Neutrino physics

Evgeny Akhmedov

Max-Planck Institute für Kernphysik, Heidelberg

Plan of the lectures

- Introduction.
- Brief overview of experimental results
- Weyl, Dirac and Majorana fermions
- Neutrino masses in simplest extensions of the Standard Model. The seesaw mechanism(s).
- Neutrinos and the baryon asymmetry of the universe
- Neutrino oscillations in vacuum
 - Same E or same p?
 - QM uncertainties and coherence issues
 - Wave packet approach to neutrino oscillations
 - Lorentz invariance of oscillation probabilities
 - If and 3f neutrino mixing schemes and oscillations
 - Implications of CP, T and CPT

Plan of the lectures – contd.

- Neutrino oscillations in matter the MSW effect
 - Evolution equation
 - Adiabaticity condition and adiabatic evolution
 - Non-adiabatic regime
 - Graphical interpretation and mechanical analogy
 - Earth matter effects on ν_{\odot} (day-night asymmetry)
- Neutrino oscillations in matter parametric resonance
- Direct neutrino mass measurement experiments
- Neutrinoless double β -decay

Plan of the lectures – contd.

- Oscillations: Exp. data and future experiments
 - Atmospheric neutrinos
 - LBL accelerator experiments
 - Solar neutrinos
 - Reactor (anti)neutrino oscillations
 - Oscillatory nature of neutrino flavour transitions
 - Discovery of θ_{13} in reactor and accelerator expts.
 - I global fits
 - Light sterile neutrinos?
- Future expts.: Neutrino mass ordering, CP violation, θ_{23} octant,...
- Coherent elastic neutrino nucleus scattering (CEvNS)
- Do charged leptons oscillate?
- Future: What's next?

What is left out:

- Neutrino electromagnetic properties
- Oscillations of SN neutrinos (incl. non-linear collective effects)
- Cosmological bounds on # of neutrino species and $\sum m_{
 u}$
- keV sterile neutrinos as Dark Matter
- Non-standard neutrino interactions
- Geoneutrinos

. . .

Nuclear beta decay:

 $A(Z,N) \ \rightarrow \ A(Z\pm 1,N\mp 1) \ + \ e^{\mp}$

Nuclear beta decay:

$A(Z,N) \ \rightarrow \ A(Z\pm 1,N\mp 1) \ + \ e^{\mp}$

Nuclear beta decay:

 $A(Z,N) \rightarrow A(Z \pm 1, N \mp 1) + e^{\mp}$

Pauli's "desperate way out" (1930):

 $A(Z,N) \rightarrow A(Z \pm 1, N \mp 1) + e^{\mp} + \bar{\nu}_e(\nu_e)$

Nuclear beta decay:

 $A(Z,N) \rightarrow A(Z \pm 1, N \mp 1) + e^{\mp}$

Pauli's "desperate way out" (1930):

 $A(Z,N) \rightarrow A(Z \pm 1, N \mp 1) + e^{\mp} + \bar{\nu}_e(\nu_e)$

- a very bold conjecture ! Experimentally observed 26 years later.

Neutrinos: most mysterious elementary particles ever discovered
 The history of their discovery and study very fascinating !

- Neutrinos: most mysterious elementary particles ever discovered
 The history of their discovery and study very fascinating !
- \diamond 3 species of neutrinos known ν_e , ν_μ , and ν_τ

- Neutrinos: most mysterious elementary particles ever discovered
 The history of their discovery and study very fascinating !
- \diamond 3 species of neutrinos known ν_e , ν_μ , and ν_τ
- ♦ Neutrinos have no electric charge

- Neutrinos: most mysterious elementary particles ever discovered
 The history of their discovery and study very fascinating !
- \diamond 3 species of neutrinos known ν_e , ν_μ , and ν_τ
- Neutrinos have no electric charge
- \diamond Have very small mass $m_{\nu} < 10^{-6} m_e$

- Neutrinos: most mysterious elementary particles ever discovered
 The history of their discovery and study very fascinating !
- \diamond 3 species of neutrinos known ν_e , ν_μ , and ν_τ
- Neutrinos have no electric charge
- \diamond Have very small mass $m_{\nu} < 10^{-6} m_e$
- Interact extremely weakly with matter Evaded detection for more than 25 years after their existence was conjectured. Oscillate into each other!

- Neutrinos: most mysterious elementary particles ever discovered
 The history of their discovery and study very fascinating !
- \diamond 3 species of neutrinos known ν_e , ν_μ , and ν_τ
- Neutrinos have no electric charge
- \diamond Have very small mass $m_{\nu} < 10^{-6} m_e$
- Interact extremely weakly with matter Evaded detection for more than 25 years after their existence was conjectured. Oscillate into each other!

We already know a lot about neutrinos but many their properties are yet to be uncovered

Neutrinos are all-around!

 $E_{SN} \sim 3 \times 10^{53}$ erg – 1000 times larger than the total energy emitted by the Sun.

♦ 99% of SN energy emitted in the form of neutrinos !

Seeing the Sun underground

The Sun still shines!

Evgeny Akhmedov

MITP Summer School 2017

The Sun:

 $\phi_{\odot}(\nu) \simeq 6 \times 10^{10} \ 1/(\text{cm}^2 \,\text{s})$

The Sun:

$$\phi_{\odot}(\nu) \simeq 6 \times 10^{10} \ 1/(\text{cm}^2 \,\text{s})$$

Relic neutrinos (all neutrino and antineutrino species):

 $n_{\nu} \simeq 336 \ 1/\mathrm{cm}^3$

The Sun:

$$\phi_{\odot}(\nu) \simeq 6 \times 10^{10} \ 1/(\text{cm}^2 \,\text{s})$$

Relic neutrinos (all neutrino and antineutrino species):

 $n_{\nu} \simeq 336 \ 1/\mathrm{cm}^3$

Nuclear power plants: $N_{\bar{\nu}_e} \simeq 6 \times 10^{20} \, 1/s$ (for a 3 GW reactor);

 $\phi_{\text{reac}}(\bar{\nu}_e) \simeq 5 \times 10^{11} \ 1/(\text{cm}^2 \,\text{s}) \text{ at } L = 100 \ m$

The Sun:

$$\phi_{\odot}(\nu) \simeq 6 \times 10^{10} \ 1/(\text{cm}^2 \,\text{s})$$

Relic neutrinos (all neutrino and antineutrino species):

 $n_{\nu} \simeq 336 \ 1/\mathrm{cm}^3$

Nuclear power plants: $N_{\bar{\nu}_e} \simeq 6 \times 10^{20} \, 1/s$ (for a 3 GW reactor);

 $\phi_{\text{reac}}(\bar{\nu}_e) \simeq 5 \times 10^{11} \ 1/(\text{cm}^2 \,\text{s}) \quad \text{at} \quad L = 100 \ m$

Neutrinos are not dangerous to us!

