Applications of chiral perturbation theory: electromagnetic properties of baryons

Astrid N. Hiller Blin

Johannes Gutenberg-Universität Mainz
hillerbl@uni-mainz.de
Thursday $31{ }^{\text {st }}$ August, 2017

Contents

1 Motivation: What can we learn from EM probes?

2 Framework: Why do we need ChPT?

3 (Only) a few interesting results
\% Compton scattering and polarizabilities
\& Virtual photons and form factors

Photon beams

Electromagnetic interactions provide clean probes of the inner structure of hadrons

- Low photon energies ($\sim 100 \mathrm{MeV}$): Compton scattering

- Slightly higher (140 MeV): pion photoproduction

Photon beams

Electromagnetic interactions provide clean probes of the inner structure of hadrons

- Low photon energies ($\sim 100 \mathrm{MeV}$): Compton scattering

- Even higher: start feeling resonance production

Virtual photons

- E.g. elastic electron scattering

- For all these processes we focus on: small external momenta/momentum transfer

Non-perturbative QCD vs. chiral perturbation theory

$$
E_{\gamma} \approx \mathcal{O}\left(m_{\pi}\right) \Rightarrow \alpha_{s}=\mathcal{O}(1)
$$

Perturbative QCD breaks down
\Longrightarrow EFT: expansion around other parameters

Non-perturbative QCD vs. chiral perturbation theory

$$
E_{\gamma} \approx \mathcal{O}\left(m_{\pi}\right) \Rightarrow \alpha_{s}=\mathcal{O}(1)
$$

Perturbative QCD breaks down
\Longrightarrow EFT: expansion around other parameters

Chiral perturbation theory:

- Small masses, momenta ($\frac{m_{\pi}}{1 \mathrm{GeV}}, \frac{p_{\mathrm{ext}}}{1 \mathrm{GeV}} \ll 1$): combined expansion
- New degrees of freedom: quarks and gluons \Longrightarrow mesons and baryons

Lagrangians of ChPT

Lowest-order meson Lagrangian $\sim p_{\text {ext }}^{2}, m_{\pi}^{2}$
$\mathcal{L}_{\phi \phi \gamma}^{(2)}=\frac{F_{0}^{2}}{4} \operatorname{Tr}\left(\nabla_{\mu} U \nabla^{\mu} U^{\dagger}+\chi_{+}\right)$

Lowest-order baryon Lagrangian $\sim p_{\text {ext }}$
$\mathcal{L}_{\phi B \gamma}^{(1)}=\operatorname{Tr}(\bar{B}(\mathrm{i} \not D-m) B)+\frac{D}{2} \operatorname{Tr}\left(\bar{B} \gamma^{\mu}\left\{u_{\mu}, B\right\} \gamma_{5}\right)+\frac{F}{2} \operatorname{Tr}\left(\bar{B} \gamma^{\mu}\left[u_{\mu}, B\right] \gamma_{5}\right)$

Inclusion of the spin-3/2 resonances

The spin-3/2 states couple strongly to the spin-1/2 octet baryons

Pascalutsa et al., Phys. Rept. 437 (2007) 125
Geng et al., Phys. Lett. B 676 (2009) 63

$$
\begin{aligned}
& \mathcal{L}_{\Delta \phi B}^{(1)}=\frac{-\mathrm{i} \sqrt{2} \mathcal{C}}{F_{0} M_{\Delta}} \bar{B}^{a b} \varepsilon^{c d a} \gamma^{\mu \nu \lambda}\left(\partial_{\mu} \Delta_{\nu}\right)^{d b e}\left(\mathrm{D}_{\lambda} \phi\right)^{c e}+\text { H.c. } \\
& \mathcal{L}_{\Delta \gamma B}^{(2)}=-\frac{3 \mathrm{ie} \mathrm{~g}_{\mathrm{M}}}{\sqrt{2} m\left(m+M_{\Delta}\right)} \bar{B}^{a b} \varepsilon^{c d a} Q^{c e}\left(\partial_{\mu} \Delta_{\nu}\right)^{d b e} \tilde{F}^{\mu \nu}+\text { H.c. } \\
&
\end{aligned}
$$

