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Introduction.
Brief overview of experimental results

Weyl, Dirac and Majorana fermions

e o o o

Neutrino masses in simplest extensions of the Standard Model.
The seesaw mechanism(s).

Neutrinos and the baryon asymmetry of the universe

e

# Neutrino oscillations in vacuum

o Same FE or same p?

» QM uncertainties and coherence issues

» Wave packet approach to neutrino oscillations

» Lorentz invariance of oscillation probabilities

» 2f and 3f neutrino mixing schemes and oscillations
» Implications of CP, T and CPT




» Neutrino oscillations in matter — the MSW effect

» Evolution equation

» Adiabaticity condition and adiabatic evolution

» Non-adiabatic regime

» Graphical interpretation and mechanical analogy
» Earth matter effects on v (day-night asymmetry)

# Neutrino oscillations in matter — parametric resonance
# Direct neutrino mass measurement experiments

# Neutrinoless double 5-decay




# Oscillations: Exp. data and future experiments
» Atmospheric neutrinos
» LBL accelerator experiments
» Solar neutrinos
» Reactor (anti)neutrino oscillations
» Oscillatory nature of neutrino flavour transitions
» Discovery of 613 in reactor and accelerator expts.
» 3f global fits
» Light sterile neutrinos?

# Future expts.: Neutrino mass ordering, CP violation, 6,3 octant,. ..

» Coherent elastic neutrino nucleus scattering (CEVNS)

» Do charged leptons oscillate?

» Future: What’'s next?
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— Neutrino electromagnetic properties

— Oscillations of SN neutrinos (incl. non-linear collective effects)
— Cosmological bounds on # of neutrino species and > m,,

— keV sterile neutrinos as Dark Matter

— Non-standard neutrino interactions

— Geoneutrinos
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Nuclear beta decay:

A(Z,N) — A(Z+1,NF1) + F

dN/dE observed expected
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Pauli’'s “desperate way out” (1930):
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Nuclear beta decay:

A(Z,N) — A(Z+1,NF1) + F

dN/dE observed expected
0.8
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Pauli’'s “desperate way out” (1930):
A(Z,N) - A(ZL£1,NF1) + e" + v(ve)
— avery bold conjecture! Experimentally observed 26 years later.
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¢ Neutrinos: most mysterious elementary particles ever discovered

The history of their discovery and study very fascinating !
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¢ Neutrinos: most mysterious elementary particles ever discovered

The history of their discovery and study very fascinating !
¢ 3 species of neutrinos known — v., v,, and v,
> Neutrinos have no electric charge
{ Have very small mass — m, < 107%m,

& Interact extremely weakly with matter —
Evaded detection for more than 25 years after their existence was
conjectured. Oscillate into each other!

We already know a lot about neutrinos but many their properties
are yet to be uncovered
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Egn ~3x 102 erg — 1000 times larger than the total energy
emitted by the Sun.

& 99% of SN energy emitted in the form of neutrinos !

Evgeny Akhmedov MITP Summer School 2017 August 6-25 -p.-9




. Seeing the Sun underground

The Sun still shines!
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The Sun:
do(v) ~ 6 x 10" 1/(cm?*s)

Relic neutrinos (all neutrino and antineutrino species):
n, ~ 336 1/cm’

Nuclear power plants: N, ~ 6x 10 1/s (fora 3 GW reactor);
Preac(Ve) ~ 5 x 10" 1/(cm®s) at L =100 m

Neutrinos are not dangerous to us!

They interact extremely weakly with matter. Mean free path of a
solar or reactor neutrino is ~ 1 ligt year (~ 10'* km) in Pb !

So why do we care about them?




Why and Where are neutrinos interesting ?