The Sun:

$$\phi_{\odot}(\nu) \simeq 6 \times 10^{10} \ 1/(\text{cm}^2 \,\text{s})$$

Relic neutrinos (all neutrino and antineutrino species):

 $n_{\nu} \simeq 336 \ 1/\mathrm{cm}^3$

Nuclear power plants: $N_{\bar{\nu}_e} \simeq 6 \times 10^{20} \, 1/s$ (for a 3 GW reactor);

 $\phi_{\text{reac}}(\bar{\nu}_e) \simeq 5 \times 10^{11} \ 1/(\text{cm}^2 \,\text{s}) \text{ at } L = 100 \ m$

Neutrinos are not dangerous to us!

They interact extremely weakly with matter. Mean free path of a solar or reactor neutrino is ~ 1 ligt year ($\sim 10^{13}$ km) in Pb !

The Sun:

$$\phi_{\odot}(\nu) \simeq 6 \times 10^{10} \ 1/(\text{cm}^2 \,\text{s})$$

Relic neutrinos (all neutrino and antineutrino species):

 $n_{\nu} \simeq 336 \ 1/\mathrm{cm}^3$

Nuclear power plants: $N_{\bar{\nu}_e} \simeq 6 \times 10^{20} \, 1/s$ (for a 3 GW reactor);

 $\phi_{\text{reac}}(\bar{\nu}_e) \simeq 5 \times 10^{11} \ 1/(\text{cm}^2 \,\text{s}) \text{ at } L = 100 \ m$

Neutrinos are not dangerous to us!

They interact <u>extremely weakly</u> with matter. Mean free path of a solar or reactor neutrino is ~ 1 ligt year ($\sim 10^{13}$ km) <u>in Pb</u> ! So why do we care about them?

Evgeny Ak	khmedov
-----------	---------

Why and Where are neutrinos interesting ?

- Particle physics v's can probe very large mass (energy) scales; extra space-time dimensions; the only known particles that can be of Majorana nature
- Nuclear physics clean probe of nuclear structure; cross sections important for studying neutrino properties
- Cosmology nucleosynthesis, Dark Matter problem, baryogenesis (generation of the baryon asymmetry of the universe)
- Astrophysics information on thermonuclear reactions powering our Sun; SN energetics

Neutrinos can oscillate!

Zenith angle distributions

a 1.2

L 3.5

3

0.4

~13000km

-0.8 -0.6 -0.4 -0.2 0

~500km

0.5 1

MITP Summer School 2017

10

Simulation

8

6

Visible energy (GeV)

The MINOS Experiment, slide 7

4

A brief Curriculum Vitae of neutrino

- Suggested by W. Pauli in 1930 to explain the continuous electron spectra in β -decay and nuclear spin/statistics
- \diamond Discovered by F. Reines and C. Cowan in 1956 in experiments with reactor $\bar{\nu}_e$ (Nobel prize to F. Reines in 1995)
- ♦ 1957 the idea of neutrino oscillations put forward by B. Pontecorvo $(\nu \leftrightarrow \bar{\nu})$
- \diamond 1957 Chiral nature of ν_e established by Goldhaber, Grodzins & Sunyar
- ♦ 1962 Discovery of the second neutrino type ν_{μ} (Nobel prize to Lederman, Schwartz & Steinberger in 1988)
- 1962 the idea of neutrino flavour oscillations put forward by Maki, Nakagawa & Sakata

- ♦ 1975 Discovery of the third lepton flavour τ lepton (Nobel prize to M. Perl in 1995)
- ♦ 1985 Theoretical discovery of resonant *ν* oscillations in matter by Mikheyev and Smirnov based on an earlier work of Wolfenstein (the MSW effect)
- ♦ 1987 First observation of neutrinos from supernova explosion (SN 1987A)
- 1998 "Evidence for oscillations of atmospheric neutrinos" by the Super-Kamiokande Collaboration
- ♦ 2000 Discovery of the third neutrino species ν_{τ} by the DONUT Collaboration (Fermilab)

- 2002 "Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory"
 – flavor transformations of solar neutrinos confirmed
- 2002 Discovery of oscillations of reactor neutrinos by KamLAND
 Collaboration; identification of the solution of the solar neutrino problem
- 2002 Confirmation of oscillations of atmospheric neutrinos by K2K accelerator neutrino experiment
- 2002 Nobel prize to R. Davis and M. Koshiba for "detection of cosmic neutrinos"

(2002 – "Annus Mirabilis" of neutrino physics)

♦ 2004 – Evidence for oscillatory nature of ν disappearance by Super-Kamiokande (atmospheric ν 's) and KamLAND.

- 2006 Independent confirmation of oscillations of atmospheric neutrinos by MINOS accelerator neutrino experiment
- \diamond 2007 First real-time detection of solar ⁷Be neutrinos by Borexino
- ♦ 2011/12 Measurement of the last leptonic mixing angle θ_{13} by T2K, Double Chooz, Daya Bay and Reno
- \diamond 2012/14 Detection of solar *pep* and *pp* neutrinos by Borexino
- 2015 Nobel prize to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"
- 2017 First observation of coherent neutrino scattering on nuclei by the COHERENT Collaboration

More to come !

Neutrino revolution

Neutrino mass had been unsuccessfully looked for for almost 40 years (several wrong discovery claims)

Since 1998 – an avalanche of discoveries :

Oscillations of atmospheric, solar, reactor and accelerator neutrinos

Neutrino oscillations imply that neutrinos are massive

In the standard model neutrinos are massless \Rightarrow we have now the first compelling evidence of physics beyond the standard model !

Weyl, Dirac and Majorana neutrino femions

Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0$$

The chiral (Weyl) representation of the Dirac γ -matrices:

$$\gamma^{0} = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix}, \qquad \gamma_{5} = \begin{pmatrix} -\mathbb{1} & 0 \\ 0 & \mathbb{1} \end{pmatrix},$$

LH and RH chirality projector operators:

$$P_L = \frac{1 - \gamma_5}{2}, \qquad P_R = \frac{1 + \gamma_5}{2}.$$

They have the following properties:

$$P_L^2 = P_L$$
, $P_R^2 = P_R$, $P_L P_R = P_R P_L = 0$, $P_L + P_R = 1$

LH and RH spinor fields: $\Psi_{R,L} = \frac{1 \pm \gamma_5}{2} \Psi$, $\Psi = \Psi_L + \Psi_R$.

