Neutrino physics (3)

Evgeny Akhmedov

Max-Planck Institute für Kernphysik, Heidelberg

Plan of the lectures

- Introduction.
- Brief overview of experimental results
- Weyl, Dirac and Majorana fermions
- Neutrino masses in simplest extensions of the Standard Model. The seesaw mechanism(s).
- Neutrino oscillations in vacuum
 - Same E or same p?
 - QM uncertainties and coherence issues
 - Wave packet approach to neutrino oscillations
 - Lorentz invariance of oscillation probabilities
 - If and 3f neutrino mixing schemes and oscillations
 - Implications of CP, T and CPT

Plan of the lectures – contd.

- Neutrino oscillations in matter the MSW effect
 - Evolution equation
 - Adiabaticity condition and adiabatic evolution
 - Non-adiabatic regime
 - Graphical interpretation and mechanical analogy
 - Earth matter effects on ν_{\odot} (day-night asymmetry)
- Neutrino oscillations in matter parametric resonance
- Direct neutrino mass measurement experiments
- Neutrinoless double β -decay
- Neutrino electromagnetic properties
- Subtleties of the theory of neutrino oscillations
 - Do charged leptons oscillate?
 - Oscillations of Mössbauer neutrinos
- Neutrinos and the baryon asymmetry of the universe

Plan of the lectures – contd.

- Exptl. results: Solar neutrino oscillations and KamLAND
- Oscillations of atmospheric and accelerator neutrinos
- Discovery of θ_{13} in reactor and accelerator expts.
- Future: What's next?

What is left out:

- Oscillations of SN neutrinos (incl. non-linear collective effects)
- Cosmological bounds on # of neutrino species and $\sum m_{
 u}$
- keV sterile neutrinos as Dark Matter
- Geoneutrinos

. . .

Phenomenology of neutrino oscillations

I. Dirac case

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \sum_{i=1}^n m_i \bar{\nu}_i \nu_i + h.c.$$

I. Dirac case

 \diamond

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \sum_{i=1}^n m_i \bar{\nu}_i \nu_i + h.c.$$
$$V_L^{\dagger} U_L \equiv U; \qquad \nu_{\alpha L} = \sum_{i=1}^n U_{\alpha i} \nu_{iL} \qquad \Rightarrow \qquad |\nu_{\alpha L}\rangle = \sum_{i=1}^n U_{\alpha i}^* |\nu_{iL}\rangle$$
$$(\alpha = e, \mu, \tau, \qquad i = 1, 2, 3$$

I. Dirac case

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \sum_{i=1}^n m_i \bar{\nu}_i \nu_i + h.c.$$

$$V_L^{\dagger} U_L \equiv U; \qquad \nu_{\alpha L} = \sum_{i=1}^n U_{\alpha i} \nu_{iL} \qquad \Rightarrow \qquad |\nu_{\alpha L}\rangle = \sum_{i=1}^n U_{\alpha i}^* |\nu_{iL}\rangle$$

$$(\alpha = e, \mu, \tau, \quad i = 1, 2, 3$$

$$\langle P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) = \left| \sum_{i=1}^n U_{\beta i} e^{-i \frac{\Delta m_{ij}^2}{2p} L} U_{\alpha i}^* \right|^2$$

I. Dirac case

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \sum_{i=1}^n m_i \bar{\nu}_i \nu_i + h.c.$$

$$\diamond \quad V_L^{\dagger} U_L \equiv U; \qquad \nu_{\alpha L} = \sum_{i=1}^n U_{\alpha i} \nu_{iL} \quad \Rightarrow \quad |\nu_{\alpha L}\rangle = \sum_{i=1}^n U_{\alpha i}^* |\nu_{iL}\rangle$$

$$(\alpha = e, \mu, \tau, \quad i = 1, 2, 3$$

$$\diamond \quad P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) = \left|\sum_{i=1}^n U_{\beta i} e^{-i\frac{\Delta m_{ij}^2}{2p}L} U_{\alpha i}^*\right|^2$$

II. Majorana neutrinos

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} - \sum_{i=1}^n m_i \nu_{iL}^T \mathcal{C}^{-1} \nu_{iL} + h.c.$$

I. Dirac case

 \Diamond

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \sum_{i=1}^n m_i \bar{\nu}_i \nu_i + h.c.$$

$$V_L^{\dagger} U_L \equiv U; \qquad \nu_{\alpha L} = \sum_{i=1}^n U_{\alpha i} \nu_{iL} \implies |\nu_{\alpha L}\rangle = \sum_{i=1}^n U_{\alpha i}^* |\nu_{iL}\rangle$$

$$(\alpha = e, \mu, \tau, \quad i = 1, 2, 3$$

$$\Diamond \qquad P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) = \left|\sum_{i=1}^n U_{\beta i} e^{-i \frac{\Delta m_{ij}^2}{2p} L} U_{\alpha i}^*\right|^2$$

II. Majorana neutrinos

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} - \sum_{i=1}^n m_i \nu_{iL}^T \mathcal{C}^{-1} \nu_{iL} + h.c.$$
$$\nu_{\alpha L} = \sum_{i=1}^n U_{\alpha i} \nu_{iL} \quad \Rightarrow \quad |\nu_{\alpha L}\rangle = \sum_{i=1}^n U_{\alpha i}^* |\nu_{iL}\rangle$$

Osc. probability: the same expression

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{i=1}^{n+k} m_i \bar{\chi}_i \chi_i + h.c.$$

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{i=1}^{n+k} m_i \bar{\chi}_i \chi_i + h.c.$$
$$n_L = \begin{pmatrix} \nu_L' \\ (N_R')^c \end{pmatrix} = \begin{pmatrix} \nu_L' \\ N_L'^c \end{pmatrix}$$
$$n_{aL} = \sum_{i=1}^{n+k} \mathcal{U}_{ai} \chi_{iL} , \qquad \mathcal{U}^T \mathcal{M} \mathcal{U} = \mathcal{M}_d ,$$

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{i=1}^{n+k} m_i \bar{\chi}_i \chi_i + h.c.$$
$$n_L = \begin{pmatrix} \nu'_L \\ (N'_R)^c \end{pmatrix} = \begin{pmatrix} \nu'_L \\ N'_L^c \end{pmatrix}$$
$$n_{aL} = \sum_{i=1}^{n+k} \mathcal{U}_{ai} \chi_{iL}, \qquad \mathcal{U}^T \mathcal{M} \mathcal{U} = \mathcal{M}_d,$$
$$\chi_i = \chi_{iL} + (\chi_{iL})^c, \qquad i = 1, \dots, n+k,$$

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{i=1}^{n+k} m_i \bar{\chi}_i \chi_i + h.c.$$

$$n_L = \begin{pmatrix} \nu'_L \\ (N'_R)^c \end{pmatrix} = \begin{pmatrix} \nu'_L \\ N'_L^c \end{pmatrix}$$

$$n_{aL} = \sum_{i=1}^{n+k} \mathcal{U}_{ai} \chi_{iL}, \qquad \mathcal{U}^T \mathcal{M} \mathcal{U} = \mathcal{M}_d,$$

$$\chi_i = \chi_{iL} + (\chi_{iL})^c, \qquad i = 1, \dots, n+k,$$

$$\mathcal{L}_m = \frac{1}{2} n_L^T \mathcal{C}^{-1} \mathcal{M} n_L + h.c. = \frac{1}{2} \sum_{i=1}^{n+k} \mathcal{M}_{di} \chi_{iL} \mathcal{C}^{-1} \chi_{iL} + h.c. = -\frac{1}{2} \sum_{i=1}^{n+k} \mathcal{M}_{di} \bar{\chi}_i \chi_i.$$