> Particle physics — v’s can probe very large mass (energy)
scales; extra space-time dimensions; the only known
particles that can be of Majorana nature

> Nuclear physics — clean probe of nuclear structure; cross
sections important for studying neutrino properties

{» Cosmology — nucleosynthesis, Dark Matter problem,
baryogenesis (generation of the baryon asymmetry of
the universe)

¢» Astrophysics — information on thermonuclear reactions
powering our Sun; SN energetics

Evgeny Akhmedov MITP Summer School 2017 August 6-25 -




Am?in eV2

SuperK

KamLAND
95% exclusion
by rate

\ S

10 sl sl L ol i
10* 10° 102 10" 1 10 102 10* 10° 102 10" 1 1
tan?(@)
Neutrino Oscillation
previous result (above 2.6 MeV)
14F +  KamLAND data « CHOOZ data
short baseline ) 2: l;es:—?; osci. Exoected Geo s
experlment . __ """" est-11t osc1. + xpec (< €0 Ve
~, ,,
1E" st ~ 3rd

o oo

.g 0.8 X \

& f
0.6
o4F ;
02F ,.+ AN

C L preliminary hypothetical
C Loyl i PETETENE ETETETETE SETSTETE SRS SRS S H
00710 20 30 40 50 60 70 z't“%% rlfnicmr
LyE, (km/MeV)

KamLAND covers the 2nd and 3rd maximum
—> characteristic of neutrino oscillation

Zenith angle distributions

V> Ve

2-flavor oscillations

Best fit
sin220=1.0, Am2=2.0x10-3
Null oscillation

eV?

=M

ulti-GeV e-like
| | |

450 2 5 S0 L4
Em; E Esoo E § 45 E Su_b-GeV Multi-R .I." 12 ;Up stop 1
=350 fi<] E— —— e p-like ) £
5300 Call B g E
gaso - S RO e+ o
ém— 'E £ 'Ezs* a’o.s:
El 5200 3 20 oo
z:ﬁ E 220 £ Z 15 + + Hoal
E E 10 = E
s0 & Sub-GeVelike | ™ E Sub-GeV plike 5.+ 02 =
S S T Sy ¥ R T 7y 7 R T 7y
cosf ©osf €08t
B0 | g0 e i Bio0 LVi-Gev MR F
H Esoo E Multi-GeV p-like Elllll FMulti-GeV Multi-
Eu" E B b © PC = g [ p-like
°100 - © 3 °
o o fa
g 60 E1s50 | g
= ) E = 40
Zogl Zioo £ z
50 2
0

103

| | |
-1 -08 0.6 04

|
02

-1 -0.5 cl:]le 05 -] “;Ile 05 -1 -05 Cl'?le 0.5 S0
= 17T « 1] 1 <& 1t &=
, ~13000km  ~500km  ~15km ~13000km  ~500km
0 10
tan?(©)
# v, Disappearance Measurement
2

. . C

Look for v, deficit : P(vp > Vu) =1-sin? 20sin? E"%LE

Vv, spectrum 14 spectrum ratio
2 - 14r
c 2 E
L300l Un-oscillated 8 1.2
w (extrapolated from s 1 [

J near detector) 3 E‘ '
. Sos) +‘HH’
200 Oscillated -_.3 % ++++
i
fordotocion) | & 08¢ +++
100} A T:'} 0.45— + | Lt
o .. O 0.2 A s
----- “4......___ Simulation <—>I+ ‘ ‘ Simullation
Y2768 0 % 2z 4 6 8 1o
Visible energy (GeV) Visible energy (GeV)

Andy Blake, Cambridge University

The MINOS Experiment, slide 7



¢ Suggested by W. Pauli in 1930 to explain the continuous electron spectra
In 3-decay and nuclear spin/statistics

> Discovered by F. Reines and C. Cowan in 1956 in experiments with
reactor v, (Nobel prize to F. Reines in 1995)

& 1957 —the idea of neutrino oscillations put forward by B. Pontecorvo
(v < D)

& 1957 — Chiral nature of v, established by Goldhaber, Grodzins & Sunyar

¢ 1962 — Discovery of the second neutrino type — v, (Nobel prize to
Lederman, Schwartz & Steinberger in 1988)

¢ 1962 —the idea of neutrino flavour oscillations put forward by Maki,
Nakagawa & Sakata




¢ 1975 — Discovery of the third lepton flavour — 7 lepton
(Nobel prize to M. Perl in 1995)