Evgeny Akhmedov

Why LH and RH chirality? For relativistic particles chirality almost coincides with helicity (projection of the spin of the particle on its momentum).

$$P_{\pm} = \frac{1}{2} \left(1 \pm \frac{\boldsymbol{\sigma} \mathbf{p}}{|\mathbf{p}|} \right).$$

At $E \gg m$ positive-energy solutions satisfy

$$\Psi_R \simeq \Psi_+ \,, \qquad \Psi_L \simeq \Psi_- \,.$$

N.B.: Helicity of a free particle is conserved; chirality is not (unless m = 0). Particle - antiparticle conjugation operation \hat{C} :

$$\hat{C}: \qquad \psi \to \psi^c = \mathcal{C} \bar{\psi}^T$$

where $\bar{\psi} \equiv \psi^\dagger \gamma^0$ and ${\cal C}$ satisfies

$$\mathcal{C}^{-1}\gamma_{\mu}\mathcal{C} = -\gamma_{\mu}^{T}, \qquad \mathcal{C}^{\dagger} = \mathcal{C}^{-1} = -\mathcal{C}^{*} \quad (\Rightarrow \mathcal{C}^{T} = -\mathcal{C}).$$

In the Weyl representation: $C = i\gamma^2\gamma^0$.

Some useful relations:

 $\diamondsuit \quad (\psi^c)^c = \psi \,, \quad \overline{\psi^c} = -\psi^T \mathcal{C}^{-1} \,, \quad \overline{\psi_1} \psi_2^c = \overline{\psi_2} \psi_1^c \,, \quad \overline{\psi_1} A \psi_2 = \overline{\psi_2^c} (\mathcal{C} A^T \mathcal{C}^{-1}) \psi_1^c \,.$

 $(A - \text{an arbitrary } 4 \times 4 \text{ matrix}).$

Some useful relations:

 $\diamondsuit \quad (\psi^c)^c = \psi \,, \quad \overline{\psi^c} = -\psi^T \mathcal{C}^{-1} \,, \quad \overline{\psi_1} \psi_2^c = \overline{\psi_2} \psi_1^c \,, \quad \overline{\psi_1} A \psi_2 = \overline{\psi_2^c} (\mathcal{C} A^T \mathcal{C}^{-1}) \psi_1^c \,.$

 $(A - \text{an arbitrary } 4 \times 4 \text{ matrix}).$

$$\diamondsuit \qquad (\psi_L)^c = (\psi^c)_R \,, \qquad (\psi_R)^c = (\psi^c)_L \,,$$

- i.e. the antiparticle of a left-handed fermion is right-handed.
- Problem: Prove these relations.

Some useful relations:

 $\diamondsuit \quad (\psi^c)^c = \psi \,, \quad \overline{\psi^c} = -\psi^T \mathcal{C}^{-1} \,, \quad \overline{\psi_1} \psi_2^c = \overline{\psi_2} \psi_1^c \,, \quad \overline{\psi_1} A \psi_2 = \overline{\psi_2^c} (\mathcal{C} A^T \mathcal{C}^{-1}) \psi_1^c \,.$

 $(A - \text{an arbitrary } 4 \times 4 \text{ matrix}).$

$$\diamondsuit \qquad (\psi_L)^c = (\psi^c)_R , \qquad (\psi_R)^c = (\psi^c)_L ,$$

- i.e. the antiparticle of a left-handed fermion is right-handed.
- Problem: Prove these relations.

$$\psi = \left(\begin{array}{c} \phi \\ \xi \end{array}\right)$$
Some useful relations:

 $\diamondsuit \quad (\psi^c)^c = \psi \,, \quad \overline{\psi^c} = -\psi^T \mathcal{C}^{-1} \,, \quad \overline{\psi_1} \psi_2^c = \overline{\psi_2} \psi_1^c \,, \quad \overline{\psi_1} A \psi_2 = \overline{\psi_2^c} (\mathcal{C} A^T \mathcal{C}^{-1}) \psi_1^c \,.$

 $(A - an arbitrary 4 \times 4 matrix).$

$$\diamondsuit \qquad (\psi_L)^c = (\psi^c)_R \,, \qquad (\psi_R)^c = (\psi^c)_L \,,$$

- i.e. the antiparticle of a left-handed fermion is right-handed.
- Problem: Prove these relations.

$$\psi = \left(\begin{array}{c} \phi \\ \xi \end{array}\right)$$

From the expression for γ_5 :

$$\psi_L = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \qquad \psi_R = \begin{pmatrix} 0 \\ \xi \end{pmatrix},$$

 \Rightarrow Chiral fields are 2-component rather than 4-component objects.

Dirac equation in terms of 2-spinors ϕ and ξ :

$$(i\partial_0 - i\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})\phi - m\xi = 0,$$

$$(i\partial_0 + i\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})\xi - m\phi = 0.$$

Fermion mass couples LH and RH components of ψ . For m = 0 eqs. for ϕ and ξ decouple (Weyl equations; Weyl fermions).

Dirac equation in terms of 2-spinors ϕ and ξ :

$$(i\partial_0 - i\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})\phi - m\xi = 0,$$

 $(i\partial_0 + i\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})\xi - m\phi = 0.$

Fermion mass couples LH and RH components of ψ . For m = 0 eqs. for ϕ and ξ decouple (Weyl equations; Weyl fermions).

Dirac Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$$
.

The fermion mass Lagrangian:

 $-\mathcal{L}_m = m \, \bar{\psi} \psi = m \left(\bar{\psi}_L + \bar{\psi}_R \right) (\psi_L + \psi_R) = m \left(\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R \right),$

Dirac equation in terms of 2-spinors ϕ and ξ :

$$(i\partial_0 - i\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})\phi - m\xi = 0,$$

 $(i\partial_0 + i\boldsymbol{\sigma} \cdot \boldsymbol{\nabla})\xi - m\phi = 0.$

Fermion mass couples LH and RH components of ψ . For m = 0 eqs. for ϕ and ξ decouple (Weyl equations; Weyl fermions).

Dirac Lagrangian:

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$$
.

The fermion mass Lagrangian:

$$-\mathcal{L}_m = m \, \bar{\psi} \psi = m \, (\bar{\psi}_L + \bar{\psi}_R)(\psi_L + \psi_R) = m \, (\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R) \,,$$

LH and *RH* fields are necessary to make up a fermion mass. Dirac fermions: ψ_L and ψ_R are completely independent fields For Majorana fermions: $\psi_R = (\psi_L)^c$, where $(\psi)^c \equiv C \bar{\psi}^T$.

Acting on a chiral field, particle-antiparticle conjugation flips its chirality:

$$(\psi_L)^c = (\psi^c)_R, \qquad (\psi_R)^c = (\psi^c)_L$$

(the antiparticle of a left handed fermion is right handed) \Rightarrow one can construct a massive fermion field out of ψ_L and $(\psi_L)^c$:

$$\chi = \psi_L + (\psi_L)^c$$

 \Rightarrow Majorana field:

$$\chi^c = \chi$$

Majorana mass term:

$$-\mathcal{L}_{m}^{Maj} = \frac{m}{2} \overline{(\psi_{L})^{c}} \psi_{L} + h.c. = -\frac{m}{2} \psi_{L}^{T} \mathcal{C}^{-1} \psi_{L} + h.c. = \frac{m}{2} \overline{\chi} \chi.$$

Breaks all charges (electric, lepton, baryon) – can only be written for entirely neutral fermions \Rightarrow Neutrinos are the only known candidates!