III. Dirac + Majorana mass term (n LH and k RH neutrinos)

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^{\mu} V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \sum_{\alpha=1}^n m_{l\alpha} \bar{e}_{\alpha} e_{\alpha} + \frac{1}{2} \sum_{i=1}^{n+k} m_i \bar{\chi}_i \chi_i + h.c.$$

$$n_L = \begin{pmatrix} \nu'_L \\ (N'_R)^c \end{pmatrix} = \begin{pmatrix} \nu'_L \\ N'_L^c \end{pmatrix}$$

$$n_{aL} = \sum_{i=1}^{n+k} \mathcal{U}_{ai} \chi_{iL}, \qquad \mathcal{U}^T \mathcal{M} \mathcal{U} = \mathcal{M}_d,$$

$$\chi_i = \chi_{iL} + (\chi_{iL})^c, \qquad i = 1, \dots, n+k,$$

$$\mathcal{L}_m = \frac{1}{2} n_L^T \mathcal{C}^{-1} \mathcal{M} n_L + h.c. = \frac{1}{2} \sum_{i=1}^{n+k} \mathcal{M}_{di} \chi_{iL} \mathcal{C}^{-1} \chi_{iL} + h.c. = -\frac{1}{2} \sum_{i=1}^{n+k} \mathcal{M}_{di} \bar{\chi}_i \chi_i.$$

Index *a* can take n + k values; denote collectively the first *n* of them with α and the last *k* with $\sigma \Rightarrow$

Evgeny Akhmedov

MITP Summer School 2017

Active and sterile LH neutrino fields in terms of LH components of mass eigenstates:

$$\nu_{\alpha L} = \sum_{i=1}^{n+k} \mathcal{U}_{\alpha i} \chi_{iL}, \qquad (\nu_{\sigma R})^c = \sum_{i=1}^{n+k} \mathcal{U}_{\sigma i} \chi_{iL}.$$

Active and sterile LH neutrino fields in terms of LH components of mass eigenstates:

$$\nu_{\alpha L} = \sum_{i=1}^{n+k} \mathcal{U}_{\alpha i} \chi_{iL}, \qquad (\nu_{\sigma R})^c = \sum_{i=1}^{n+k} \mathcal{U}_{\sigma i} \chi_{iL}.$$

The usual oscillations described by the standard f-la with $U \rightarrow U$ and summation over *i* up to n + k. In addition: new types of oscillations possible.

Active and sterile LH neutrino fields in terms of LH components of mass eigenstates:

$$\nu_{\alpha L} = \sum_{i=1}^{n+k} \mathcal{U}_{\alpha i} \chi_{iL}, \qquad (\nu_{\sigma R})^c = \sum_{i=1}^{n+k} \mathcal{U}_{\sigma i} \chi_{iL}.$$

The usual oscillations described by the standard f-la with $U \rightarrow U$ and summation over *i* up to n + k. In addition: new types of oscillations possible. Active - sterile neutrino oscillations:

$$P(\nu_{\alpha L} \to \nu_{\sigma L}^{c}; L) = \left| \sum_{i=1}^{n+k} \mathcal{U}_{\sigma i} \; e^{-i \frac{\Delta m_{ij}^2}{2p} L} \; \mathcal{U}_{\alpha i}^* \right|^2.$$

Active and sterile LH neutrino fields in terms of LH components of mass eigenstates:

$$\nu_{\alpha L} = \sum_{i=1}^{n+k} \mathcal{U}_{\alpha i} \chi_{iL}, \qquad (\nu_{\sigma R})^c = \sum_{i=1}^{n+k} \mathcal{U}_{\sigma i} \chi_{iL}.$$

The usual oscillations described by the standard f-la with $U \rightarrow U$ and summation over *i* up to n + k. In addition: new types of oscillations possible.

Active - sterile neutrino oscillations:

$$P(\nu_{\alpha L} \to \nu_{\sigma L}^{c}; L) = \left| \sum_{i=1}^{n+k} \mathcal{U}_{\sigma i} \ e^{-i \frac{\Delta m_{ij}^2}{2p} L} \ \mathcal{U}_{\alpha i}^* \right|^2.$$

Sterile - sterile neutrino oscillations:

$$P(\nu_{\sigma L}^{c} \to \nu_{\rho L}^{c}; L) = \left| \sum_{i=1}^{n+k} \mathcal{U}_{\rho i} \ e^{-i \frac{\Delta m_{ij}^{2}}{2p} L} \ \mathcal{U}_{\sigma i}^{*} \right|^{2}.$$

An important example: 2-flavour case

$$|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle |\nu_\mu\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$$

$$U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \equiv \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

$$\diamondsuit \quad P_{\rm tr} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4p}L\right)$$

- Problem: Derive this formula from the general expression for $P_{\alpha\beta}$.
- Problem: Write this formula in the usual units, reinstating all factors of \hbar and *c*. Find its classical and non-relativistic limits.

Evgeny	Akhmedov
--------	----------

Oscillation amplitude: $\sin^2 2\theta$. Oscillation phase:

$$\frac{\Delta m^2}{4p}L = \pi \frac{L}{l_{\rm osc}}, \qquad l_{\rm osc} \equiv \frac{4\pi p}{\Delta m^2} \simeq 2.48 \,\mathrm{m} \frac{p \,(\mathrm{MeV})}{\Delta m^2 \,(\mathrm{eV}^2)}.$$

For large oscillation phase \Rightarrow averaging regime (due to finite *E*-resolution of detectors and/or finite size of ν source/detector):

$$P_{\rm tr} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4p}L\right) \rightarrow \frac{1}{2}\sin^2 2\theta$$

– p. 11

2f evolution equation in vacuum

For relativistic point-like ν 's ($x \simeq t$) the evolution equation in the flavour basis:

$$i\frac{d}{dt}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix} = H_{\mathrm{fl}}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix} = \begin{bmatrix}U\begin{pmatrix}E_{1}&0\\0&E_{2}\end{pmatrix}U^{\dagger}\end{bmatrix}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix}$$
$$E \simeq p + \frac{m^{2}}{2E} \Rightarrow$$
$$H_{\mathrm{fl}} \simeq \begin{bmatrix}U\begin{pmatrix}p + \frac{m^{2}_{1}}{2E} & 0\\0 & p + \frac{m^{2}_{2}}{2E}\end{pmatrix}U^{\dagger} \implies \begin{bmatrix}U\begin{pmatrix}-\frac{\Delta m^{2}_{21}}{4E} & 0\\0 & \frac{\Delta m^{2}_{21}}{4E}\end{pmatrix}U^{\dagger}\end{bmatrix}$$

N.B.: A term prop. to unit matrix can always be added to/subtracted from $H_{\rm fl}$. Problem: prove this! 2-flavor evolution equation:

$$\diamond \quad i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} -\frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

♦ Problem: find P_{tr} by solving the evolution equation with the initial contition $(1,0)^T$.

Oscillation parameters as characteristics of *H*

For a 2×2 real symmetric matrix

$$\left(\begin{array}{cc}a&b\\b&c\end{array}\right)$$

the angle of rotation that diagonalizes it:

$$\tan 2\theta = \frac{2b}{c-a}.$$

Eigenvalues:

$$\lambda_{1,2} = \frac{a+c}{2} \mp \sqrt{\frac{(c-a)^2}{4} + b^2} \,.$$

Mixing angle θ : the angle of rotation that diagonalizes eff. Hamiltonian $H_{\rm fl}$. Eigenvalues of $H_{\rm fl}$: $\mathcal{E}_{1,2} = \pm \frac{\Delta m^2}{4E}$.

