Applications of chiral perturbation theory: electromagnetic properties of baryons

Astrid N. Hiller Blin

Johannes Gutenberg-Universität Mainz hillerbl@uni-mainz.de

Thursday 31<sup>st</sup> August, 2017

#### Contents

1 Motivation: What can we learn from EM probes?

2 Framework: Why do we need ChPT?

#### 3 (Only) a few interesting results

Compton scattering and polarizabilities
 Virtual photons and form factors

#### Photon beams

Electromagnetic interactions provide **clean probes** of the inner structure of hadrons

► Low photon energies (~ 100 MeV): Compton scattering



► Slightly higher (≥ 140 MeV): pion photoproduction



#### Photon beams

Electromagnetic interactions provide **clean probes** of the inner structure of hadrons

► Low photon energies (~ 100 MeV): Compton scattering



Even higher: start feeling resonance production



#### Virtual photons

#### E.g. elastic electron scattering



#### For all these processes we focus on: small external momenta/momentum transfer

# Non-perturbative QCD vs. chiral perturbation theory



$$E_{\gamma} \approx \mathcal{O}(m_{\pi}) \Rightarrow \alpha_{s} = \mathcal{O}(1)$$

Perturbative QCD breaks down

⇒ EFT: expansion around other parameters

# Non-perturbative QCD vs. chiral perturbation theory



 $E_{\gamma} \approx \mathcal{O}(m_{\pi}) \Rightarrow \alpha_{s} = \mathcal{O}(1)$ 

Perturbative QCD breaks down

⇒ EFT: expansion around other parameters

#### Chiral perturbation theory:

- Small masses, momenta (<sup>m<sub>π</sub></sup>/<sub>1 GeV</sub>, <sup>p<sub>ext</sub>/<sub>1 GeV</sub> ≪ 1): combined expansion</sup>
- New degrees of freedom:
   quarks and gluons => mesons and baryons

SFB School 2017

### Lagrangians of ChPT



#### Lowest-order **baryon** Lagrangian $\sim p_{\text{ext}}$

#### Inclusion of the spin-3/2 resonances

The spin-3/2 states **couple strongly** to the spin-1/2 octet baryons

Pascalutsa et al., Phys. Rept. 437 (2007) 125

Geng et al., Phys. Lett. B 676 (2009) 63

$$\mathcal{L}_{\Delta\phi B}^{(1)} = \frac{-i\sqrt{2} \mathcal{C}}{F_0 M_\Delta} \bar{B}^{ab} \varepsilon^{cda} \gamma^{\mu\nu\lambda} (\partial_\mu \Delta_\nu)^{dbe} (D_\lambda \phi)^{ce} + \text{H.c.}$$
$$\mathcal{L}_{\Delta\gamma B}^{(2)} = -\frac{3ie \, g_M}{\sqrt{2}m(m+M_\Delta)} \bar{B}^{ab} \varepsilon^{cda} Q^{ce} (\partial_\mu \Delta_\nu)^{dbe} \tilde{F}^{\mu\nu} + \text{H.c.}$$

### Matching a diagram to a specific order



$$O = 4L + \sum kV_k - 2N_{\pi} - N_N - N_{\Delta} \cdot ?$$

- Propagators: meson  $\sim m_{\pi}^{-2}$ , spin-1/2 baryon  $\sim p_{ext}^{-1}$
- ▶ Spin-3/2 baryon: new scale  $\delta = M_\Delta m_N \approx 0.3 \text{ GeV} > m_\pi$
- $(\delta/m_p)^2 \approx (m_\pi/m_p) \Longrightarrow$  far from resonance mass: ? =  $\frac{1}{2}$ Pascalutsa and Phillips, Phys. Rev. C 67 (2003) 055202
- Close to resonance mass:  $p_{\text{ext}} \sim \delta \Longrightarrow$  ? = 1

Hemmert et al., Phys. Lett. B 395 (1997) 89

SFB School 2017

A. N. Hiller Blin, JGU Mainz

 Loop diagrams: divergences and power counting breaking terms

$$rac{1}{\epsilon} = rac{1}{4 - \dim}$$
 and e.g. terms  $\propto p^2$  at  $\mathcal{O}(p^3)$ 

 Loop diagrams: divergences and power counting breaking terms

$$\frac{1}{\epsilon} = \frac{1}{4 - \dim}$$
 and e.g. terms  $\propto p^2$  at  $\mathcal{O}(p^3)$ 