¢ 1985 — Theoretical discovery of resonant v oscillations in matter by
Mikheyev and Smirnov based on an earlier work of Wolfenstein
(the MSW effect)

& 1987 — First observation of neutrinos from supernova explosion (SN 1987A)

¢ 1998 — “Evidence for oscillations of atmospheric neutrinos” by the
Super-Kamiokande Collaboration

¢ 2000 — Discovery of the third neutrino species — v, by the DONUT
Collaboration (Fermilab)




& 2002 — “Direct evidence for neutrino flavor transformation from
neutral-current interactions in the Sudbury Neutrino Observatory”
— flavor transformations of solar neutrinos confirmed

¢ 2002 — Discovery of oscillations of reactor neutrinos by KamLAND
Collaboration; identification of the solution of the solar neutrino problem

¢ 2002 — Confirmation of oscillations of atmospheric neutrinos by K2K
accelerator neutrino experiment

¢ 2002 — Nobel prize to R. Davis and M. Koshiba for “detection of cosmic
neutrinos”

(2002 — “Annus Mirabilis” of neutrino physics)

» 2004 — Evidence for oscillatory nature of v disappearance by
Super-Kamiokande (atmospheric v’s) and KamLAND.




¢ 2006 — Independent confirmation of oscillations of atmospheric neutrinos
by MINOS accelerator neutrino experiment

& 2007 — First real-time detection of solar “Be neutrinos by Borexino

¢ 2011/12 — Measurement of the last leptonic mixing angle 6,3 by T2K,
Double Chooz, Daya Bay and Reno

¢ 2012/14 — Detection of solar pep and pp neutrinos by Borexino

¢ 2015 — Nobel prize to Takaaki Kajita and Arthur McDonald "for the
discovery of neutrino oscillations, which shows that neutrinos
have mass"”

¢ 2017 — First observation of coherent neutrino scattering on nuclei
by the COHERENT Collaboration

More to come !
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Neutrino mass had been unsuccessfully looked for for almost 40
years (several wrong discovery claims)

Since 1998 — an avalanche of discoveries :

Oscillations of atmospheric, solar, reactor and accelerator
neutrinos

Neutrino oscillations imply that neutrinos are massive

In the standard model neutrinos are massless = we have
now the first compelling evidence of physics beyond the standard
model !




Dirac equation:
(i7" 8y — m)ip(w) = 0

The chiral (Weyl) representation of the Dirac v-matrices:

LH and RH chirality projector operators:

1 —
PL: 2757 PR:

They have the following properties:

P; =P;,, P;=Pp, P,Pp=PrP,=0, P,+Pr=1

LH and RH spinor fields: ¥ = 16T, U = U, +Up.




Why LH and RH chirality? For relativistic particles chirality almost coincides
with helicity (projection of the spin of the particle on its momentum).

1
Py == (1 + ”—p) .
2 p|
At E > m positive-energy solutions satisfy
\IJR =~ \I/_|_ , \IJL ~W_

N.B.: Helicity of a free particle is conserved; chirality is not (unless m = 0).

A

Particle - antiparticle conjugation operation C:

AN

C: -y~ =Cy’
where ¢ = ¢+ and C satisfies
Cl'yC=—v,, C=C'=-C (=" =-0).

In the Weyl representation: C = iv*7V.
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Some useful relations:
O (W) =1, Pe=—9TCT, Pr§ =orhf, APy = YS(CATCT Y.
(A —an arbitrary 4 x 4 matrix).

O W) =W)r,  (Wr) =)L,

l.e. the antiparticle of a left-handed fermion is right-handed.

¢ Problem: Prove these relations.

= Chiral fields are 2-component rather than 4-component objects.
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Dirac equation in terms of 2-spinors ¢ and &:
(iao —ia-V)gb—m{f:O,
(10g + 10 - V)E —meop =0.

Fermion mass couples LH and RH components of ). For m = 0 egs. for ¢
and ¢ decouple (Weyl equations; Weyl fermions).