Oscillation length:

$$l_{\rm osc} = \frac{2\pi}{|\mathcal{E}_2 - \mathcal{E}_1|} v_g = \frac{4\pi p}{\Delta m^2}$$

3f neutrino mixing and oscillations

General case of *n* **flavours – parameter counting**

 $(n \times n)$ unitary mixing matrix $\tilde{U} \Rightarrow n^2$ real parameters:

$$\begin{pmatrix} n \\ 2 \end{pmatrix} = \frac{n(n-1)}{2}$$
 mixing angles, $\frac{n(n+1)}{2}$ phases

For leptonic mixing matrix n phases can be absorbed into re-defenition of the phases of LH charged fields: $e_{\alpha L} \rightarrow e^{i\phi_{\alpha}}e_{\alpha L}$ (e.g., 1st line of \tilde{U} can be made real). This can be compensated in the mass term of charged leptons by rephasing $e_{\alpha R} \rightarrow e^{i\phi_{\alpha}}e_{\alpha R}$, so that $\bar{e}_{\alpha L}e_{\alpha R} = inv$.

Similarly, for <u>Dirac</u> neutrinos phases of one column can be fixed by absorbing n-1 phases into a redefinition of ν_{iL} (RH neutrino fields can be rephased analogously, so that $\bar{\nu}_{iL}\nu_{iR} = inv$.) \Rightarrow In Dirac ν case n + (n-1) = 2n-1 phases are unphysical – can be rotated away by redefining charged lepton and neutrino fields.

N.B.: Kinetic terms of e_L , e_R and ν_L , ν_R are also invariant w.r.t. rephasing.!

Physical phases

Number of physical phases:

$$\frac{n(n+1)}{2} - (2n-1) = \frac{(n-1)(n-2)}{2}.$$

Phys. phases responsible for CP violation! \Rightarrow No Dirac-type CPV for n < 3.

In Majorana case:

$$\mathcal{L}_m \propto \nu_L^T C \nu_L + h.c.$$

Rephasing of ν_L is not possible (cannot be compensated in \mathcal{L}_m)

Only *n* phases can be removed from \tilde{U} (by redefinition of $e_{\alpha L}$ fields) \Rightarrow In addition to Dirac-type phases there are (n-1) physical Majorana-type CP-violating phases.

Majorana phases do not affect oscillations

Majorana-type phases can be factored out in the mixing matrix:

 $\tilde{U} = UK$

U contains Dirac-type phases, K – Majorana-type phases σ_i :

$$K = \operatorname{diag}(1, e^{i\sigma_1}, \dots, e^{i\sigma_{n-1}})$$

Neutrino evolution equation: $i \frac{d}{dt} \nu = H_{\text{eff}} \nu$

$$H_{\text{eff}} = UK \begin{pmatrix} E_1 & & \\ & E_2 & \\ & & \ddots & \\ & & & \ddots \end{pmatrix} K^{\dagger}U^{\dagger} = U \begin{pmatrix} E_1 & & \\ & E_2 & & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \ddots \end{pmatrix} U^{\dagger}$$

Does not depend on the matrix of Majorana \mathcal{OP} phases $K \Rightarrow \nu$ oscillations are insensitive to Majorana phases. Also true for osc. in matter.

Evgeny Akł	hmedov
------------	--------

Three neutrino species $(\nu_e, \nu_\mu, \nu_\tau)$ – linear superpositions of three mass eigenstates (ν_1, ν_2, ν_3) . Mixing matrix $U - 3 \times 3$ unitary matrix. Depends on 3 mixing angles and one Dirac-type \mathcal{CP} phase δ_{CP} .

Experiment: 2 mixing angles large (in the standard parameterization – θ_{12} and θ_{23}), one (θ_{13}) is relatively small.

Three neutrinos species – 2 independent mass squared differences, e.g. Δm^2_{21} and Δm^2_{31} .

 $\Delta m_{21}^2 \ll \Delta m_{31}^2$

What do we know about neutrino parameters

From atmsopheric and LBL accelerator neutrino experiments:

$$\diamondsuit \quad \Delta m_{31}^2 \simeq 2.5 \times 10^{-3} \text{ eV}^2, \qquad \theta_{23} \sim 45^\circ$$

From solar neutrino experiments and KamLAND:

$$\diamondsuit \quad \Delta m_{21}^2 \simeq 7.5 \times 10^{-5} \text{ eV}^2, \qquad \theta_{12} \simeq 33^\circ$$

From T2K + Double Chooz, Daya Bay and Reno reactor neutrino experiments:

$$\diamondsuit \quad \theta_{13} \simeq 9^{\circ} \quad \text{(previously from Chooz } \lesssim 12^{\circ}\text{)}$$

CP-violating phase δ_{CP} practically unconstrained at the moment.

Leptonic mixing and 3f osc. in vacuum

Relation between flavour and mass eigenstates:

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \, \nu_i$$

 ν_{α} – fields of flavour eigenstates, ν_i – of mass eigenstates.

3f mixing matrix:

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

Leptonic mixing and 3f osc. in vacuum

Relation btween flavour and mass eigenstates:

$$\left|\nu_{\alpha}\right\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} \left|\nu_{i}\right\rangle$$

Oscillation probability in vacuum:

$$P(\nu_{\alpha} \to \nu_{\beta}; L) = \left| \sum_{i=1}^{3} U_{\beta i} e^{-i\frac{\Delta m_{i1}^{2}}{2p}L} U_{\alpha i}^{*} \right|^{2} = \left| \left[U e^{-i\frac{\Delta m^{2}}{2p}L} U^{\dagger} \right]_{\beta \alpha} \right|^{2}$$

3f mixing matrix in the standard parameterization ($c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$):

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= O_{23} \left(\Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} \right) O_{12} ,$$

$$\Gamma_{\delta} \equiv \operatorname{diag}(1, 1, e^{i\delta_{\mathrm{CP}}})$$

3f neutrino mixing

2f oscillations: physical ranges of parameters

 $|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle$ $|\nu_\mu\rangle = -\sin\theta |\nu_1\rangle + \cos\theta |\nu_2\rangle$

In general, $\theta \in [0, 2\pi]$. But: there are transformations that leave ν mixing formulas unchanged:

 $\begin{array}{lll} \theta \to \theta + \pi, & |\nu_1\rangle \to -|\nu_1\rangle, & |\nu_2\rangle \to -|\nu_2\rangle & \Rightarrow & \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}] \\ \bullet & \theta \to -\theta, & |\nu_2\rangle \to -|\nu_2\rangle, & |\nu_\mu\rangle \to -|\nu_\mu\rangle & \Rightarrow & \theta \in [0, \frac{\pi}{2}] \\ \bullet & \theta \to \frac{\pi}{2} - \theta, & |\nu_1\rangle \leftrightarrow |\nu_2\rangle, & |\nu_\mu\rangle \to -|\nu_\mu\rangle & \Rightarrow & \Delta m^2 \to -\Delta m^2 \end{array}$

One can always choose $\Delta m^2 > 0$ by choosing appropriately θ within $[0, \frac{\pi}{2}]$. For vacuum oscillations: P_{tr} , P_{surv} depend only on $\sin^2 2\theta \Rightarrow$ one can choose θ to be in $[0, \frac{\pi}{4}]$. Not true for oscillations in matter!

Similar considerations in the 3f case: all $\theta_{ij} \in [0, \frac{\pi}{2}]$; $\delta_{CP} \in [0, 2\pi]$.