Evgeny	Akhmedov
--------	----------

Plane-wave decomposition of a Dirac field:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_{s} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + d_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

Plane-wave decomposition of a Dirac field:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_{s} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + d_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

For Majorana fields:

$$\chi(x) = \int \frac{d^3 p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_s \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right].$$

Plane-wave decomposition of a Dirac field:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_{s} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + d_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

For Majorana fields:

$$\chi(x) = \int \frac{d^3 p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_s \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right].$$

The spinors $u_s(\vec{p})$ and $v_s(\vec{p})$ satisfy

$$\mathcal{C}\,\overline{u}^T = v\,,\qquad \qquad \mathcal{C}\,\overline{v}^T = u \qquad \qquad \Rightarrow$$

Plane-wave decomposition of a Dirac field:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_{s} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + d_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

For Majorana fields:

$$\chi(x) = \int \frac{d^3 p}{(2\pi)^3 \sqrt{2E_{\vec{p}}}} \sum_{s} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right].$$

The spinors $u_s(\vec{p})$ and $v_s(\vec{p})$ satisfy

$$\mathcal{C}\,\overline{u}^T = v\,, \qquad \mathcal{C}\,\overline{v}^T = u \qquad \Rightarrow$$
$$\chi^c \equiv \mathcal{C}\bar{\chi}^T = \chi$$

Majorana particles are genuinely neutral (coincide with their antiparticles).

Fermion masses in the Standard Model

Come from Yukawa interactions of fermions with the Higgs field:

 $-\mathcal{L}_Y = h_{ij}^u \overline{Q}_{Li} u_{Rj} \tilde{H} + h_{ij}^d \overline{Q}_{Li} d_{Rj} H + f_{ij}^e \overline{l}_{Li} e_{Rj} H + h.c.$

$$Q_{Li} = \begin{pmatrix} u_{Li} \\ d_{Li} \end{pmatrix}, \qquad l_{Li} = \begin{pmatrix} \nu_{Li} \\ e_{Li} \end{pmatrix}, \qquad H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}, \qquad \tilde{H} = i\tau_2 H^*$$

 $u_{Ri}, d_{Ri}, e_{Ri} - SU(2)_L$ - singlets.

EWSB: $\langle H^0 \rangle = v \simeq 174 \text{ GeV} \Rightarrow$ fermion mass matrices are generated:

$$\diamondsuit \quad (m_u)_{ij} = h^u_{ij} v \,, \qquad (m_d)_{ij} = h^d_{ij} v \,, \qquad (m_e)_{ij} = f^e_{ij} v \,.$$

No RH neutrinos were introduced in the SM!

Why is $m_{\nu} = 0$ in the Standard Model?

- No RH neutrinos N_{Ri} Dirac mass terms cannot be introduced
- Operators of the kind llHH, which could could produce Majorana neutrino mass after $H \rightarrow \langle H \rangle$, are dimension 5 and so cannot be present at the Lagrangian level in a renormalizable theory
- These operators cannot be induced in higher orders either (even nonperturbatively) because they would break not only lepton number L but also B L, which is exactly conserved in the SM

In the Standard Model:

B and *L* are accidental symmetries at the Lagrangian level. Get broken at 1-loop level due the axial (triangle) anomaly. <u>But:</u> their difference B - L is still conserved and is an exact symmetry of the model

Diagonalization of fermion mass matrices

I. Dirac fermions (e.g. charged leptons):

$$-\mathcal{L}_{m} = \sum_{a,b=1}^{N_{f}} m'_{ab} \,\bar{\Psi}'_{aL} \Psi'_{bR} + h.c. = \bar{\Psi}'_{L} m' {\Psi}'_{R} + \bar{\Psi}'_{R} {m'}^{\dagger} {\Psi}'_{L}$$

Rotate Ψ'_L and Ψ'_R by unitary transformations:

$$\Psi'_L = V_L \Psi_L, \quad \Psi'_R = V_R \Psi_R; \qquad m = V_L^{\dagger} m' V_R = diag.$$

Diagonalized mass term:

$$-\mathcal{L}_{m} = \bar{\Psi}_{L}(V_{L}^{\dagger}m'V_{R})\Psi_{R} + h.c. = \sum_{i=1}^{N_{f}} m_{i}\bar{\Psi}_{iL}\Psi_{Ri} + h.c.$$

Mass eigenstate fields:

$$\Psi_i = \Psi_{iL} + \Psi_{iR}; \qquad -\mathcal{L}_m = \sum_{i=1}^{J} m_i \, \bar{\Psi}_i \Psi_i$$

Invariant w.r.t. U(1) transfs. $\Psi_i \rightarrow e^{i\alpha_i}\Psi_i$ – conservs individual ferm. numbers

Nf

Diagonalization of fermion mass matrices

II. Majorana fermions:

$$\mathcal{L}_m = -\frac{1}{2} \sum_{a,b=1}^{N_f} m'_{ab} \,\overline{(\Psi'_{aL})^c} \,\Psi'_{bL} + h.c. = \frac{1}{2} {\Psi'_L}^T C^{-1} \, m' \Psi'_L + h.c.$$

Matrix m' is symmetric: ${m'}^T = m'$. \diamond Problem: prove this. Unitary transformation of Ψ'_L :

$$\Psi'_L = U_L \Psi_L, \qquad m = U_L^T m' U_L = diag.$$

Diagonalized mass term:

$$\mathcal{L}_m = \frac{1}{2} [\Psi_L^T C^{-1} (U_L^T m' U_L) \Psi_L + h.c. = \frac{1}{2} \sum_{i=1}^{N_f} m_i \Psi_{Li}^T C^{-1} \Psi_{Li} + h.c.$$

Mass eigenstate fields:

$$\chi_i = \Psi_{iL} + (\Psi_{iL})^c; \qquad \mathcal{L}_m = -\frac{1}{2} \sum_{i=1}^{r-j} m_i \, \bar{\chi}_i \chi_i$$

<u>Not</u> invariant w.r.t. U(1) transfs. $\Psi_{Li} \rightarrow e^{i\alpha_i} \Psi_{Li}$

 N_{f}

Neutrino masses and lepton flavour violation

For Dirac neutrinos the relevant terms in the Lagrangian are

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}'_{La} \gamma^{\mu} \nu'_{La}) W^{-}_{\mu} + (m'_{l})_{ab} \bar{e}'_{Ra} e'_{Lb} + (m'_{\nu})_{ab} \bar{\nu}'_{Ra} \nu'_{Lb} + h.c.$$

Diagonalization of mass matrices:

$$e'_L = V_L e_L, \quad e'_R = V_R e_R, \quad \nu'_L = U_L \nu_L, \quad \nu'_R = U_R \nu_R$$

$$V_L^{\dagger} m_l' V_R = m_l, \qquad U_L^{\dagger} m_{\nu}' U_R = m_{\nu} \qquad (m_{l,\nu} - \text{diagonal mass matrices})$$

$$-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_L \gamma^\mu V_L^{\dagger} U_L \nu_L) W_{\mu}^{-} + \text{diag. mass terms} + h.c.$$

For $m'_{\nu} = 0$: without loss of generality one can consider both CC term and m_l term diagonal \Rightarrow the Lagrangian is invariant w.r.t. three separate U(1) transformations:

$$\diamondsuit \quad e_{La,Ra} \to e^{i\phi_a} e_{La,Ra} \,, \quad \nu_{La,Ra} \to e^{i\phi_a} \nu_{La,Ra} \qquad (a = e, \mu, \tau)$$

Evgeny Akhmedov

Neutrino masses and lepton flavour violation

 \Rightarrow For massles neutrinos three individual lepton numbers (lepton flavours) L_e, L_{μ}, L_{τ} conserved.