Dirac equation in terms of 2-spinors ¢ and &:
(iao —ia-V)gb—m{f:O,
(10g + 10 - V)E —meop =0.

Fermion mass couples LH and RH components of ). For m = 0 egs. for ¢
and ¢ decouple (Weyl equations; Weyl fermions).

Dirac Lagrangian:
L =p(iy"d, — m)p.

The fermion mass Lagrangian:
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Dirac equation in terms of 2-spinors ¢ and &:
(7:80 —ia-V)gb—msz,
(10g + 10 - V)E —meop =0.

Fermion mass couples LH and RH components of ). For m = 0 egs. for ¢
and ¢ decouple (Weyl equations; Weyl fermions).

Dirac Lagrangian:
L =p(iy"d, — m)p.

The fermion mass Lagrangian:

—Ly, = mYp = m (Y +Yr) (WL +Yr) = m(Wrpr + YLvR),

LH and RH fields are necessary to make up a fermion mass.
Dirac fermions: ; and g are completely independent fields

For Majorana fermions: ¢z = ()¢, where (¢)¢ = Cy7T.
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Acting on a chiral field, particle-antiparticle conjugation flips its chirality:

(¥r) = (V)R (Yr) = (V)L

(the antiparticle of a left handed fermion is right handed) =
one can construct a massive fermion field out of vy and (v )°:

X = YL + (Yr)°
= Majorana field:
X" = X
Majorana mass term:
. m m m
—L® = o ()L + heo = = S ULCT L + he = XX

Breaks all charges (electric, lepton, baryon) — can only be written for entirely
neutral fermions =-  Neutrinos are the only known candidates!




Plane-wave decomposition of a Dirac field:

60 = [ o T 2 BB+ (e




Plane-wave decomposition of a Dirac field:

Y(@) = / o) \/ﬁ Z (P)us(p)e™"P* + dT(_Dvs(ﬁ)e’p“’]

For Majorana fields:

W)= [ i X DD+ ]




Plane-wave decomposition of a Dirac field:

Y(z) = / o) \/ﬁ Z s(P)us(P)e™ " + di(p)vs (p)e?”]

For Majorana fields:

W)= [ i X DD+ ]

The spinors u,(p) and v,(p) satisfy

Cul =w, Col =u =




Plane-wave decomposition of a Dirac field:

60 = [ o T 2 BB+ (e

For Majorana fields:

W)= [ i X DD+ ]

The spinors u,(p) and v,(p) satisfy

Cul =w, Col =u =

» Majorana particles are genuinely neutral (coincide with their antiparticles).




Come from Yukawa interactions of fermions with the Higgs field:

—Ly = h;‘-@LiuRj]fI + hg'@LideH + ,f-ZLieRjH + h.c.
J J J

i i HT ~ . .
Qri = (Z;), lLi = (Z;)’ H = (HO)’ H = iH

URG, dRz‘, €R; — SU(Q)L -Singlets.

EWSB: (H°) =v~174GeV = fermion mass matrices are generated:

<> (mu)zj — h%’l}, (md)ij = hgj’l}, (me)z'j — z'jv .

No RH neutrinos were introduced in the SM!




» No RH neutrinos Npg; — Dirac mass terms cannot be introduced

» Operators of the kind [IH H, which could could produce Majorana
neutrino mass after H — (H), are dimension 5 and so cannot be
present at the Lagrangian level in a renormalizable theory

# These operators cannot be induced in higher orders either (even
nonperturbatively) because they would break not only lepton number
L butalso B — L, which is exactly conserved in the SM

In the Standard Model:

B and L are accidental symmetries at the Lagrangian level. Get broken at
1-loop level due the axial (triangle) anomaly. But: their difference B — L is
still conserved and is an exact symmetry of the model




|. Dirac fermions (e.g. charged leptons):

Ny
Ly =Y mly UL U+ he. = U m/ W 4+ Whm/ T
a,b=1

Rotate ¥, and ¥, by unitary transformations:
L=Vi¥y, VUp=VrVUp; m=Vm'Vy = diag.