Matching a diagram to a specific order

$$
O=4 L+\sum k V_{k}-2 \mathbf{N}_{\pi}-N_{N}-N_{\Delta} \cdot ?
$$

- Propagators: meson $\sim \mathbf{m}_{\pi}^{-2}$, spin-1/2 baryon $\sim \mathbf{p}_{\text {ext }}^{-1}$
- Spin-3/2 baryon: new scale $\delta=M_{\Delta}-m_{N} \approx 0.3 \mathrm{GeV}>m_{\pi}$
- $\left(\delta / m_{p}\right)^{2} \approx\left(m_{\pi} / m_{p}\right) \Longrightarrow$ far from resonance mass: ? $=\frac{1}{2}$ Pascalutsa and Phillips, Phys. Rev. C 67 (2003) 055202
- Close to resonance mass: $p_{\text {ext }} \sim \delta \Longrightarrow \boldsymbol{?}=1$ Hemmert et al., Phys. Lett. B 395 (1997) 89

Renormalization

- Loop diagrams: divergences and power counting breaking terms

$$
\frac{1}{\epsilon}=\frac{1}{4-\operatorname{dim}} \quad \text { and } \quad \text { e.g. terms } \propto p^{2} \text { at } \mathcal{O}\left(p^{3}\right)
$$

Renormalization

- Loop diagrams: divergences and power counting breaking terms

$$
\frac{1}{\epsilon}=\frac{1}{4-\operatorname{dim}} \quad \text { and } \quad \text { e.g. terms } \propto p^{2} \text { at } \mathcal{O}\left(p^{3}\right)
$$

- Fully analytical \Longrightarrow match with Lagrangian terms
- Low-energy constants of these terms a priori unknwon

Renormalization

- Loop diagrams: divergences and power counting breaking terms

$$
\frac{1}{\epsilon}=\frac{1}{4-\operatorname{dim}} \quad \text { and } \quad \text { e.g. terms } \propto p^{2} \text { at } \mathcal{O}\left(p^{3}\right)
$$

- Fully analytical \Longrightarrow match with Lagrangian terms
- Low-energy constants of these terms a priori unknwon
- EOMS-renormalization prescription:

Gegelia and Japaridze, Phys. Rev. D 60 (1999) 114038

- $\overline{M S}$ absorbs $L=\frac{2}{\epsilon}+\log (4 \pi)-\gamma_{E}$ into LECs
- Also subtracts PCBT by redefinition of LECs
- Usually converges faster than other counting schemes (relativistic or not)

Compton scattering

and

polarizabilities

Hiller Blin, Gutsche, Ledwig and Lyubovitskij
Phys. Rev. D 92 (2015) 096004
arXiv: 1509.00955 [hep-ph]

Polarizabilities

- In EM field: hadrons deformed due to charged components
- Size of deformation: related to polarizabilities

- Experiment: Compton scattering off hadron targets

Theoretical approach

- Amplitude expansion around low photon energy ω
- $\mathcal{O}\left(\omega^{0}\right)$: total charge
- $\mathcal{O}\left(\omega^{1}\right)$: anomalous magnetic moment
- $\mathcal{O}\left(\omega^{2}\right): \alpha_{E}$ and β_{M}
- $\mathcal{O}\left(\omega^{3}\right)$: spin-dependent polarizabilities γ_{i}

Theoretical approach

- Amplitude expansion around low photon energy ω
- $\mathcal{O}\left(\omega^{0}\right)$: total charge
- $\mathcal{O}\left(\omega^{1}\right)$: anomalous magnetic moment
- $\mathcal{O}\left(\omega^{2}\right): \alpha_{E}$ and β_{M}
- $\mathcal{O}\left(\omega^{3}\right)$: spin-dependent polarizabilities γ_{i}
- Forward spin polarizability γ_{0}
- response to deformation relative to spin axis
- photon scattering in extreme forward direction

Theoretical approach

- Amplitude expansion around low photon energy ω
- $\mathcal{O}\left(\omega^{0}\right)$: total charge
- $\mathcal{O}\left(\omega^{1}\right)$: anomalous magnetic moment
- $\mathcal{O}\left(\omega^{2}\right): \alpha_{E}$ and β_{M}
- $\mathcal{O}\left(\omega^{3}\right)$: spin-dependent polarizabilities γ_{i}
- Forward spin polarizability γ_{0}
- response to deformation relative to spin axis
- photon scattering in extreme forward direction
- Theory: Hemmert et al., Phys. Rev. D 57 (1998) 5746

$$
\gamma_{0}\left[\vec{\sigma} \cdot\left(\vec{\epsilon} \times \vec{\epsilon}^{*}\right)\right]=-\left.\frac{\mathrm{i}}{4 \pi} \frac{\partial}{\partial \omega^{2}} \frac{\epsilon^{\mu} \mathcal{M}_{\mu \nu}^{\mathrm{SD}} \epsilon^{* \nu}}{\omega}\right|_{\omega=0}
$$