- ► Fully analytical ⇒ match with Lagrangian terms
- Low-energy constants of these terms a priori unknwon

#### Loop diagrams: divergences and power counting breaking terms

$$rac{1}{\epsilon} = rac{1}{4 - \dim}$$
 and e.g. terms  $\propto p^2$  at  $\mathcal{O}(p^3)$ 

- Fully analytical 

  match with Lagrangian terms
- Low-energy constants of these terms a priori unknwon
- EOMS-renormalization prescription:

Gegelia and Japaridze, Phys. Rev. D 60 (1999) 114038

- $\overline{MS}$  absorbs  $L = \frac{2}{\epsilon} + \log(4\pi) \gamma_E$  into LECs
- Also subtracts PCBT by redefinition of LECs
- Usually converges faster than other counting schemes (relativistic or not)

# Compton scattering

# and

# polarizabilities

Hiller Blin, Gutsche, Ledwig and Lyubovitskij Phys. Rev. D 92 (2015) 096004 arXiv: 1509.00955 [hep-ph]

#### Polarizabilities



- In EM field: hadrons deformed due to charged components
- Size of deformation: related to polarizabilities



Experiment: Compton scattering off hadron targets

## Theoretical approach

#### - Amplitude expansion around low photon energy $\omega$

- $\mathcal{O}(\omega^0)$ : total charge
- $\mathcal{O}(\omega^1)$ : anomalous magnetic moment
- $\mathcal{O}(\omega^2)$ :  $\alpha_E$  and  $\beta_M$
- $\mathcal{O}(\omega^3)$ : spin-dependent polarizabilities  $\gamma_i$

## Theoretical approach

#### - Amplitude expansion around low photon energy $\omega$

- $\mathcal{O}(\omega^0)$ : total charge
- $\mathcal{O}(\omega^1)$ : anomalous magnetic moment
- $\mathcal{O}(\omega^2)$ :  $\alpha_E$  and  $\beta_M$
- $\mathcal{O}(\omega^3)$ : spin-dependent polarizabilities  $\gamma_i$
- Forward spin polarizability  $\gamma_0$ 
  - response to deformation relative to spin axis
  - photon scattering in extreme forward direction

## Theoretical approach

- Amplitude expansion around low photon energy  $\omega$ 
  - $\mathcal{O}(\omega^0)$ : total charge
  - $\mathcal{O}(\omega^1)$ : anomalous magnetic moment
  - $\mathcal{O}(\omega^2)$ :  $\alpha_E$  and  $\beta_M$
  - $\mathcal{O}(\omega^3)$ : spin-dependent polarizabilities  $\gamma_i$
- Forward spin polarizability  $\gamma_0$ 
  - response to deformation relative to spin axis
  - photon scattering in extreme forward direction
- Theory: Hemmert et al., Phys. Rev. D 57 (1998) 5746

$$\gamma_{0}\left[\vec{\sigma}\cdot\left(\vec{\epsilon}\times\vec{\epsilon}^{*}\right)\right]=-\frac{\mathrm{i}}{4\pi}\frac{\partial}{\partial\omega^{2}}\frac{\epsilon^{\mu}\mathcal{M}_{\mu\nu}^{\mathsf{SD}}\epsilon^{*\nu}}{\omega}\bigg|_{\omega=0}$$

SFB School 2017

#### Experimental extraction

Sum rule: Gell-Mann et al., Phys. Rev. 95 (1954) 1612

$$\gamma_0 = -\frac{1}{4\pi^2} \int_{\omega_0}^{\infty} \mathrm{d}\omega \frac{\sigma_{3/2}(\omega) - \sigma_{1/2}(\omega)}{\omega^3}$$

 $\sigma_{3/2}(\sigma_{1/2})$ : photon and target helicities are (anti)parallel

#### Experimental extraction

Sum rule: Gell-Mann et al., Phys. Rev. 95 (1954) 1612

$$\gamma_0 = -\frac{1}{4\pi^2} \int_{\omega_0}^{\infty} \mathrm{d}\omega \frac{\sigma_{3/2}(\omega) - \sigma_{1/2}(\omega)}{\omega^3}$$