Diagonalized mass term:

Ny
L = U (VIm'VR)Up+he = > miWipUp; + hec.
1=1
Mass eigenstate fields: N,
v, = WV, + ¥Y;R; —Ly = Zmi 0,0,
1=1

Invariant w.r.t. U(1) transfs. ¥; — e** ¥, — conservs individual ferm. numbers
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ll. Majorana fermions:

Ny
1 1
L, = — 5 Z muy (U )Wy, + he = 5\I!’LTC’_l m' U’ + h.c.
a,b=1
Matrix m’ is symmetric: m’" =m’. o Problem: prove this.
Unitary transformation of ¥’ :
L =Ur¥p, m=U;m' U, = diag.
Diagonalized mass term:
Ny
1 1
L = 5[\Iﬂgc—l(ULTm’ UL)¥p +he. = 5 > mUT, CT U + he.
1=1
Mass eigenstate fields: N,
1
xi = Vi + (Y1) Ly, = —3 Zmz’ XiXi
1=1

Not invariant w.r.t. U(1) transfs. ¥y, — "W,
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For Dirac neutrinos the relevant terms in the Lagrangian are

9

_£w+m — ﬁ

Diagonalization of mass matrices:

(_,Lafy'u V}/a) W,u_ + (mg)ab élRaelLb + (m;/)ab D}%al/}/b + h.c.

/ / / /
€r = VLGL, €r = VReR, Vi = ULVL, Vp = URVR
ngng = my, Uzm’,/U n = m, (my,, — diagonal mass matrices)

—Loprm = %(éL’y“ VgUL VL) Wu_ + diag. mass terms + h.c.
For m!, = 0: without loss of generality one can consider both CC term and
my; term diagonal = the Lagrangian is invariant w.r.t. three separate U(1)
transformations:

1Pq 1hq _
<> €La,Ra — € ¢ €La,Ra ; VLa,Ra — € ¢ VLa,Ra (CL — €, W, 7-)
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= For massles neutrinos three individual lepton numbers (lepton flavours)
L., L,, L; conserved.

For massive Dirac neutrinos L., L,,, L, areviolated = v oscillations and
uw— ey, u— 3e, etc. allowed.

But: the total lepton number L = L. + L, + L. is conserved.

For massive Majorana neutrinos: individual lepton flavours L., L,, L, and
the total lepton number L are violated.

In addition to neutrino oscillations and LFV decays 280v decay (AL =2
process) is allowed.




In the minimal SM: m, = 0. Add 3 RH v’s Ng;:

€Li

— Vi
—Ly DY, g Np H + h.c., lr; = ( )

(HY)Y =v =174 GeV = m, =mp =Y,v
m, <1leV = Y, <10~ — Not natural !

Is it a problem? Y. ~ 3 x 107%. But: with m, # 0, huge disparity between the
masses within each fermion generation !

A simple and elegant mechanism — seesaw
(Minkowski, 1977; Gell-Mann, Ramond & Slansky, 1979; Yanagida, 1979;
Glashow, 1979; Mohapatra & Senjanovic¢, 1980)




| - ~ 1
N —Ey+m =Y, I, Np H+ iMRNRNR_i_h'C-;

In the n; = (VL, (NR)C)T basis: —L,, = %n:LFC’./\/l,,nL + h.c.,

M. 0 mh
mp MR

Ng; are EW singlets = Mpg canbe ~ Mqguyr(Mp) > mp ~ v.

Block diagonalization: My ~ Mg,

For m, <0.05eV = Mg > 10 GeV~ Mgyt ~ 1010 GeV !




Consider the case of n LH and k£ RH neutrino fields:

1 — 1
L., = §V}JTC_1 mp vy, — Npmp vy + iNl’%TC_l M}, N + h.c.

mr and Mr — nxn and k x k symmetric matrices, mp — an k x n matrix.