Experimental extraction

- Sum rule: Gell-Mann etal., Phys. Rev. 95 (1954) 1612

$$
\gamma_{0}=-\frac{1}{4 \pi^{2}} \int_{\omega_{0}}^{\infty} \mathrm{d} \omega \frac{\sigma_{3 / 2}(\omega)-\sigma_{1 / 2}(\omega)}{\omega^{3}}
$$

$\sigma_{3 / 2}\left(\sigma_{1 / 2}\right)$: photon and target helicities are (anti)parallel

Experimental extraction

- Sum rule: Gell-Mann etal., Phys. Rev. 95 (1954) 6612

$$
\gamma_{0}=-\frac{1}{4 \pi^{2}} \int_{\omega_{0}}^{\infty} \mathrm{d} \omega \frac{\sigma_{3 / 2}(\omega)-\sigma_{1 / 2}(\omega)}{\omega^{3}}
$$

$\sigma_{3 / 2}\left(\sigma_{1 / 2}\right)$: photon and target helicities are (anti)parallel

- Experiment: Pasauinie eal., Phys. Let. 8687 (2004) 160

$$
\gamma_{0}^{p}=[-1.01 \pm 0.08 \text { (stat) } \pm 0.10 \text { (syst) }] \cdot 10^{-4} \mathrm{fm}^{4}
$$

- Dispersion relations: Drechsel et al., Phys. Rept. 378 (2003) 99

$$
\gamma_{0}^{p}=[-1.1 \pm 0.4] \cdot 10^{-4} \mathrm{fm}^{4} \text { and } \gamma_{0}^{n}=[-0.3 \pm 0.2] \cdot 10^{-4} \mathrm{fm}^{4}
$$

Experimental extraction

- Sum rule: Gell-Mann etal., Phys. Rev. 95 (1954) 1612

$$
\gamma_{0}=-\frac{1}{4 \pi^{2}} \int_{\omega_{0}}^{\infty} \mathrm{d} \omega \frac{\sigma_{3 / 2}(\omega)-\sigma_{1 / 2}(\omega)}{\omega^{3}}
$$

$\sigma_{3 / 2}\left(\sigma_{1 / 2}\right)$: photon and target helicities are (anti)parallel

- Experiment: Pasauinie eal., Phys. Let. 8687 (2004) 160

$$
\gamma_{0}^{p}=[-1.01 \pm 0.08 \text { (stat) } \pm 0.10 \text { (syst) }] \cdot 10^{-4} \mathrm{fm}^{4}
$$

- Dispersion relations: Drechsel et al., Phys. Rept. 378 (2003) 99 $\gamma_{0}^{p}=[-1.1 \pm 0.4] \cdot 10^{-4} \mathrm{fm}^{4}$ and $\gamma_{0}^{n}=[-0.3 \pm 0.2] \cdot 10^{-4} \mathrm{fm}^{4}$
- First goal is to reproduce these values theoretically
- Then extend the theoretical model to predict polarizabilities of not yet measured states \Longrightarrow hyperons

Renormalization

- ∞ and PCBT: do not enter pieces $\sim \omega^{3}$ relevant for γ_{0}
- Leading order for $\gamma_{0} \Longrightarrow$ no unknwon LECs
- Results independent of renormalization or unknown LECs
\Downarrow

pure predictions of ChPT

Results with different covariant ChPT

 models

SU(2): Bernard et al., Phys. Rev. D 87 (2013) 054032 SU(2) with Δ : Lensky et al., Eur. Phys. J. C 75 (2015) 604 Experiment: Pasquini et al., Phys. Lett. B 687 (2004) 160
Dispersion relations: Drechsel et al., Phys. Rept. 378 (2003) 99

Results for the hyperons

$\gamma_{0}\left[\mathrm{fm}^{-4} 10^{-4}\right]$	Σ^{+}	Σ^{-}	Σ^{0}	Λ	Ξ^{-}	Ξ^{0}
Our full model	$-2.30(33)$	0.90	$0.47(8)$	$-1.25(25)$	0.13	$-3.02(33)$

- g_{m} not well known
- We estimate it from electromagnetic decay width $\Gamma_{\Delta \rightarrow \gamma N}$

$$
g_{M}=3.16(16)
$$

Results for the hyperons

$\gamma_{0}\left[\mathrm{fm}^{-4} 10^{-4}\right]$	Σ^{+}	$\boxed{\Sigma^{-}}$	Σ^{0}	\wedge	Ξ^{-}	Ξ^{0}
Our full model	$-2.30(33)$	0.90	$0.47(8)$	$-1.25(25)$	0.13	$-3.02(33)$