CP and T in ν osc. in vacuum

 $\nu_a \rightarrow \nu_b$ oscillation probability:

$$\diamondsuit \quad P(\nu_{\alpha}, t_0 \to \nu_{\beta}; t) = \left| \sum_{i} U_{\beta i} \ e^{-i \frac{\Delta m_{i1}^2}{2E} (t - t_0)} \ U_{\alpha i}^* \right|^2$$

• CP:
$$\nu_{\alpha,\beta} \leftrightarrow \bar{\nu}_{\alpha,\beta} \Rightarrow U_{\alpha i} \rightarrow U_{\alpha i}^* \quad (\{\delta_{\rm CP}\} \rightarrow -\{\delta_{\rm CP}\})$$

• T:
$$t \rightleftharpoons t_0 \quad \Leftrightarrow \quad \nu_{\alpha} \leftrightarrow \nu_{\beta}$$

 $\Rightarrow \quad U_{\alpha i} \to U^*_{\alpha i} \quad (\{\delta_{\rm CP}\} \to -\{\delta_{\rm CP}\})$

T-reversed oscillations ("backwards in time") \Leftrightarrow oscillations between interchanged initial and final flavours

♦ \mathcal{CP} and \mathcal{T} – absent in 2f case, pure $N \ge 3f$ effects!

 \diamond No \mathscr{CP} and \mathscr{T} for survival probabilities (b = a).

CP and T violation in vacuum – contd.

• CPT:
$$\nu_{\alpha,\beta} \leftrightarrow \bar{\nu}_{\alpha,\beta}$$
 & $t \rightleftharpoons t_0 \quad (\nu_{\alpha} \leftrightarrow \nu_{\beta})$

$$\diamond \ P(\nu_{\alpha} \to \nu_{\beta}) \to P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha})$$

The standard formula for $P_{\alpha\beta}$ in vacuum is CPT invariant!

$$\mathcal{CP} \Leftrightarrow \mathcal{T} - consequence of CPT$$

Measures of CP and T – probability differences:

$$\Delta P_{\alpha\beta}^{\rm CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$\Delta P_{\alpha\beta}^{\rm T} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\nu_{\beta} \to \nu_{\alpha})$$

From CPT:

$$\diamond \quad \Delta P_{\alpha\beta}^{\rm CP} = \Delta P_{\alpha\beta}^{\rm T}; \qquad \quad \Delta P_{\alpha\alpha}^{\rm CP} = 0$$
3f case

One \mathcal{CP} Dirac-type phase δ_{CP} (Majorana phases do not affect ν oscillations!) \Rightarrow one \mathcal{CP} and \mathcal{T} observable:

$$\diamond \quad \Delta P_{e\mu}^{\rm CP} \ = \ \Delta P_{\mu\tau}^{\rm CP} \ = \ \Delta P_{\tau e}^{\rm CP} \ \equiv \ \Delta P$$

$$\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\rm CP} \\ \times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right)\right]$$

Vanishes when

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\mathrm{CP}} = 0$ or 180°
- In the averaging regime
- In the limit $L \to 0$ (as L^3)

Very difficult to observe!

Approximate formulas for probabilities can be obtained using expansions in small parameters:

(1)
$$\frac{\Delta m_{\odot}^2}{\Delta m_{\text{atm}}^2} = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sim 1/30$$

(2) $|U_{e3}| = |\sin \theta_{13}| \sim 0.16$

In the limits $\Delta m_{21}^2 = 0$ or $U_{e3} = 0$ – probabilities take an effective 2f form.

(N.B.:
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P(\nu_{\beta} \rightarrow \nu_{\alpha}))$$

The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985) Matter can change the pattern of neutrino oscillations drastically

The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985) Matter can change the pattern of neutrino oscillations drastically Resonance enhancement of oscillations and resonance flavour conversion possible

- The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)
- Matter can change the pattern of neutrino oscillations drastically
- Resonance enhancement of oscillations and resonance flavour conversion possible
- Responsible for the flavor conversion of solar neutrinos (LMA MSW solution established). Important for oscill. of accel. and SN neutrinos.

The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)

Matter can change the pattern of neutrino oscillations drastically

Resonance enhancement of oscillations and resonance flavour conversion possible

Responsible for the flavor conversion of solar neutrinos (LMA MSW solution established). Important for oscill. of accel. and SN neutrinos.

How can matter affect neutrino oscillations?

For $E \sim 1 \text{ MeV}$ neutrinos mean free path in <u>lead</u> is $\sim 1 \text{ l.y. }!$

$$\diamondsuit \text{ mean free path } = \langle \sigma n v \rangle^{-1},$$

For incoherent processes (capture, finite-angle scattering)

$$\diamondsuit$$
 $\sigma \propto (G_F)^2$

Coherent forward scattering: effects $\sim G_F$, i.e. much stronger! Lead to effective potentials for neutrinos in matter $\sim G_F N$.

Coherent forward scattering on the particles in matter

$$V_e^{\rm CC} \equiv V = \sqrt{2} \, G_F \, N_e$$

2f neutrino evolution equation $(x \simeq t)$:

$$\diamondsuit \quad i\frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} -\frac{\Delta m^2}{4E}\cos 2\theta + V(x) & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

For antineutrinos $V(x) \rightarrow -V(x)$.

Neutrino potential in matter

At low neutrino energies the effective Hamiltonian CC interactions

$$H_{\rm CC} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma_\mu (1 - \gamma_5) \nu_e \right] \left[\bar{\nu}_e \gamma^\mu (1 - \gamma_5) e \right] = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma_\mu (1 - \gamma_5) e \right] \left[\bar{\nu}_e \gamma^\mu (1 - \gamma_5) \nu_e \right],$$

(Fierz transformation used). To obtain the matter-induced potential for ν_e fix the variables corresponding to ν_e and integrate over the electron variables:

$$H_{\rm eff}(\nu_e) = \langle H_{\rm CC} \rangle_{electron} \equiv \bar{\nu}_e V_e \nu_e \,.$$

We have:

 \Rightarrow

$$\langle \bar{e}\gamma_0 e \rangle = \langle e^{\dagger}e \rangle = N_e , \qquad \langle \bar{e}\gamma e \rangle = \langle \mathbf{v}_e \rangle , \quad \langle \bar{e}\gamma_0\gamma_5 e \rangle = \langle \frac{\boldsymbol{\sigma}_e \mathbf{p}_e}{E_e} \rangle , \quad \langle \bar{e}\boldsymbol{\gamma}\gamma_5 e \rangle = \langle \boldsymbol{\sigma}_e \rangle ,$$

For unpolarized medium of zero total momentum only the first term survives

$$\diamondsuit \quad (V_e)_{\rm CC} \equiv V = \sqrt{2} \, G_F N_e \; \, .$$

Evgeny Akhmedov

$$\diamondsuit \qquad P_{\rm tr} = \sin^2 2\theta_m \, \sin^2 \left(\pi \frac{L}{l_{\rm osc}^m} \right)$$

$$\diamondsuit \qquad P_{\rm tr} = \sin^2 2\theta_m \, \sin^2 \left(\pi \frac{L}{l_{\rm osc}^m} \right)$$

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Osc. length:
$$l_{osc}^m = l_{osc}(\sin 2\theta_m / \sin 2\theta)$$
.

$$\diamondsuit \qquad P_{\rm tr} = \sin^2 2\theta_m \, \sin^2 \left(\pi \frac{L}{l_{\rm osc}^m} \right)$$

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Osc. length: $l_{osc}^m = l_{osc}(\sin 2\theta_m / \sin 2\theta)$.

$$\diamondsuit \qquad P_{\rm tr} = \sin^2 2\theta_m \, \sin^2 \left(\pi \frac{L}{l_{\rm osc}^m} \right)$$

$$\diamondsuit \qquad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Osc. length: $l_{osc}^m = l_{osc}(\sin 2\theta_m / \sin 2\theta)$.

MSW resonance:

$$\sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta \Rightarrow$$
$$\theta_m = 45^{\circ}$$
independently of θ !
$$(l_{\rm osc}^m)_{\rm res} = l_{\rm osc}/\sin 2\theta.$$

Evgeny Akhmedov

MITP Summer School 2017

The MSW resonance condition

$$\diamondsuit \qquad \pm \sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta$$

For given *E* yields $(N_e)_{res}$ (or vice versa).