 $\sigma_{3/2}(\sigma_{1/2})$ : photon and target helicities are (anti)parallel

- Experiment: Pasquini et al., Phys. Lett. B 687 (2004) 160  $\gamma_0^p = [-1.01 \pm 0.08(\text{stat}) \pm 0.10(\text{syst})] \cdot 10^{-4} \text{fm}^4$
- ▶ Dispersion relations: Direction tet al., Phys. Rept. 378 (2003) 99  $\gamma_0^p = [-1.1 \pm 0.4] \cdot 10^{-4} \text{fm}^4 \text{ and } \gamma_0^n = [-0.3 \pm 0.2] \cdot 10^{-4} \text{fm}^4$

### Experimental extraction

Sum rule: Gell-Mann et al., Phys. Rev. 95 (1954) 1612

$$\gamma_0 = -\frac{1}{4\pi^2} \int_{\omega_0}^{\infty} \mathrm{d}\omega \frac{\sigma_{3/2}(\omega) - \sigma_{1/2}(\omega)}{\omega^3}$$

 $\sigma_{3/2}(\sigma_{1/2})$ : photon and target helicities are (anti)parallel

- Experiment: Pasquini et al., Phys. Lett. B 687 (2004) 160  $\gamma_0^p = [-1.01 \pm 0.08(\text{stat}) \pm 0.10(\text{syst})] \cdot 10^{-4} \text{fm}^4$
- ▶ Dispersion relations: Direction tet al., Phys. Rept. 378 (2003) 99  $\gamma_0^p = [-1.1 \pm 0.4] \cdot 10^{-4} \text{fm}^4 \text{ and } \gamma_0^n = [-0.3 \pm 0.2] \cdot 10^{-4} \text{fm}^4$
- First goal is to reproduce these values theoretically

SFB School 2017

- $\infty$  and PCBT: do not enter pieces  $\sim \omega^3$  relevant for  $\gamma_0$
- Leading order for  $\gamma_0 \Longrightarrow$  **no unknwon LECs**
- Results independent of renormalization or unknown LECs

   <u>
   pure predictions of ChPT

  </u>

# Results with different covariant ChPT models



SU(2): Bernard et al., Phys. Rev. D 87 (2013) 054032
 SU(2) with ∆: Lensky et al., Eur. Phys. J. C 75 (2015) 604
 Experiment: Pasquini et al., Phys. Lett. B 687 (2004) 160
 Dispersion relations: Drechsel et al., Phys. Rept. 378 (2003) 99

#### Results for the hyperons

| $\gamma_0  [{\rm fm}^{-4} {\rm 10}^{-4}]$ | $\Sigma^+$ | $\Sigma^{-}$ | $\Sigma^0$ | ٨         | Ξ    | Ξ0        |
|-------------------------------------------|------------|--------------|------------|-----------|------|-----------|
| Our full model                            | -2.30(33)  | 0.90         | 0.47(8)    | -1.25(25) | 0.13 | -3.02(33) |

- g<sub>M</sub> not well known
- We estimate it from electromagnetic decay width  $\Gamma_{\Delta \rightarrow \gamma N}$



-

### Results for the hyperons

- g<sub>M</sub> not well known
- We estimate it from electromagnetic decay width  $\Gamma_{\Delta \rightarrow \gamma N}$



# Electromagnetic transition of **negatively charged** hyperons to spin-3/2 partners SU(3) forbidden $\implies$ no uncertainty from $g_M$

SFB School 2017

# Virtual photons

and

# form factors

Alarcón, Hiller Blin, Vicente Vacas and Weiss Nucl. Phys. A 964 (2017) 18 arXiv: 1703.04534 [hep-ph]

#### Form factors

Matrix decomposition of the amplitude



#### Form factors

Matrix decomposition of the amplitude



$$\gamma^{\mu}F_1(Q^2) + \frac{\mathrm{i}\sigma^{\mu\nu}q_{\nu}}{2m}F_2(Q^2)$$

#### Non-relativistic systems: Fourier transforms of 3-dimensional spatial densities

#### Relativistic systems: vacuum fluctuations! The number of particles in the system is not a constant

SFB School 2017

A. N. Hiller Blin, JGU Mainz

Thursday 31st August, 2017

## Dispersive representation of electromagnetic densities

Transverse densities decouple from vacuum fluctuations!



# Dispersive representation of electromagnetic densities

Transverse densities decouple from vacuum fluctuations!