For massive Dirac neutrinos L_e , L_μ , L_τ are violated $\Rightarrow \nu$ oscillations and $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, etc. allowed.

<u>But:</u> the total lepton number $L = L_e + L_\mu + L_\tau$ is conserved.

For massive Majorana neutrinos: individual lepton flavours L_e , L_μ , L_τ and the total lepton number L are violated.

In addition to neutrino oscillations and LFV decays $2\beta 0\nu$ decay ($\Delta L = 2$ process) is allowed.

Why are neutrinos so light ?

In the minimal SM: $m_{\nu} = 0$. Add 3 RH ν 's N_{Ri} :

$$-\mathcal{L}_Y \supset Y_{\nu} \,\overline{l}_L \, N_R \, H + h.c., \qquad l_{Li} = \begin{pmatrix} \nu_{Li} \\ e_{Li} \end{pmatrix}$$

 $\langle H^0 \rangle = v = 174 \text{ GeV} \Rightarrow m_\nu = m_D = Y_\nu v$ $m_\nu < 1 \text{ eV} \Rightarrow Y_\nu < 10^{-11} - \text{Not natural !}$

Is it a problem? $Y_e \simeq 3 \times 10^{-6}$. But: with $m_{\nu} \neq 0$, huge disparity between the masses within each fermion generation !

A simple and elegant mechanism – <u>seesaw</u> (Minkowski, 1977; Gell-Mann, Ramond & Slansky, 1979; Yanagida, 1979; Glashow, 1979; Mohapatra & Senjanović, 1980)

Heavy N_{Ri} 's make ν_{Li} 's light :

$$-\mathcal{L}_{Y+m} = Y_{\nu} \,\overline{l}_L \, N_R \,\widetilde{H} + \frac{1}{2} M_R N_R N_R + h.c.,$$

In the $n_L = (\nu_L, (N_R)^c)^T$ basis: $-\mathcal{L}_m = \frac{1}{2}n_L^T C \mathcal{M}_{\nu} n_L + h.c.,$

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} 0 & m_D^T \\ m_D & M_R \end{array} \right)$$

 N_{Ri} are EW singlets \Rightarrow M_R can be $\sim M_{GUT}(M_I) \gg m_D \sim v.$ Block diagonalization: $M_N \simeq M_R$,

$$m_{\nu_L} \simeq -m_D^T M_R^{-1} m_D \qquad \Rightarrow \quad m_{\nu} \sim \frac{(174 \text{ GeV})^2}{M_R}$$

For $m_{\nu} \lesssim 0.05 \text{ eV} \Rightarrow M_R \gtrsim 10^{15} \text{ GeV} \sim M_{GUT} \sim 10^{16} \text{ GeV}$!

 \diamond

The (type I) seesaw mechanism

Consider the case of n LH and k RH neutrino fields:

$$\mathcal{L}_m = \frac{1}{2} \nu_L^{T} \, \mathcal{C}^{-1} \, m_L \, \nu_L^{\prime} - \overline{N_R^{\prime}} \, m_D \, \nu_L^{\prime} + \frac{1}{2} N_R^{T} \, \mathcal{C}^{-1} \, M_R^* \, N_R^{\prime} + h.c.$$

 m_L and $M_R - n \times n$ and $k \times k$ symmetric matrices, $m_D - an k \times n$ matrix.

The (type I) seesaw mechanism

Consider the case of n LH and k RH neutrino fields:

$$\mathcal{L}_m = \frac{1}{2} \nu_L^{T} \, \mathcal{C}^{-1} \, m_L \, \nu_L^{\prime} - \overline{N_R^{\prime}} \, m_D \, \nu_L^{\prime} + \frac{1}{2} N_R^{T} \, \mathcal{C}^{-1} \, M_R^* \, N_R^{\prime} + h.c.$$

 m_L and $M_R - n \times n$ and $k \times k$ symmetric matrices, $m_D - an k \times n$ matrix. Introduce an n + k - component LH field

$$n_L = \begin{pmatrix} \nu'_L \\ (N'_R)^c \end{pmatrix} = \begin{pmatrix} \nu'_L \\ N'_L^c \end{pmatrix} \Rightarrow$$

The (type I) seesaw mechanism

Consider the case of n LH and k RH neutrino fields:

$$\mathcal{L}_m = \frac{1}{2} \nu_L^{T} \, \mathcal{C}^{-1} \, m_L \, \nu_L^{\prime} - \overline{N_R^{\prime}} \, m_D \, \nu_L^{\prime} + \frac{1}{2} N_R^{T} \, \mathcal{C}^{-1} \, M_R^* \, N_R^{\prime} + h.c.$$

 m_L and $M_R - n \times n$ and $k \times k$ symmetric matrices, $m_D - an k \times n$ matrix. Introduce an n + k - component LH field

$$n_L = \begin{pmatrix} \nu'_L \\ (N'_R)^c \end{pmatrix} = \begin{pmatrix} \nu'_L \\ N'_L^c \end{pmatrix} \quad \Rightarrow$$

$$\mathcal{L}_m = \frac{1}{2} n_L^T \mathcal{C}^{-1} \mathcal{M} n_L + h.c. \,,$$

where

$$\mathcal{M} = \begin{pmatrix} m_L & m_D^T \\ m_D & M_R \end{pmatrix} \qquad (\mathcal{M}: \text{ matrix } (n+k) \times (n+k))$$

Problem: prove these formulas.