Consider the case of n LH and k£ RH neutrino fields:

1 — 1
L., = §V}JTC_1 mp vy, — Npmp vy + iNl’%TC_l M}, N + h.c.

mr and Mr — nxn and k x k symmetric matrices, mp — an k x n matrix.
Introduce an n + k - component LH field

/
vy vy

(NR)* N




Consider the case of n LH and k£ RH neutrino fields:

1 — 1
L., = §V}JTC_1 mp vy, — Npmp vy + iNl’%TC_l M}, N + h.c.
mr and Mr — nxn and k x k symmetric matrices, mp — an k x n matrix.

Introduce an n + k - component LH field

/ /
nL — VL — VL p—
(NR)° N'g
| A
L =50 CT' Mng + hec..
where
mry, mg
M = (M: matrix (n + k) x (n+k))
mp MR

Problem: prove these formulas.
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my, mg my, 0

mp MR 0 MR

T
np,=Vxy,, VMV =V




my, mg my, 0

nL=Vxy, VMV =V
mp MR 0 MR

Look for the unitary matrix V' in the form

V1= ppt p
V = (p: matrix n X k)
_pT 1/1_p1L10




my, mg my, 0

nL=Vxy, VMV =V
mp MR 0 MR

Look for the unitary matrix V' in the form

V1= ppt p
_pT 1/1_p1L10

Assume that characteristic scales of neutrino masses satisfy

(p: matrix n X k)

mr,mp < MRg = p< 1




my, mg my, 0

nL=Vxy, VMV =V
mp MR 0 MR

Look for the unitary matrix V' in the form

V1= ppt p
_pT 1/1—p1L10

Assume that characteristic scales of neutrino masses satisfy

(p: matrix n X k)

mr,mp < MRg = p< 1

Treat p as perturbation =

* T —1 -
pT=mpMp-, Mp ~ Mp,

mr >~ my, — m%MglmD




A simple 1-flavour case (n = k£ = 1). Notation change: Mgr — mgr, Nr — vg.

myp Mp -
M = (mp, mp, mr — real positive numbers)
mp MR




A simple 1-flavour case (n = k£ = 1). Notation change: Mgr — mgr, Nr — vg.

myp Mp -
M = (mp, mp, mr — real positive numbers)
mp MR

Can be diagonalized as OT MO = M, where O is real orthogonal 2 x 2
matrix and M, = diag(my, mo). Introduce the fields yr through np = Oxy:




A simple 1-flavour case (n = k£ = 1). Notation change: Mgr — mgr, Nr — vg.

myp Mp -
M = (mp, mp, mr — real positive numbers)
mp MR

Can be diagonalized as OT MO = M, where O is real orthogonal 2 x 2
matrix and M, = diag(my, mo). Introduce the fields yr through np = Oxy:

129 cosf sinf X1L
ng = = . (X1L, X2r — LH comp. of x1.2)
24 —sinf cosf X2L




A simple 1-flavour case (n = k£ = 1). Notation change: Mgr — mgr, Nr — vg.

myp Mp -
M = (mp, mp, mr — real positive numbers)
mp MR

Can be diagonalized as OT MO = M, where O is real orthogonal 2 x 2
matrix and M, = diag(my, mo). Introduce the fields yr through np = Oxy:

128 cosf sinf X1L

ng = (X1L, X2r — LH comp. of x1.2)

v —sinf cosf X2L

Rotation angle and mass eigenvalues:

2
tan 20 = o

mR—mL’

mpr + mp, mpr — M[, : 5
mi2 = 2 + 2 +mp .

m1, ma real but can be of either sign




1 1
Lo = 5 nt C 'Mmnyp + h.c. = 5 X1 C ' Maxr + h.c.
1

_ _ 1 _ _
(m1 xT; CMxar + maxar C xar) + hec. = 5 UmalXaxa + [ma| Xoxe )

2




1 1
L = 3 nt C*Mny + h.c. = 5 Xr C ' Mgxr + h.c.
1

_ _ 1 _ _
5 (ma X1t C 1L +maxar C xar) + he. = 5 UmalXaxa + [ma| Xoxe )

Here
X1 = X1iL t 771(X1L)C, X2 = XaoL + 772(X2L)C-

with n;, =1 or —1 for m; > 0 or < 0 respectively.
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L = 3 nt C*Mny + h.c. = 5 Xr C ' Mgxr + h.c.
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Here
X1 = X1iL t 771(X1L)C, X2 = XaoL + 772(X2L)C-

with n;, =1 or —1 for m; > 0 or < 0 respectively.