For neutrinos LHS $> 0 \Rightarrow$ can only be satisfied if RHS > 0:

$$\Delta m^2 \cos 2\theta = (m_2^2 - m_1^2)(\cos^2 \theta - \sin^2 \theta) > 0$$

- \Rightarrow If ν_2 is heavier than ν_1 , one needs $\cos^2 \theta > \sin^2 \theta$ and vice versa.
- ⇒ Lighter mass eigenstate must have larger ν_e component. If one chooses $\cos 2\theta > 0$, the resonance for neutrinos occurs when

 $\Delta m_{21}^2 > 0.$

For $\Delta m_{21}^2 < 0 \Rightarrow$ res. takes place for antineutrinos.

Matter of varying density

At any point x eff. Hamiltonian $H_m(x)$ can be diagonalized by unitary transf. $U_m = U_m(x)$ with the mixing angle $\theta_m = \theta_m(x)$:

$$\diamondsuit \quad \tan 2\theta_m(x) = \frac{\sin 2\theta \cdot \frac{\Delta m^2}{2E}}{\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e(x)}$$

In general osc. probability cannot be found in closed form. $|\nu_{1m}\rangle$, $|\nu_{2m}\rangle$ - local (at point x) eigenstates of H_m (matter eigenstates):

$$|\nu_{1m}\rangle = \cos \theta_m |\nu_e\rangle - \sin \theta_m |\nu_\mu\rangle$$

$$|\nu_{2m}\rangle = \sin \theta_m |\nu_e\rangle + \cos \theta_m |\nu_\mu\rangle$$

$$N_e \gg (N_e)_{res} : \theta_m \approx 90^{\circ}$$

$$N_e = (N_e)_{res} : \theta_m = 45^{\circ}$$

$$N_e \ll (N_e)_{res} : \theta_m \approx \theta$$

In the adiabatic regime: ν_{1m} and ν_{2m} do not go into each other \Rightarrow ν_e born at high density will remain ν_e at small N_e with probability $\sin^2 \theta$ and go to ν_{μ} with probability $\cos^2 \theta$ independently of L!

Adiabatic flavour conversion

Adiabaticity: slow density change along the neutrino path

$$\frac{\sin^2 2\theta}{\cos 2\theta} \frac{\Delta m^2}{2E} L_\rho \gg 1$$

 L_{ρ} – electron density scale hight:

 $L_{\rho} = \left| \frac{1}{N_e} \frac{dN_e}{dx} \right|^{-1}$

Evolution of matter eigenstates

Flavour states in terms of local matter eigenstates:

 $\diamondsuit \quad |\nu_{\rm fl}\rangle = U_m^{\dagger}(x) |\nu_{\rm matt}\rangle$

Evolution equation: $i \frac{d}{dx} |\nu_{\rm fl}\rangle = H_{\rm fl}^m(x) |\nu_{\rm fl}\rangle \Rightarrow$

$$\diamond \quad i\frac{d}{dx}|\nu_{\text{matt}}\rangle = \left[U_m H_{\text{fl}}^m U_m^{\dagger} - iU_m (U_m^{\dagger})'\right]|\nu_{\text{matt}}\rangle$$

For the 2f case: $U_m = \begin{pmatrix} c_m & s_m \\ -s_m & c_m \end{pmatrix} \Rightarrow$

$$\diamondsuit \quad i\frac{d}{dx} \left(\begin{array}{c} \nu_{1m} \\ \nu_{2m} \end{array} \right) = \left(\begin{array}{cc} \mathcal{E}_1(x) & -i\theta'_m(x) \\ i\theta'_m(x) & \mathcal{E}_2(x) \end{array} \right) \left(\begin{array}{c} \nu_{1m} \\ \nu_{2m} \end{array} \right)$$

 $\mathcal{E}_1(x), \mathcal{E}_2(x)$ – local eigenvals. of H^m_{fl} at a given x.

Evgeny A	khmedov
----------	---------

Adiabatic regime

$$\diamondsuit \quad |\mathcal{E}_2(x) - \mathcal{E}_1(x)| = \sqrt{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e(x)\right]^2 + \left(\frac{\Delta m^2}{2E}\right)^2 \sin^2 2\theta}$$

If $|\mathcal{E}_2 - \mathcal{E}_1| \gg 2|\theta'_m|$ (adiabatic regime) \Rightarrow matter eigenstates ν_{1m} and ν_{2m} evolve independently. Adiabaticity condition:

$$\frac{|\mathcal{E}_2 - \mathcal{E}_1|_{\text{res}}}{2|\theta'_m|} = \frac{\Delta m^2}{2E} \frac{\sin^2 2\theta}{\cos 2\theta} L_\rho \gg 1$$

 $L_{\rho} \equiv |N'_e/N_e|^{-1}$ – scale height of electron number density. Let $|\nu(0)\rangle = |\nu_e\rangle$:

$$|\nu(0)\rangle = c_m(0)|\nu_{1m}\rangle + s_m(0)|\nu_{2m}\rangle$$

In the adiabatic regime:

$$\diamond \quad |\nu(x)\rangle \; = \; c_m(0) \, e^{-i \int_0^x \mathcal{E}_1(x') dx'} |\nu_{1m}\rangle + s_m(0) \, e^{-i \int_0^x \mathcal{E}_2(x') dx'} |\nu_{2m}\rangle$$

Evgeny Akhmedov

Adiabatic regime

At the point x the state $|
u_{\mu}\rangle$ can be expanded as

$$|\nu_{\mu}\rangle = -s_m(x)|\nu_{1m}\rangle + c_m(x)|\nu_{2m}\rangle$$

Transition probability: $P_{\rm tr} = |\langle \nu_{\mu} | \nu(x) \rangle|^2 \implies$

$$\diamondsuit \qquad P_{\rm tr} = \frac{1}{2} - \frac{1}{2}\cos 2\theta_i \cos 2\theta_f - \frac{1}{2}\sin 2\theta_i \sin 2\theta_f \sin \Phi$$

$$\theta_i = \theta_m(0), \qquad \theta_f = \theta_m(x), \qquad \Phi = \int_0^x (\mathcal{E}_1 - \mathcal{E}_2) \, dx'$$

♦ Problem: Derive this expression.

If $N_e(0) \gg (N_e)_{res}$ or $\theta_f \ll 1$: the 3rd term can be neglected (also if $\Phi \gg 1$ and averaging is performed) $\Rightarrow P_{tr}$ depends only on θ_i and θ_f .

In the case $N_e(0) \gg (N_e)_{\text{res}}$, $N_e(x) \ll (N_e)_{\text{res}}$ (i.e. $\theta_i \simeq 90^\circ$, $\theta_f \simeq \theta$) $\Rightarrow P_{\text{tr}} = \cos^2 \theta$, $P_{\text{surv}} = \sin^2 \theta$.

Violation of adiabaticity

Possible adiabaticty violation can be taken into account. E.g. in the averaging regime (Parke, 1986):

$$\Diamond \quad \overline{P}_{\rm tr} = \frac{1}{2} - \frac{1}{2}\cos 2\theta_i \cos 2\theta_f (1 - 2P')$$

P' – probability of $\nu_{1m} \leftrightarrow \nu_{2m}$ transitions between points 0 and x. In the Landau-Zener approximation: $P' \simeq e^{-\frac{\pi}{2}\gamma}$ where γ is the adiab. parameter.