Evgeny Akhmedov

$$n_L = V \chi'_L, \qquad V^T \mathcal{M} V = V^T \begin{pmatrix} m_L & m_D^T \\ m_D & M_R \end{pmatrix} V = \begin{pmatrix} \tilde{m}_L & 0 \\ 0 & \tilde{M}_R \end{pmatrix}$$

$$n_L = V \chi'_L, \qquad V^T \mathcal{M} V = V^T \begin{pmatrix} m_L & m_D^T \\ m_D & M_R \end{pmatrix} V = \begin{pmatrix} \tilde{m}_L & 0 \\ 0 & \tilde{M}_R \end{pmatrix}$$

Look for the unitary matrix V in the form

$$V = \begin{pmatrix} \sqrt{1 - \rho \rho^{\dagger}} & \rho \\ -\rho^{\dagger} & \sqrt{1 - \rho^{\dagger} \rho} \end{pmatrix} \qquad (\rho: \text{ matrix } n \times k)$$

$$n_L = V \chi'_L, \qquad V^T \mathcal{M} V = V^T \begin{pmatrix} m_L & m_D^T \\ m_D & M_R \end{pmatrix} V = \begin{pmatrix} \tilde{m}_L & 0 \\ 0 & \tilde{M}_R \end{pmatrix}$$

Look for the unitary matrix V in the form

$$V = \begin{pmatrix} \sqrt{1 - \rho \rho^{\dagger}} & \rho \\ -\rho^{\dagger} & \sqrt{1 - \rho^{\dagger} \rho} \end{pmatrix} \qquad (\rho: \text{ matrix } n \times k)$$

Assume that characteristic scales of neutrino masses satisfy

$$m_L, m_D \ll m_R \qquad \Rightarrow \quad \rho \ll 1.$$

$$n_L = V \chi'_L, \qquad V^T \mathcal{M} V = V^T \begin{pmatrix} m_L & m_D^T \\ m_D & M_R \end{pmatrix} V = \begin{pmatrix} \tilde{m}_L & 0 \\ 0 & \tilde{M}_R \end{pmatrix}$$

Look for the unitary matrix V in the form

$$V = \begin{pmatrix} \sqrt{1 - \rho \rho^{\dagger}} & \rho \\ -\rho^{\dagger} & \sqrt{1 - \rho^{\dagger} \rho} \end{pmatrix} \qquad (\rho: \text{ matrix } n \times k)$$

Assume that characteristic scales of neutrino masses satisfy

$$m_L, m_D \ll m_R \qquad \Rightarrow \quad \rho \ll 1.$$

Treat ρ as perturbation \Rightarrow

$$\rho^* \simeq m_D^T M_R^{-1}, \qquad \tilde{M}_R \simeq M_R,$$

$$\tilde{m}_L \simeq m_L - m_D^T M_R^{-1} m_D$$

A simple 1-flavour case (n = k = 1). Notation change: $M_R \rightarrow m_R$, $N_R \rightarrow \nu_R$.

$$\mathcal{M} = \left(\begin{array}{cc} m_L & m_D \\ m_D & m_R \end{array} \right)$$

 $(m_L, m_D, m_R - \text{real positive numbers})$

A simple 1-flavour case (n = k = 1). Notation change: $M_R \rightarrow m_R$, $N_R \rightarrow \nu_R$.

 $\mathcal{M} = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \qquad (m_L, m_D, m_R - \text{ real positive numbers})$

Can be diagonalized as $O^T \mathcal{M} O = \mathcal{M}_d$ where O is real orthogonal 2×2 matrix and $\mathcal{M}_d = diag(m_1, m_2)$. Introduce the fields χ_L through $n_L = O\chi_L$:

A simple 1-flavour case (n = k = 1). Notation change: $M_R \rightarrow m_R$, $N_R \rightarrow \nu_R$.

$$\mathcal{M} = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \qquad (m_L, m_D, m_R - \text{ real positive numbers})$$

Can be diagonalized as $O^T \mathcal{M} O = \mathcal{M}_d$ where O is real orthogonal 2×2 matrix and $\mathcal{M}_d = diag(m_1, m_2)$. Introduce the fields χ_L through $n_L = O\chi_L$:

$$n_{L} = \begin{pmatrix} \nu_{L} \\ \nu_{L}^{c} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \chi_{1L} \\ \chi_{2L} \end{pmatrix} \quad (\chi_{1L}, \chi_{2L} - \text{LH comp. of } \chi_{1,2})$$

A simple 1-flavour case (n = k = 1). Notation change: $M_R \rightarrow m_R$, $N_R \rightarrow \nu_R$.

$$\mathcal{M} = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \qquad (m_L, m_D, m_R - \text{ real positive numbers})$$

Can be diagonalized as $O^T \mathcal{M} O = \mathcal{M}_d$ where O is real orthogonal 2×2 matrix and $\mathcal{M}_d = diag(m_1, m_2)$. Introduce the fields χ_L through $n_L = O\chi_L$:

$$n_{L} = \begin{pmatrix} \nu_{L} \\ \nu_{L}^{c} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \chi_{1L} \\ \chi_{2L} \end{pmatrix} \quad (\chi_{1L}, \chi_{2L} - \text{LH comp. of } \chi_{1,2})$$

Rotation angle and mass eigenvalues:

$$\tan 2\theta = \frac{2m_D}{m_R - m_L} \,,$$

$$m_{1,2} = \frac{m_R + m_L}{2} \mp \sqrt{\left(\frac{m_R - m_L}{2}\right)^2 + m_D^2}.$$

 m_1, m_2 real but can be of either sign

$$\mathcal{L}_{m} = \frac{1}{2} n_{L}^{T} \mathcal{C}^{-1} \mathcal{M} n_{L} + h.c. = \frac{1}{2} \chi_{L}^{T} \mathcal{C}^{-1} \mathcal{M}_{d} \chi_{L} + h.c.$$

$$= \frac{1}{2} (m_{1} \chi_{1L}^{T} \mathcal{C}^{-1} \chi_{1L} + m_{2} \chi_{2L}^{T} \mathcal{C}^{-1} \chi_{2L}) + h.c. = \frac{1}{2} (|m_{1}| \overline{\chi}_{1} \chi_{1} + |m_{2}| \overline{\chi}_{2} \chi_{2})$$

$$\mathcal{L}_{m} = \frac{1}{2} n_{L}^{T} \mathcal{C}^{-1} \mathcal{M} n_{L} + h.c. = \frac{1}{2} \chi_{L}^{T} \mathcal{C}^{-1} \mathcal{M}_{d} \chi_{L} + h.c.$$

$$= \frac{1}{2} (m_{1} \chi_{1L}^{T} \mathcal{C}^{-1} \chi_{1L} + m_{2} \chi_{2L}^{T} \mathcal{C}^{-1} \chi_{2L}) + h.c. = \frac{1}{2} (|m_{1}| \overline{\chi}_{1} \chi_{1} + |m_{2}| \overline{\chi}_{2} \chi_{2})$$

Here

$$\chi_1 = \chi_{1L} + \eta_1(\chi_{1L})^c, \qquad \chi_2 = \chi_{2L} + \eta_2(\chi_{2L})^c.$$

with $\eta_i = 1$ or -1 for $m_i > 0$ or < 0 respectively.

$$\mathcal{L}_{m} = \frac{1}{2} n_{L}^{T} \mathcal{C}^{-1} \mathcal{M} n_{L} + h.c. = \frac{1}{2} \chi_{L}^{T} \mathcal{C}^{-1} \mathcal{M}_{d} \chi_{L} + h.c.$$

$$= \frac{1}{2} (m_{1} \chi_{1L}^{T} \mathcal{C}^{-1} \chi_{1L} + m_{2} \chi_{2L}^{T} \mathcal{C}^{-1} \chi_{2L}) + h.c. = \frac{1}{2} (|m_{1}| \overline{\chi}_{1} \chi_{1} + |m_{2}| \overline{\chi}_{2} \chi_{2})$$

Here

$$\chi_1 = \chi_{1L} + \eta_1(\chi_{1L})^c, \qquad \chi_2 = \chi_{2L} + \eta_2(\chi_{2L})^c.$$

with $\eta_i = 1$ or -1 for $m_i > 0$ or < 0 respectively.