¢ Mass eigenstates xi1, x2 are Majorana states!




1 1
L, = 5nLc "Mnp + h.c. = 5L e "Myxr + hec
1

_ _ 1 _ _
5 (ma X1t C 1L +maxar C xar) + he. = 5 UmalXaxa + [ma| Xoxe )

Here
X1 = X1iL t 771(X1L)C, X2 = XaoL + 772(X2L)C-

with n;, =1 or —1 for m; > 0 or < 0 respectively.

¢ Mass eigenstates xi1, x2 are Majorana states!

Interesting limiting cases:
(@) mr > myp, mp (seesaw limit)

E
.
3
|
\
1
|
\
5]
&
I




(b) m;, = mr = 0 (Dirac case)

0 m —-m 0
m 0 0 m




(b) mr = mr = 0 (Dirac case)

0 m —-m 0
m 0 0 m

Diagonalized by rotation with angle 6 = 45°. We have 7, = —n; = 1;

X1+x2 = V2L +vr), x1—x2=-V205 + vg) = —(x1 + x2)°.
J




(b) mr = mr = 0 (Dirac case)

0 m —-m 0
m 0 0 m

Diagonalized by rotation with angle 6 = 45°. We have 7, = —n; = 1;

X1+x2 = V2L +vr), x1—x2=-V205 + vg) = —(x1 + x2)°.
J

1 1

5 M (X1x1+Xax2) = M [(x1 + x2) (O +xz2) +1(xa = x2)(x1 —x2)] = mvpro,

where

Vp =V, + VR.




(b) mr = mr = 0 (Dirac case)

0 m —-m 0
M = — ./\/ldz

m 0 0 m
Diagonalized by rotation with angle 6 = 45°. We have 7, = —n; = 1;

X1+ x2 = V2(vp +vR), x1—x2= V2 +v%) = —(x1+ x2)°
J

1 1

5 M (X1x1+Xax2) = M [(x1 + x2) (O +xz2) +1(xa = x2)(x1 —x2)] = mvpro,

where

Vp =V, + VR.

(c) mr, mrp < mp (quasi-Dirac neutrino):  |mjq| =~ mDi%.




The 3 basic seesaw models

A
L> i.e. tree level ways to generate the dim 5 —LLHH operator

M
Right-handed singlet: Scalar triplet: Fermion triplet:
(type-l seesaw) (type-ll seesaw) (type-lll seesaw)
H H
Pa,
)
A

1 UA o T 1 2
T 2 _ _ o
m, = Y& —Y m, — YQ — my = I's YE?}
g MN NY g IM Qz g 1”2
m,, small if My large m, small if M large m,, small if My, large

(or if Y, small) (or if YA, psmall) (or if Yy small)
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Access to the seesaw parameters from I/ mass matrix data

® Type Il seesaw: H- ‘H

e
7

Ha | I/ mass matrix data
&

. HA .
Va A T Muyij = Yay WUQ —> gives full access to
| A

//)\ type Il flavour structure
L L

® Type | or lll seesaw model:

N . I/ mass matrix data: gives
1

/ T 2
Vv D> Mwij = Y M—NkYNk:j’U —> access to 9 parameter

) T " combinations of Yy and My

3 masses of the N

g 9 real parameters |8 parameters
T 6 phases

|5 parameters in Yukawa matri
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o keV sterile neutrinos as dark matter

» Baryogenesis via leptogenesis

s Decay of heavy sterile neutrinos
s Baryogenesis via neutrino oscillations




Baryogenesis via leptogenesis




(Kuzmin, Rubakov & Shaposhnikov, 1985; Fukugita & Yanagida, 1986; Luty,
1992; Covi et al., 1996; Buchmiller & Plimacher, 1996; ...)