**Two-pion cut:** low-mass states  $\rightarrow$  peripheral density

SFB School 2017

A. N. Hiller Blin, JGU Mainz

Thursday 31st August, 2017

#### Proton form factor and spatial density



### Nucleon charge densities

- Isovector component: 2π contributions (includes chiral piece and ρ-meson effects)
- Isoscalar component:
   2K contributions, ω and φ mesons



$$\rho_1^{p} = \rho_1^{S} + \rho_1^{V}$$

 $\boldsymbol{\rho_1^n} = \boldsymbol{\rho_1^S} - \boldsymbol{\rho_1^V}$ 



#### Hyperon charge densities

## Summary

#### Framework

- Electromagnetic probes of light baryons in SU(3) ChPT
- Covariant renormalization scheme: EOMS
- Explicit inclusion of the spin-3/2 resonances

#### Hyperon polarizabilities

- **Predictive** results for hyperon polarizabilities at  $\mathcal{O}(p^{7/2})$
- Σ<sup>−</sup> and Ξ<sup>−</sup> do not depend on uncertainties from LECs
- Outlook: Other polarizabilities, photon virtuality, ...

#### Form factors

- Understanding about charge distributions in octet baryons
- Outlook:  $\Delta$  and transition FFs, anomalous thresholds, ...

SFB School 2017

# Additional material

# Higher orders of the nucleonic Lagrangian

$$\begin{split} \mathcal{L}_{N} &= \bar{\Psi} \Big\{ \frac{1}{8m} \left( \mathbf{C_{6}} f_{\mu\nu}^{+} + \mathbf{C_{7}} \mathrm{Tr} \left[ f_{\mu\nu}^{+} \right] \right) \sigma^{\mu\nu} \quad \text{Fettes et al., Ann. Phys. 283 (2000) 273} \\ &+ \frac{\mathrm{i}}{2m} \varepsilon^{\mu\nu\alpha\beta} \left( \mathbf{d_{8}} \mathrm{Tr} \left[ \tilde{f}_{\mu\nu}^{+} u_{\alpha} \right] + \mathbf{d_{9}} \mathrm{Tr} \left[ f_{\mu\nu}^{+} \right] u_{\alpha} + \mathrm{H.c.} \right) \mathrm{D}_{\beta} \\ &+ \frac{\gamma^{\mu} \gamma_{5}}{2} \left( \mathbf{d_{16}} \mathrm{Tr} \left[ \chi_{+} \right] u_{\mu} + \mathrm{i} \ \mathbf{d_{18}} [\mathrm{D}_{\mu}, \chi_{-}] \right) \Big\} \Psi + \dots \end{split}$$





# Diagrams contributing to $\gamma_0$ at leading loop order



### Contributions to form factors up to first loop order



# Electromagnetic form factors $G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_{B0}^2}F_2(q^2)$ $G_M(q^2) = F_1(q^2) + F_2(q^2)$





Soper, PRD15 1141 (1977); Burkardt, PRD62 071503 (2000); Miller, PRC76 065209 (2007)

For momentum transfer  $\Delta^+ = \Delta^0 + \Delta^3 = 0$  current not affected by vacuum fluctuations!

Connection with general parton distributions

• Pure transverse momentum transfer  $\Delta_T = (\Delta^1, \Delta^2)$ 

$$F_{1,2}(t) = \int \mathrm{d}^2 b e^{\mathrm{i} \boldsymbol{\Delta}_T \cdot \boldsymbol{b}} 
ho_{1,2}(b), \quad t = -|\boldsymbol{\Delta}_T|^2$$





#### **Dispersive representation**



Bessel function  $K_0 \sim e^{-b\sqrt{t}}$ : suppression at large *t* Distance *b* as filter of masses  $\sqrt{t} \sim 1/b$ 

### **Dispersive improvement**

- Chiral EFT works well for densities down to distances of 3 fm
- We want a good description down to 1 fm
- Include  $\pi\pi$ -rescattering effects manifest in  $\rho$  resonance



Similar approach for  $\Lambda$ - $\Sigma^0$  transition FF: Granados et al., arXiv:1701.09130 [hep-ph] (2017)

#### Baryon magnetic densities I



#### Baryon magnetic densities II



#### Quark contributions



#### Hyperons



- Hyperons: baryons with strangeness  $S \neq 0$
- Short lifetimes => properties computed on the lattice
- Gives space for theoretical predictions