In the extreme non-adaiabatic regime:

$$\diamond \quad i\frac{d}{dx} \begin{pmatrix} \nu_{1m} \\ \nu_{2m} \end{pmatrix} = \begin{pmatrix} 0 & -i\theta'_m(x) \\ i\theta'_m(x) & 0 \end{pmatrix} \begin{pmatrix} \nu_{1m} \\ \nu_{2m} \end{pmatrix}$$

Can be solved exactly by $x \to \tau = \theta_m(x), \quad \frac{d}{d\tau} = \frac{1}{\theta'_m(x)} \frac{d}{dx} \quad \Rightarrow$

$$\diamondsuit P' = \sin^2(\theta_i - \theta_f)$$

♦ Problem: Derive this expression.

Vacuum oscillation limits

1. The mixing angle and osc. length in matter θ_m , l_{osc}^m go to θ , l_{osc} when

$$V = \sqrt{2}G_F N_e \ll \frac{\Delta m^2}{2E}$$

 \Rightarrow $P_{\rm osc} \rightarrow P_{\rm osc}^{vac}$. In terms of convenient parameters:

$$\sqrt{2}G_F N_e \simeq 7.63 \times 10^{-14} \rho (g/cm^3) Y_e eV, \qquad Y_e = \frac{N_e}{N_p + N_n}$$

2. In general (even in the case $V \gg \Delta m^2/2E$) the vacuum oscsill. probability is recovered in the short baseline limit. In matter of constant density:

$$P_{\rm tr} = \sin^2 2\theta_m \sin^2(\omega L) = \frac{\sin^2 2\theta \cdot \left(\frac{\Delta m^2}{4E}\right)^2}{\omega^2} \sin^2(\omega L), \qquad \omega \equiv \frac{1}{2} |\mathcal{E}_2 - \mathcal{E}_1|.$$

For $\omega L \ll 1$:

$$P_{\rm tr} \simeq \sin^2 2\theta \cdot \left(\frac{\Delta m^2}{4E}L\right)^2 = P_{\rm tr}^{vac}$$
 in short L limit.

Problem (*): Does this hold also for $N_e \neq const.$?

Evgeny Akhmedov

Analogy: Spin precession in a magnetic field

$$\begin{aligned} \frac{d\vec{S}}{dt} &= 2(\vec{B} \times \vec{S}) \\ \vec{S} &= \{ \text{Re}(\nu_e^* \nu_\mu) \,, \, \text{Im}(\nu_e^* \nu_\mu) \,, \, \nu_e^* \nu_e - 1/2 \} \\ \vec{B} &= \{ (\Delta m^2/4E) \sin 2\theta \,, \, 0 \,, \, V/2 - (\Delta m^2/4E) \cos 2\theta \} \end{aligned}$$

MSW effect and solar neutrinos

The survival probability for solar ν_e :

MSW effect and solar neutrinos

The survival probability for solar ν_e :

Evgeny Akh

Day-night effect: the probability of finding a solar ν_e after it traverses the Earth

$$P_{SE} = \bar{P}_S + \frac{1 - 2\bar{P}_S}{\cos 2\theta_0} \left(P_{2e} - \sin^2 \theta_0 \right).$$

Here: $P_{2e} = P(\nu_2 \rightarrow \nu_e)$ – probability of oscillations of the second mass eigenstate into electron neutrino inside the Earth.

nedov	MITP Summer School 2017	August 6-25	– p. 4

How is it obtained?

Neutrino state at the surface of the Sun:

$$|\nu_{\odot}\rangle = a_1 |\nu_1\rangle + a_2 e^{i\phi_S} |\nu_2\rangle$$
 (a_{1,2} - real)

Averaged ν_e survival probability in the Sun:

$$\overline{P}_{S} = \overline{|\langle \nu_{e} | \nu_{\odot} \rangle|^{2}} = a_{1}^{2} \cos^{2} \theta + a_{2}^{2} \sin^{2} \theta \quad \Rightarrow$$
$$a_{2}^{2} = 1 - a_{1}^{2} = \frac{\cos^{2} \theta - \overline{P}_{S}}{\cos 2\theta}$$

Solar neutrinos arrive at the Earth as an incoherent sum of ν_1 and $\nu_2 \;\; \Rightarrow$

$$P_{SE} = a_1^2 P_{1e} + a_2^2 P_{2e} = a_1^2 (1 - P_{2e}) + a_2^2 P_{2e} = \bar{P}_S + \frac{1 - 2P_S}{\cos 2\theta} \left(P_{2e} - \sin^2 \theta \right).$$

In vacuum $P_{2e} = \sin^2 \theta \Rightarrow P_{SE} = \overline{P}_S.$

How is it obtained?

For matter of constant density:

$$\diamond \quad P_{2e} - \sin^2 \theta = \frac{V\delta}{4\omega^2} \sin^2 2\theta \sin^2 (\omega L)$$

Here:

$$\delta \equiv \frac{\Delta m_{21}^2}{2E}, \qquad \theta = \theta_{12}. \qquad \omega = \sqrt{(\cos 2\theta \cdot \delta - V)^2 + \delta^2 \sin^2 2\theta^2}$$

Pre-sine² factor in $P_{2e} - \sin^2 \theta$ reaches its max. at $V = \delta$ (not at $V = \delta \cdot \cos 2\theta$ which would correspond to the MSW resonance!)

$$(P_{2e} - \sin^2 \theta)_{max. ampl.} = \cos^2 \theta \sin^2(\sin \theta \cdot \delta \cdot L)$$

In the (realistic) case $V \ll \delta$:

$$\diamondsuit \quad P_{2e} - \sin^2 \theta = \frac{V}{\delta} \sin^2 2\theta \sin^2 \left(\frac{1}{2}\delta \cdot L\right)$$

Evgeny Akhmedov

Another possible matter effect

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

For small-ampl. osc.:

$$\Omega_{\rm res} = \frac{2\omega}{n}$$

$$n = 1, 2, 3...$$

Different from MSW eff. – no level crossing !

An example admitting an exact analytic solution – "castle wall" density profile (E.A., 1987, 1998):

Resonance condition:

 $X_3 \equiv -(\sin\phi_1 \cos\phi_2 \cos 2\theta_{1m} + \cos\phi_1 \sin\phi_2 \cos 2\theta_{2m}) = 0$

 $\phi_{1,2}$ – oscillation phases acquired in layers 1, 2

Evgeny A	khmedov
----------	---------

Earth's density profile (PREM model) :

Earth's density profile (PREM model) :

Param. res. condition: $(l_{\text{OSC}})_{\text{matt}} \simeq l_{\text{density mod.}}$ Fulfilled for $\nu_e \leftrightarrow \nu_{\mu,\tau}$ oscillations of core-crossing ν 's in the Earth for a wide range of energies and zenith angles !

Evgeny Akhmedov

MITP Summer School 2017

Parametric resonance of ν oscillations in the Earth: can be observed in future atmospheric or accelerator experiments if θ_{13} is not much below its current upper limit

Parametric enhancement in the Earth

Neutrino oscillations in the Earth

A coherent description in terms of different realizations of just 2 conditions – amplitude and phase conditions

Matter with $N_e = const$:

$$\diamondsuit \quad P_{\rm tr} = \sin^2 2\theta_m \, \sin^2 \phi_m$$

- amplitude condition = MSW resonance condition ($\theta_m = 45^\circ$)
- phase condition: $\phi_m = \pi/2 + \pi n$

Neutrino oscillations in the Earth

"Castle wall" density profile:

$$\diamondsuit \quad P_{\rm tr}^{(n)} = \frac{X_1^2 + X_2^2}{X_1^2 + X_2^2 + X_3^2} \sin^2 n\Phi$$

Evolution matrix: $\nu(t) = S(t, t_0) \nu(0)$. For 2 layers:

$$S^{(2)}(t, t_0) = \begin{pmatrix} Y - iX_3 & -i(X_1 - iX_2) \\ -i(X_1 + iX_2) & Y + iX_3 \end{pmatrix}, \qquad Y^2 + \mathbf{X}^2 = 1$$