$ Seesaw has a built-in mechanism for generating the baryon asymmetry of the
Universe! Observations:

N = an_ "B _ (6.044+0.08) x 10710
i

Three Sakharov’s conditions for generating an asymmetric Universe starting
from a B = 0 state:

# Baryon number non-conservation (i)
o C and CP violation (ii)
# Deviation from thermal equilibrium  (iii)

Baryogenesis via leptogenesis satisfies all of them !




Consider a process
X —=Y+b

X — an initial state with B =0, Y — a set of final-state particles with net
B =0, b arethe produced excess baryons.
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rate = no net baryon number produced (provided that the initial state of
the system contained equal numbers of X and X orthat X = X).




Consider a process
X —=Y+b

X — an initial state with B =0, Y — a set of final-state particles with net
B =0, b arethe produced excess baryons.

If (i) is not met, the process X — Y + b does not take place.

If either C or CP is conserved, X — Y +band X — Y + b occur at the same
rate = no net baryon number produced (provided that the initial state of
the system contained equal numbers of X and X orthat X = X).

If the system is in thermal equilibrium, X —- Y +band Y +b — X occur at
the same rate (also true for X =Y +b and Y +b — X, of course) = the
baryon asymmetry produced in direct processes is washed out by the inverse
ones.




(1) Out-of-equilibrium CP and L violating decay of N; =
anet L # 0 is produced

L violation (due to Majorana nature of V;):

CP violation:
I'(N; — 1H) # T'(N; — [H) at least 2 N; needed

}// H+ }/l/j ‘//H—F l’ //H+

— le ’ }/l;k@ }/l;kz Y—l’] ,/

N, —- U H": N, —< N; N; N; Y}

\\ \y/ NJ J

Y.

I~ g I \l—




In the standard model:

N.B.:

# Inthe formula for €¢; for simplicity summation over the flavours of
final-state leptons performed, but flavour effects may actually be
important

» The expression for ¢; is valid only when |M; — M;| > T'; +T';; the
opposite case (resonant leptogenesis, Pilaftsis & Underwood, 2004,
2005) requires a special consideration.




g.— eff. number of degrees of freedom of particles in equilibrium
For SM +1 RH singlet neutrino: ¢, = 434/4 = 108.5.

Introduce (mymp)is v
ng = = 81 —5 T
mi M, 7TMlQ 1

Condition I'y < H(T'=M;) = |m1 < m.|, Where




Not too strong washout =- upper limit on m,:

m = (m?+m2+m2)/2<0.1eV

(2) Reprocessing of the produced L into B by electroweak sphalerons

SM: At tree level, B and L are conserved. Broken at 1-loop level by triangle
anomalies. But: AB=AL =

B — L is conserved!

Non-perturbative EW field configurations — sphalerons:
conserve B — L but efficiently wash out B + L for

102 GeV < T < 102 GeV.

Y

Because
B:%[(B+L)+(B—L)], LZ%[(B+L)—(B—L)],
 EwewAkmedov  MTPSummerSchool2017  Auguste2  -pd47




1
Q(B + L)ge =t +

Sy
~
N )
~—
|

L(t) = 5(B+Lje ™' — (B~ L),

Initially (¢ =0): B=0, L=Lg#0
At t > T B=3(B—L)y=—3Lo!

More accurate calculation: B = 23(B — L).

The produced baryon asymmetry: ng ~ 1072 ¢ K
x — washout factor. Very approximately:

0.3 mq
~ K =
" K(nK)06 e

¢ Viable np produced for M; > 10° GeV (for non-degenerate N;’s)
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Matter-antimatter asymmetry of the universe

L—)> from the seesaw interactions responsible for neutrino masses

one can also explain baryogenesis via leptogenesis

o type-l:

o type-ll:

otype-I+ type Il

o type-lll:

Evgeny Akhmedov

A i A
- 4 + _
| \ / e \ / \\
L L

s * ,
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Ny . AL g
l; | l; . I,

MITP Summer School 2017
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Buchmiuiller, Plumacher 97, ...

Ma, Sarkar 98, ...

O’Donnell, Sarkar 94,
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TH, Lin, Notari, Papucci, Strumia 04’; ...
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