link to Parton distribution functions		
(ξ = t = 0)		
$H_q(x,0,0) =$	$= q(x); x > 0$ $= -\overline{q}(x) \times < 0$	
$\widetilde{H}_q(x,0,0)$ –	$ = \Delta q(x) ; x > 0 $ $ = \Delta \overline{q}(-x) ; x < 0 $	

$$\succ \text{Link to Form Factors (V \xi)}$$

$$\sum_{q} e_{q} \int_{-1}^{1} dx H_{q}(x, \xi, t) = F_{1}(t)$$

$$\sum_{q} e_{q} \int_{-1}^{1} dx E_{q}(x, \xi, t) = F_{2}(t)$$

$$\sum_{q} e_{q} \int_{-1}^{1} dx \widetilde{H}_{q}(x, \xi, t) = G_{A}(t)$$

$$\sum_{q} e_{q} \int_{-1}^{1} dx \widetilde{H}_{q}(x, \xi, t) = G_{p}(t)$$

Access to quark angular momentum, via Ji sum rule [X. Ji 1997]:

$$\frac{1}{2}\int_{-1}^{+1} dx \, x \left[H_q(x,\xi,t=0) + E_q(x,\xi,t=0) \right] = J_q = \frac{1}{2}\Delta\Sigma_q + L_q$$

Solving the problem of the "spin crisis"

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma_q + \Delta \Sigma_g + \frac{L_q}{L_q} + L_g$$

How access to GPDs ?

The deep exclusive processes in the Bjorken regime are the simplest process which can be described in terms of GPDs by measuring its cross section

which are sensitive to an **integral of GPDs over x**

$$T^{DVCS} \propto P \int_{-1}^{+1} \frac{GPD(x,\xi,t)}{x-\xi} dx \pm i \Pi GPD(x=\pm\xi,\xi,t) + \dots$$

The **polarized cross-section difference** accesses the imaginary part of DVCS and therefore **GPDs at x=\pm\xi**

Motivation (DVCS off the neutron) **DVCS** Bethe-Heitler (BH) 2 $\sigma(eN \rightarrow eN\gamma) = +$ +Known term $d^{4}\overline{\sigma} - d^{4}\overline{\sigma} = 2\Im(T^{DVCS}.T^{BH})$ Known (fully calculable $d^{4}\overline{\sigma} + d^{4}\overline{\sigma} = 2\Re e(T^{DVCS}.T^{BH}) + |T^{DVCS}|^{2} + |T^{BH}|^{2}$ (runy calculable with nucleon FFs) A.V. Belitsky, D. Mueller Phys. Rev., D82:074010, 2010 A linear combination of form factors and Compton form factors $\Re \tilde{c} \tilde{C}^{\Gamma}(\mathcal{F}) = F_1(t) \Re e \mathcal{H} - \frac{t}{4M^2} F_2(t) \Re e \mathcal{E} + \xi (F_1(t) + F_2(t)) \Re e \tilde{\mathcal{H}}$ $\Re e(\mathcal{H}) = \sum_{f} \mathcal{P} \int_{-1}^{+1} dx \left(\frac{1}{x - \xi} \pm \frac{1}{x + \xi} \right) H^{f}(x, \xi, t)$ — GPDs For the neutron $F_1(t) \le F_2(t)$ Strong sensitivity to GPD E (useful to access the quark angular momentum) $\frac{1}{2}\int_{-1}^{+1} dx \, x \left[H(x,\xi,t=0) + E(x,\xi,t=0) \right] = J_q = \frac{1}{2}\Delta\Sigma_q + L_q$

10

Motivation (DVCS off the neutron)

Measure cross section at different kinematics (2 beam energies)

- Separate the $I(T^{BH}T^{DVCS})$ of DVCS and the $|T^{DVCS}|^2$
- Better constrain theoretical models of GPDs
- Measure n-DVCS cross section is important
 - ➢ Neutron has different flavors from the proton

Sensitive to GPD E (The less constrained GPD and which is important to access quarks orbital momentum via Ji's sum rule)

Q ² (GeV ²)	1.75
X _B	0.36
E _{beam} (GeV)	4.45 (Kin2Low) and 5.54 (kin2high)
Target	LH2 and LD2

The E08-025 (n-DVCS) experiment (DVCS on the neutron)

Experimental apparatus

Selection of the n-DVCS events

After

- subtracting the accidentals,
- subtracting single photons coming from π^0 decay (π^0 contamination),
- adding Fermi momentum to H2 data,
- normalizing H2 and D2 data to the same luminosity, we obtain the difference $(D(e,e' \gamma)X H(e,e' \gamma)X)$

$$D(e, e'\gamma)pn = p(e, e'\gamma)p + n(e, e'\gamma)n + d(e, e'\gamma)d$$

Adjusting the simulation to the experimental data

Smearing of the simulation data

Extraction of the cross section

 $\checkmark 4 \text{ bins in } t \text{ (transfer t)}$

✓ 12 bins in φ : Dependence in φ → Separate the different neutron contributions (or coherent deuton contributions)

✓ 30 bins in M_X^2 : Binning in Mx2 Separate contributions Xin from Xid: Mx²d ≈ Mx²n+t/2

 ✓ 2 bin in E_{beam}: Rosenbluth separation based on data taken with two beam energies.
 (We used the same observables (Xin + Xid) to fit the Data at E_{beam}=4.45 and E_{beam}=5.54 GeV data)

Conclusion

- Rosenbluth separation and First measurements (preliminary) of the process unpolarized $n(e, e'\gamma)n$ cross section
- •Important to constrain GPD E (needed to determine the quark orbital momentum)

Thank you for your attention