 \diamond Mass eigenstates χ_1 , χ_2 are Majorana states!

$$\mathcal{L}_{m} = \frac{1}{2} n_{L}^{T} \mathcal{C}^{-1} \mathcal{M} n_{L} + h.c. = \frac{1}{2} \chi_{L}^{T} \mathcal{C}^{-1} \mathcal{M}_{d} \chi_{L} + h.c.$$

$$= \frac{1}{2} (m_{1} \chi_{1L}^{T} \mathcal{C}^{-1} \chi_{1L} + m_{2} \chi_{2L}^{T} \mathcal{C}^{-1} \chi_{2L}) + h.c. = \frac{1}{2} (|m_{1}| \overline{\chi}_{1} \chi_{1} + |m_{2}| \overline{\chi}_{2} \chi_{2})$$

Here

$$\chi_1 = \chi_{1L} + \eta_1(\chi_{1L})^c, \qquad \chi_2 = \chi_{2L} + \eta_2(\chi_{2L})^c.$$

with $\eta_i = 1$ or -1 for $m_i > 0$ or < 0 respectively.

 \diamond Mass eigenstates χ_1 , χ_2 are Majorana states!

Interesting limiting cases:

(a) $m_R \gg m_L, m_D$ (seesaw limit)

$$m_1 \approx m_L - \frac{m_D^2}{m_R} \rightarrow - \frac{m_D^2}{m_R}$$
 for $m_L = 0$
 $m_2 \approx m_R$

(b) $m_L = m_R = 0$ (Dirac case)

$$\mathcal{M} = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix} \rightarrow \mathcal{M}_d = \begin{pmatrix} -m & 0 \\ 0 & m \end{pmatrix}.$$

(b) $m_L = m_R = 0$ (Dirac case)

$$\mathcal{M} = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix} \rightarrow \mathcal{M}_d = \begin{pmatrix} -m & 0 \\ 0 & m \end{pmatrix}.$$

Diagonalized by rotation with angle $\theta = 45^{\circ}$. We have $\eta_2 = -\eta_1 = 1$;

$$\chi_1 + \chi_2 = \sqrt{2}(\nu_L + \nu_R), \quad \chi_1 - \chi_2 = -\sqrt{2}(\nu_L^c + \nu_R^c) = -(\chi_1 + \chi_2)^c.$$

(b) $m_L = m_R = 0$ (Dirac case)

$$\mathcal{M} = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix} \rightarrow \mathcal{M}_d = \begin{pmatrix} -m & 0 \\ 0 & m \end{pmatrix}.$$

Diagonalized by rotation with angle $\theta = 45^{\circ}$. We have $\eta_2 = -\eta_1 = 1$;

$$\chi_1 + \chi_2 = \sqrt{2}(\nu_L + \nu_R), \quad \chi_1 - \chi_2 = -\sqrt{2}(\nu_L^c + \nu_R^c) = -(\chi_1 + \chi_2)^c.$$

$$\Downarrow$$

 $\frac{1}{2}m(\overline{\chi}_1\chi_1 + \overline{\chi}_2\chi_2) = \frac{1}{4}m[\overline{(\chi_1 + \chi_2)}(\chi_1 + \chi_2) + [\overline{(\chi_1 - \chi_2)}(\chi_1 - \chi_2)] = m\,\overline{\nu}_D\nu_D\,,$ where

$$\nu_D \equiv \nu_L + \nu_R \,.$$

(b) $m_L = m_R = 0$ (Dirac case)

$$\mathcal{M} = \begin{pmatrix} 0 & m \\ m & 0 \end{pmatrix} \rightarrow \mathcal{M}_d = \begin{pmatrix} -m & 0 \\ 0 & m \end{pmatrix}.$$

Diagonalized by rotation with angle $\theta = 45^{\circ}$. We have $\eta_2 = -\eta_1 = 1$;

$$\chi_1 + \chi_2 = \sqrt{2}(\nu_L + \nu_R), \quad \chi_1 - \chi_2 = -\sqrt{2}(\nu_L^c + \nu_R^c) = -(\chi_1 + \chi_2)^c.$$

$$\Downarrow$$

$$\frac{1}{2}m\left(\overline{\chi}_{1}\chi_{1} + \overline{\chi}_{2}\chi_{2}\right) = \frac{1}{4}m\left[\overline{(\chi_{1} + \chi_{2})}(\chi_{1} + \chi_{2}) + \left[\overline{(\chi_{1} - \chi_{2})}(\chi_{1} - \chi_{2})\right] = m\,\overline{\nu}_{D}\nu_{D},$$
where

$$\nu_D \equiv \nu_L + \nu_R \,.$$

(c) $m_L, m_R \ll m_D$ (quasi-Dirac neutrino): $|m_{1,2}| \approx m_D \pm \frac{m_L + m_R}{2}$.
The 3 basic seesaw models

 \longrightarrow i.e. tree level ways to generate the dim 5 $\frac{\lambda}{M}LLHH$ operator

MITP Summer School 2017

Access to the seesaw parameters from ν mass matrix data

• Type II seesaw: H $M_{\Delta} \downarrow \Delta \implies m_{\nu i j} = Y_{\Delta i j} \frac{\mu_{\Delta}}{M_{\Delta}^2} v^2 \implies$ gives full access to type II flavour structure

• Type I or III seesaw model:

Evgeny A	khmedov
----------	---------

- keV sterile neutrinos as dark matter
- Baryogenesis via leptogenesis
 - Decay of heavy sterile neutrinos
 - Baryogenesis via neutrino oscillations

Baryogenesis via leptogenesis

Baryogenesis via leptogenesis

(Kuzmin, Rubakov & Shaposhnikov, 1985; Fukugita & Yanagida, 1986; Luty, 1992; Covi et al., 1996; Buchmüller & Plümacher, 1996; ...)

 Seesaw has a built-in mechanism for generating the baryon asymmetry of the Universe! Observations:

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = (6.04 \pm 0.08) \times 10^{-10}$$

Three Sakharov's conditions for generating an asymmetric Universe starting from a B = 0 state:

- Baryon number non-conservation (i)
- C and CP violation (ii)
- Deviation from thermal equilibrium (iii)

Baryogenesis via leptogenesis satisfies all of them !