- amplitude condition = parametric resonance condition $(X_3 = 0)$
- phase condition: $\Phi \equiv \arccos Y = \pi/2 + \pi n$

Neutrino oscillograms of the Earth

Contours of equal osc. probabilities in (Θ_{ν}, E_{ν}) plane

$$\Theta_{13}$$
 - dependense of $P_A \Rightarrow$

 P_A – effective 2f transition probability $(\Delta m_{
m sol}^2
ightarrow 0)$

$$P_{e\mu} = s_{23}^2 P_A$$
$$P_{e\tau} = c_{23}^2 P_A$$

Evgeny Akhmedov

Including the effects of Δm_{sol}^2 : $(1 - P_{ee})$

Including the effects of Δm_{sol}^2 : $(1 - P_{ee})$

Evgeny Akhmedov

Producing the oscillograms

A. Smirnov, UCLA seminar

|--|

3f oscillations in matter

3f neutrino oscillations in matter

Evolution equation:

$$i\frac{d}{dt}\begin{pmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix} = \begin{bmatrix}U\begin{pmatrix}E_1 & 0 & 0\\0 & E_2 & 0\\0 & 0 & E_3\end{bmatrix}U^{\dagger} + \begin{pmatrix}V(t) & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix}\begin{bmatrix}\nu_e\\\nu_\mu\\\nu_\tau\end{pmatrix}$$

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p}; \qquad t \simeq r$$
$$V(t) = [V(\nu_e)]_{CC} = \sqrt{2}G_F N_e(t)$$

 $[V(\nu_e)]_{NC} = [V(\nu_{\mu})]_{NC} = [V(\nu_{\tau})]_{NC} - \text{do not contribute}$

(Modulo tiny radiative corrections)

Evolution in the rotated basis

Evolution matrix $S(t, t_0)$: $\nu(t) = S(t, t_0) \nu(t_0)$. Satisfies

$$\diamond \quad i \frac{d}{dt} S(t, t_0) = H_{\rm fl} S(t, t_0) \quad \text{with} \quad S(t_0, t_0) = 1.$$

 $H_{\rm fl} = (O_{23} \Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger} O_{12}) \operatorname{diag}(0, \, \delta, \, \Delta) (O_{12}^T \Gamma_{\delta} O_{13}^T \Gamma_{\delta}^{\dagger} O_{23}^T) + \operatorname{diag}(V(t), \, 0, \, 0)$ $= (O_{23} \Gamma_{\delta} O_{13} O_{12}) \operatorname{diag}(0, \, \delta, \, \Delta) (O_{12}^T O_{13}^T \Gamma_{\delta}^{\dagger} O_{23}^T) + \operatorname{diag}(V(t), \, 0, \, 0)$

where

$$\delta \equiv \frac{\Delta m_{21}^2}{2E}, \qquad \Delta \equiv \frac{\Delta m_{31}^2}{2E}$$

Oscillation probabilities:

$$P_{\alpha\beta} = |S_{\beta\alpha}|^2$$

Define

$$O_{23}' = O_{23} \, \Gamma_{\delta}$$

The matrix $\operatorname{diag}(V(t), 0, 0)$ commutes with $O'_{23} \Rightarrow$ go to the rotated basis

Evolution in the rotated basis – contd.

$$\nu = O'_{23} \nu',$$
 or $S(t, t_0) = O'_{23} S'(t, t_0) O'_{23}^{\dagger},$

In the rotated basis $H' = O'_{23} H_{\rm fl} O'_{23}^{\dagger}$. Explicitly:

$$H'(t) = \begin{pmatrix} s_{12}^2 c_{13}^2 \delta + s_{13}^2 \Delta + V(t) & s_{12} c_{12} c_{13} \delta & s_{13} c_{13} \left(\Delta - s_{12}^2 \delta \right) \\ s_{12} c_{12} c_{13} \delta & c_{12}^2 \delta & -s_{12} c_{12} s_{13} \delta \\ s_{13} c_{13} \left(\Delta - s_{12}^2 \delta \right) & -s_{12} c_{12} s_{13} \delta & c_{13}^2 \Delta + s_{12}^2 s_{13}^2 \delta \end{pmatrix}$$

Dependence on θ_{23} and δ_{CP} can be obtained in the general case by rotating back to the original flavour basis. Also: easy to apply PT approximations

• If
$$\frac{\Delta m^2_{21}}{2E}L \ll 1$$
 – neglect $\delta = \frac{\Delta m^2_{21}}{2E}$

• As θ_{13} is relatively small – neglect s_{13}

or use expansion in these small parameters

Evgeny	Akhmedov
--------	----------

General properties of $P_{\alpha\beta}$ and CP, T and CPT

General properties of $P_{\alpha\beta}$

3 flavours $\Rightarrow 3 \times 3 = 9$ probabilities

$$P_{\alpha\beta} = P(\nu_{\alpha} \to \nu_{\beta}),$$

plus 9 probabilities for antineutrinos $P_{\bar{\alpha}\bar{\beta}}$. Unitarity conditions (probability conservation):

$$\sum_{\beta} P_{\alpha\beta} = \sum_{\alpha} P_{\alpha\beta} = 1 \qquad (\alpha, \beta = e, \mu, \tau)$$

5 indep. conditions $\Rightarrow 9 - 5 = 4$ indep. probabilities left. Additional symmetry: the matrix of matter-induced potentials $\operatorname{diag}(V(t), 0, 0)$ commutes with $O_{23} \Rightarrow$ additional relations between probabilities.

Dependence on θ_{23} **and # of indep.** $P_{\alpha\beta}$

Define

$$\tilde{P}_{\alpha\beta} = P_{\alpha\beta}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \to -\sin 2\theta_{23})$$

(e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$). Then

$$P_{e\tau} = \tilde{P}_{e\mu} \quad P_{\tau\mu} = \tilde{P}_{\mu\tau} \quad P_{\tau\tau} = \tilde{P}_{\mu\mu}$$

2 out of 3 conditions are independent $\Rightarrow 4-2=2$ indep. probabilities (e.g., $P_{e\mu}$ and $P_{\mu\tau}$) \Rightarrow

♦ All 9 neutrino ocillation probabilities can be expressed through just two!

$$P_{\bar{\alpha}\bar{\beta}} = P_{\alpha\beta}(\delta_{\rm CP} \to -\delta_{\rm CP}, \, V \to -V)$$

 \Rightarrow All 18 ν and $\overline{\nu}$ probab. can be expressed through just two

General dependence on δ_{CP}

Another use of essentially the same symmetry: rotate by

 $O'_{23} = O_{23} \times \text{diag}(1, 1, e^{i\delta_{\rm CP}})$

From commutativity of $\operatorname{diag}(V(t), 0, 0)$ with $O'_{23} \Rightarrow$ General dependence of probabilities on δ_{CP} :

$$P_{e\mu} = A_{e\mu} \cos \delta_{\rm CP} + B_{e\mu} \sin \delta_{\rm CP} + C_{e\mu}$$
$$P_{\mu\tau} = A_{\mu\tau} \cos \delta_{\rm CP} + B_{\mu\tau} \sin \delta_{\rm CP} + C_{\mu\tau}$$
$$+ D_{\mu\tau} \cos 2\delta_{\rm CP} + E_{\mu\tau} \sin 2\delta_{\rm CP}$$