- g_{m} not well known
- We estimate it from electromagnetic decay width $\Gamma_{\Delta \rightarrow \gamma N}$

Electromagnetic transition of negatively charged hyperons to spin-3/2 partners $S U(3)$ forbidden \Longrightarrow no uncertainty from g_{M}

Virtual photons

and

form factors

Alarcón, Hiller Blin, Vicente Vacas and Weiss
Nucl. Phys. A 964 (2017) 18
arXiv: 1703.04534 [hep-ph]

Form factors

- Matrix decomposition of the amplitude

$$
\gamma^{\mu} F_{1}\left(Q^{2}\right)+\frac{\mathrm{i} \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(Q^{2}\right) \sqrt{+\frac{\mathrm{i} \sigma^{\mu \nu} \gamma_{5} q_{\nu}}{2 m} F_{\mathrm{EDM}}\left(Q^{2}\right)} \frac{C P \text { violating }}{}
$$

Form factors

- Matrix decomposition of the amplitude

$$
\gamma^{\mu} F_{1}\left(Q^{2}\right)+\frac{\mathrm{i} \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(Q^{2}\right)
$$

- Non-relativistic systems:

Fourier transforms of 3-dimensional spatial densities

- Relativistic systems: vacuum fluctuations!

The number of particles in the system is not a constant

Dispersive representation of electromagnetic densities

Transverse densities decouple from vacuum fluctuations!

Hohler et al., NPB114 505 (1976); Belushkin et al., PRC75 035202 (2007)

Dispersive representation of electromagnetic densities

Transverse densities decouple from vacuum fluctuations!

$$
\rho_{1,2}(b)=\int_{4 \mathrm{~m}_{\pi}^{2}}^{\infty} \frac{d t}{2 \pi} K_{0}(\sqrt{t} b) \frac{\operatorname{Im} F_{1,2}(t)}{\pi}
$$

Hohler et al., NPB114 505 (1976); Belushkin et al., PRC75 035202 (2007)

Bessel function $K_{0} \sim e^{-b \sqrt{t}}$: suppression at large \mathbf{t}
\Longrightarrow Distance b is a filter of masses $\sqrt{t} \sim 1 / b$
Strikman and Weiss PRC82 042201 (2010); Granados and Weiss JHEP1401 092 (2014)
Two-pion cut: low-mass states \rightarrow peripheral density

Proton form factor and spatial density

Nucleon charge densities

- Isovector component: 2π contributions (includes chiral piece and ρ-meson effects)
- Isoscalar component: $2 K$ contributions, ω and ϕ mesons

$\rho_{1}^{p}=\rho_{1}^{S}+\rho_{1}^{V}$

$\rho_{1}^{n}=\rho_{1}^{S}-\rho_{1}^{V}$

Hyperon charge densities

A. N. Hiller Blin, JGU Mainz

Thursday $31^{\text {st }}$ August, 2017

Summary

Framework

- Electromagnetic probes of light baryons in SU(3) ChPT
- Covariant renormalization scheme: EOMS
- Explicit inclusion of the spin-3/2 resonances

Hyperon polarizabilities

- Predictive results for hyperon polarizabilities at $\mathcal{O}\left(p^{7 / 2}\right)$
- Σ^{-}and Ξ^{-}do not depend on uncertainties from LECs
- Outlook: Other polarizabilities, photon virtuality, ...

Form factors

- Understanding about charge distributions in octet baryons
- Outlook: Δ and transition FFs, anomalous thresholds, ...

Additional material

Higher orders of the nucleonic Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{N}=\bar{\Psi}\left\{\frac{1}{8 m}\left(\mathbf{c}_{6} f_{\mu \nu}^{+}+\mathbf{c}_{7} \operatorname{Tr}\left[f_{\mu \nu}^{+}\right]\right) \sigma^{\mu \nu} \quad \text { Fettes et al., Ann. Phys. } 283\right. \text { (2000) 273 } \\
& +\frac{\mathrm{i}}{2 m} \varepsilon^{\mu \nu \alpha \beta}\left(\mathbf{d}_{8} \operatorname{Tr}\left[\tilde{f}_{\mu \nu}^{+} u_{\alpha}\right]+\mathbf{d}_{9} \operatorname{Tr}\left[f_{\mu \nu}^{+}\right] u_{\alpha}+\text { H.c. }\right) \mathrm{D}_{\beta} \\
& \left.+\frac{\gamma^{\mu} \gamma_{5}}{2}\left(\mathrm{~d}_{16} \operatorname{Tr}\left[\chi_{+}\right] u_{\mu}+\mathrm{i} \mathrm{~d}_{18}\left[\mathrm{D}_{\mu}, \chi_{-}\right]\right)\right\} \Psi+\ldots \\
& \mathcal{O}\left(\mathbf{p}^{\mathbf{2}}\right) \underset{\boldsymbol{p}}{\sum_{\mathrm{p}^{\prime}}^{\sum_{k}} \mathbf{c}_{6}, \mathbf{c}_{7}, ~}
\end{aligned}
$$