Consider a process

$$X \to Y + b$$

X – an initial state with B = 0, Y – a set of final-state particles with net B = 0, b are the produced excess baryons.

Consider a process

 $X \to Y + b$

X – an initial state with B = 0, Y – a set of final-state particles with net B = 0, b are the produced excess baryons.

If (i) is not met, the process $X \rightarrow Y + b$ does not take place.

Consider a process

 $X \to Y + b$

X – an initial state with B = 0, Y – a set of final-state particles with net B = 0, b are the produced excess baryons.

If (i) is not met, the process $X \rightarrow Y + b$ does not take place.

If either C or CP is conserved, $X \to Y + b$ and $\overline{X} \to \overline{Y} + \overline{b}$ occur at the same rate \Rightarrow no net baryon number produced (provided that the initial state of the system contained equal numbers of X and \overline{X} or that $X = \overline{X}$).

Consider a process

 $X \to Y + b$

X – an initial state with B = 0, Y – a set of final-state particles with net B = 0, b are the produced excess baryons.

If (i) is not met, the process $X \rightarrow Y + b$ does not take place.

If either C or CP is conserved, $X \to Y + b$ and $\overline{X} \to \overline{Y} + \overline{b}$ occur at the same rate \Rightarrow no net baryon number produced (provided that the initial state of the system contained equal numbers of X and \overline{X} or that $X = \overline{X}$).

If the system is in thermal equilibrium, $X \to Y + b$ and $Y + b \to X$ occur at the same rate (also true for $\overline{X} \to \overline{Y} + \overline{b}$ and $\overline{Y} + \overline{b} \to \overline{X}$, of course) \Rightarrow the baryon asymmetry produced in direct processes is washed out by the inverse ones.

Evgeny Ak	khmedov
-----------	---------

Baryogenesis via leptogenesis – contd.

(1) Out-of-equilibrium CP and L violating decay of $N_1 \Rightarrow$ a net $L \neq 0$ is produced

L violation (due to Majorana nature of N_i):

$$N_i \to l H$$
, $N_i \to \bar{l} \bar{H}$

CP violation:

 $\Gamma(N_i o lH) \
eq \ \Gamma(N_i o ar{l}H) \
eq \ \Gamma(N_i o ar{l}H) \
eq \ needed$ at least 2 N_i needed

$$\epsilon_{1} = \sum_{\alpha} \frac{\Gamma(N_{1} \to l_{\alpha}H) - \Gamma(N_{1} \to \bar{l}_{\alpha}\bar{H})}{\Gamma(N_{1} \to l\alpha H) + \Gamma(N_{1} \to \bar{l}_{\alpha}\bar{H})} = \frac{1}{8\pi} \frac{1}{(Y_{\nu}^{\dagger}Y_{\nu})_{11}} \sum_{i \neq 1} \operatorname{Im}[(Y_{\nu}^{\dagger}Y_{\nu})_{1i}^{2}] g(M_{i}^{2}/M_{1}^{2})$$

Baryogenesis via leptogenesis – contd.

In the standard model:

$$g(x) = \sqrt{x} \left[\frac{2-x}{1-x} - (1+x) \ln\left(\frac{1+x}{x}\right) \right]$$

N.B.:

- In the formula for ϵ_1 for simplicity summation over the flavours of final-state leptons performed, but flavour effects may actually be important
- The expression for *ϵ*₁ is valid only when |*M_j* − *M_i*| ≫ Γ_i + Γ_j; the opposite case (resonant leptogenesis, Pilaftsis & Underwood, 2004, 2005) requires a special consideration.

Out-of-equilibrium decay condition:

$$\Gamma_1 = \frac{(Y_{\nu}^{\dagger} Y_{\nu})_{11}}{8\pi} M_1 < H(T = M_1)$$

Hubble parameter:

$$H(T) = \frac{2\pi^{3/2}}{3\sqrt{5}} g_*^{1/2} \frac{T^2}{M_{\rm Pl}} \simeq 1.66 g_*^{1/2} \frac{T^2}{M_{\rm Pl}}$$

 g_* - eff. number of degrees of freedom of particles in equilibrium For SM +1 RH singlet neutrino: $g_* = 434/4 = 108.5$.

Introduce

$$\tilde{m}_1 \equiv \frac{(m_D^{\dagger} m_D)_{11}}{M_1} = 8\pi \frac{v^2}{M_1^2} \Gamma_1$$

Condition $\Gamma_1 < H(T = M_1) \Rightarrow \tilde{m}_1 < m_*$, where

$$m_* \equiv \frac{16\pi^{5/2}}{3\sqrt{5}} g_*^{1/2} \frac{v^2}{M_{\rm Pl}} \simeq 1.1 \times 10^{-3} \ {\rm eV}$$

Sphaleron mechanism: $L \rightarrow B$ **reprocessing**

Not too strong washout \Rightarrow upper limit on m_{ν} :

$$\bar{m} \equiv (m_1^2 + m_2^2 + m_3^2)^{1/2} \lesssim 0.1 \text{ eV}$$

(2) Reprocessing of the produced L into B by electroweak sphalerons

SM: At tree level, *B* and *L* are conserved. Broken at 1-loop level by triangle anomalies. But: $\Delta B = \Delta L \Rightarrow$

B-L is conserved!

Non-perturbative EW field configurations – sphalerons: conserve B - L but efficiently wash out B + L for

$$10^2 \text{ GeV} \lesssim T \lesssim 10^{12} \text{ GeV}.$$

Because

$$B = \frac{1}{2}[(B+L) + (B-L)], \qquad L = \frac{1}{2}[(B+L) - (B-L)],$$

Evgeny Akhmedov

$L \rightarrow B$ reprocessing – contd.

$$B(t) = \frac{1}{2}(B+L)_0 e^{-\Gamma_{\rm sph}t} + \frac{1}{2}(B-L)_0$$

$$L(t) = \frac{1}{2}(B+L)_0 e^{-\Gamma_{\rm sph}t} - \frac{1}{2}(B-L)_0$$

Initially (t = 0): B = 0, $L = L_0 \neq 0$ At $t \gg \Gamma_{sph}^{-1}$: $B = \frac{1}{2}(B - L)_0 = -\frac{1}{2}L_0$! More accurate calculation: $B = \frac{28}{79}(B - L)_0$. The produced baryon asymmetry: $\eta_B \simeq 10^{-2} \epsilon_1 \kappa$ κ – washout factor. Very approximately:

$$\kappa \sim \frac{0.3}{K(\ln K)^{0.6}} \qquad K \equiv \frac{\tilde{m}_1}{m_*}$$

 \diamond Viable η_B produced for $M_1 \gtrsim 10^9 \text{ GeV}$ (for non-degenerate N_i 's)

Matter-antimatter asymmetry of the universe

from the seesaw interactions responsible for neutrino masses one can also explain baryogenesis via leptogenesis

Backup slides