CP and T in ν oscillations in matter

- CP: $\nu_{\alpha,\beta} \leftrightarrow \bar{\nu}_{\alpha,\beta} \Rightarrow U_{\alpha i} \to U^*_{\alpha i} \quad (\{\delta_{\rm CP}\} \to -\{\delta_{\rm CP}\})$ $V(r) \to -V(r)$
- T: $t \rightleftharpoons t_{\alpha} \Leftrightarrow \nu_{\alpha} \leftrightarrow \nu_{\beta}$ $\Rightarrow \quad U_{\alpha i} \to U_{\alpha i}^{*} \quad (\{\delta_{CP}\} \to -\{\delta_{CP}\}))$ $V(r) \to \tilde{V}(r)$

 $\tilde{V}(r) = \sqrt{2}G_F\tilde{N}(r)$

 $\tilde{N}(r)$: corresponds to interchanged positions of ν source and detector. Symmetric density profiles: $\tilde{N}(r) = N(r)$

- ◇ The very presence of matter [with (# of particles) ≠ (# of antiparticles)]
 violates C, CP and CPT!
- $\Rightarrow Fake (extrinsic) \ \mathcal{CP} which may complicate the study of fundamental (intrinsic) \ \mathcal{CP}$

CP in matter

• Exists even in 2f case (in \geq 3f case exists even when all $\{\delta_{CP}\} = 0$) due to matter effects:

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

E.g., MSW effect can enhance $\nu_e \leftrightarrow \nu_\mu$ and suppress $\bar{\nu}_e \leftrightarrow \bar{\nu}_\mu$ or vice versa.

• Survival probabilities are not CP-invariant:

$$P(\nu_{\alpha} \to \nu_{\alpha}) \neq P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha})$$

To disentangle fundamental \mathcal{QP} from the matter induced one in LBL experiments – need to measure energy dependence of oscillated signal or signal at two baselines

Alternatives:

- Low-E experiments ($E \sim 0.1 1 \text{ GeV}$) with $L \sim 100 1000 \text{ km}$
- Indirect measurements: CP-even terms ~ $\cos \delta_{CP}$ or area of leptonic unitarity triangle

\mathcal{T} in matter

CPT not conserved in matter $\Rightarrow \mathcal{CP}$ and \mathcal{I} are not directly related!

- Matter does not necessarily induce \mathscr{T} (only asymmetric matter with $\tilde{N}(r) \neq N(r)$ does)
- There is no \mathscr{T} (either fundamental or matter induced) in 2f case a consequence of unitarity:

$$P_{ee} + P_{e\mu} = 1$$
$$P_{ee} + P_{\mu e} = 1$$
$$\bigcup_{P_{e\mu}} = P_{\mu e}$$

• In 3f case – only one T-odd probability difference for ν 's (and one for $\bar{\nu}$'s) irrespective of matter density profile – a consequence of unitarity in 3f case

$$\Delta P_{e\mu}^T = \Delta P_{\mu\tau}^T = \Delta P_{\tau e}^T$$

Matter-induced \mathscr{X} :

- ♦ An interesting, pure 3f matter effect; absent in the case of symmetric density profiles (e.g., N(r) = const)
- ◊ Does not vanish in the regime of complete averaging
- ♦ May fake fundamental 𝒯 and complicate its study (extraction of δ_{CP} from the experiment)
- ♦ Vanishes when either $U_{e3} = 0$ or $\Delta m_{21}^2 = 0$ (2f limits) ⇒ doubly suppressed by both these small parameters
- \Rightarrow Perturbation theory can be used to get analytic expressions

Evgeny	Akhmedov
--------	----------

Is *T* reversal in matter equivalent to $\nu_a \leftrightarrow \nu_b$?

No explicit closed form solution in general.

Still, easy to answer !

T reversal: $t \rightleftharpoons t_0 \iff S(t, t_0) \Rightarrow S(t_0, t)$ One has:

$$S(t_0, t) = S(t, t_0)^{-1} = S(t, t_0)^{\dagger} = [S(t, t_0)^T]^*$$

Therefore

$$|[S(t_0, t)]_{\alpha\beta}|^2 = |[S(t, t_0)]_{\beta\alpha}|^2$$

⇒ In matter with arbitrary density profile, as well as in vacuum, time reversal is equivalent to interchanging the initial and final neutrino flavours

To extract fundamental \mathscr{T} need to measure:

$$\Delta P_{\alpha\beta} \equiv P_{\rm dir}(\nu_{\alpha} \to \nu_{\beta}) - P_{\rm rev}(\nu_{\beta} \to \nu_{\alpha}) \propto \sin \delta_{\rm CP}$$

Even survival probabilities $P_{\alpha\alpha}$ ($\alpha = \mu, \tau$) can be used!

$$P_{\rm dir}(\nu_{\alpha} \to \nu_{\alpha}) - P_{\rm rev}(\nu_{\alpha} \to \nu_{\alpha}) \sim \sin \delta_{\rm CP} \quad (\alpha \neq e)$$

In 3f case P_{ee} does not depend on δ_{CP} – not true if $\nu_{sterile}$ is present!

Matter-induced \mathscr{T} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is > 1% at 99% C.L.

 \Rightarrow No need to interchange positions of ν source and detector!

Experimental study of \mathscr{X} difficult because of problems with detection of e^{\pm}

General structure of T-odd probability diff.

$$\Delta P_{e\mu}^T = \underbrace{\sin \delta_{\rm CP} \cdot Y}_{\text{fundam. } \mathcal{I}} + \underbrace{\cos \delta_{\rm CP} \cdot X}_{\text{matter-ind. } \mathcal{I}}$$

In adiabatic approximation: $X = J_{eff} \cdot (\text{oscillating terms})$,

$$\diamondsuit \quad J_{\text{eff}} = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \frac{\sin(2\theta_1 - 2\theta_2)}{\sin 2\theta_{12}}$$

Compare with the vacuum Jarlskog invariant:

$$J = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta_{\rm CP}$$
$$\Rightarrow \qquad \sin \delta_{\rm CP} \Leftrightarrow \frac{\sin(2\theta_1 - 2\theta_2)}{\sin 2\theta_{12}}$$

Matter-induced T:

- ♦ Negligible effects in terrestrial experiments
- \diamond Cannot be observed in supernova ν oscillations due to experimental indistinguishability of low-energy ν_{μ} and ν_{τ}
- Can affect the signal from ~GeV neutrinos produced in annihilations of WIMPs inside the Sun

Is there a relation between \mathcal{CP} and \mathcal{T} in matter?

For symmetric density profiles (i.e. $\tilde{V}(r) = V(r)$)

$$P(\nu_{\alpha} \to \nu_{\beta}; \delta_{\rm CP}, V(r)) = P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}; \delta_{\rm CP}, -V(r))$$

(Minakata, Nunokawa & Parke, 2002)

Easy to generalize to the case of an arbitrary density profile:

$$P(\nu_{\alpha} \to \nu_{\beta}; \delta_{\rm CP}, V(r)) = P(\bar{\nu}_{\beta} \to \bar{\nu}_{\alpha}; \delta_{\rm CP}, -\tilde{V}(r))$$

Unlike CPT in vacuum, does not directly relate observables Can be useful for cross-checking theoreticl calculations

Summary – 3f effects in ν oscillations

- Two types of 3f effects "trivial" (existence of new channels, their inter-dependence through unitarity) and nontrivial (interference of different parameter channels, qualitatively new effects – fundamental CP and T-violation, and matter - induced T violation
- ♦ 3f corrections to probabilities of oscillations of solar, atmospheric, reactor and acceler. neutrinos depend on $|U_{e3}| = |\sin \theta_{13}|$; can reach ~ (5 - 10)%
- \diamond Possible interesting 3f effects for SN neutrinos depend significantly on the value U_{e3} (known now to be not too small)

 \diamond Manifestations of ≥ 3 flavours in neutrino oscillations:

- Fundamental CP and T
- Matter-induced \mathcal{T}
- Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
- Specific CP and T conserving interference terms in oscillation probabilities
- \Diamond U_{e3} plays a very special role