Diagrams contributing to γ_{0} at leading loop order

Contributions to form factors up to first loop order

$$
\begin{aligned}
& \quad \text { Electromagnetic form factors } \\
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 m_{B 0}^{2}} F_{2}\left(q^{2}\right) \\
& G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
\end{aligned}
$$

Transverse densities
 - Fixed light-front time: $x^{+}=x^{0}+x^{3}$

Soper, PRD15 1141 (1977); Burkardt, PRD62 071503 (2000); Miller, PRC76 065209 (2007)
For momentum transfer $\Delta^{+}=\Delta^{0}+\Delta^{3}=0$ current not affected by vacuum fluctuations!

- Connection with general parton distributions
- Pure transverse momentum transfer

$$
\begin{aligned}
& \boldsymbol{\Delta}_{T}=\left(\Delta^{1}, \Delta^{2}\right) \\
& F_{1,2}(t)=\int \mathrm{d}^{2} b e^{\mathrm{i} \boldsymbol{\Delta}_{T} \cdot \boldsymbol{b}} \rho_{1,2}(b), \quad t=-\left|\boldsymbol{\Delta}_{T}\right|^{2}
\end{aligned}
$$

$$
\left\langle\boldsymbol{J}^{+}(\boldsymbol{b})\right\rangle_{y \text {-pol }} \sim \underbrace{\rho_{1}(b)}_{\text {spin-independent }}+\underbrace{\left(2 S^{y}\right) \cos \phi \frac{\overbrace{\frac{\mathrm{d}}{\mathrm{~d}}\left[\frac{\rho_{2}(b)}{2 M_{N}}\right]}^{\tilde{\rho}_{2}(b)}}{\rho^{(b)}}}_{\text {spin-dependent }}
$$

Dispersive representation

Bessel function $K_{0} \sim e^{-b \sqrt{t}}$: suppression at large t
Distance b as filter of masses $\sqrt{t} \sim 1 / b$

Dispersive improvement

- Chiral EFT works well for densities down to distances of 3 fm
- We want a good description down to 1 fm
- Include $\pi \pi$-rescattering effects - manifest in ρ resonance

$$
\begin{aligned}
& \operatorname{lm} F_{i}^{B}(t)=\frac{k_{\mathrm{cm}}^{3}}{\sqrt{t}} \Gamma_{i}^{B}(t) F_{\pi}^{*}(t)=\frac{k_{\mathrm{cm}}^{3}}{\sqrt{t}} \frac{\Gamma_{i}^{B}(t)}{F_{\pi}(t)}\left|F_{\pi}(t)\right|^{2} \\
& \quad \begin{array}{l}
\text { Computed with } \chi \text { EFT }
\end{array} \\
& \begin{array}{l}
\text { Empirical pion form factor }
\end{array} \\
& \text { Gounaris and Sakurai, Phys. Rev. Lett. 21 (1968) 244 }
\end{aligned}
$$

Baryon magnetic densities I

Baryon magnetic densities II

Quark contributions

Charge-weighted contribution of quark flavor to $\rho(b)$
$\sum_{f} R^{B, f}=1$

Hyperons

$$
\begin{aligned}
\binom{p}{n} & \rightarrow\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} \Lambda & n \\
\Xi^{-} & \equiv 0^{0} & -\frac{2}{\sqrt{6}} \Lambda
\end{array}\right) \\
\pi^{ \pm}, \pi^{0} & \rightarrow \pi^{ \pm}, \pi^{0}, K^{ \pm}, K^{0}, \eta \\
\Delta(1232) & \rightarrow \Delta^{ \pm}, \Delta^{++}, \Delta^{0}, \Sigma^{* \pm}, \Sigma^{* 0}, \Xi^{*-}, \Xi^{* 0}, \Omega
\end{aligned}
$$

- Hyperons: baryons with strangeness $\mathcal{S} \neq 0$
- Short lifetimes \Longrightarrow properties computed on the lattice
- Gives space for theoretical predictions

