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Plan of the lectures

Introduction.

Brief overview of experimental results

Weyl, Dirac and Majorana fermions

Neutrino masses in simplest extensions of the Standard Model.

The seesaw mechanism(s).

Neutrino oscillations in vacuum

Same E or same p?

QM uncertainties and coherence issues

Wave packet approach to neutrino oscillations

Lorentz invariance of oscillation probabilities

2f and 3f neutrino mixing schemes and oscillations

Implications of CP, T and CPT
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Plan of the lectures – contd.

Neutrino oscillations in matter – the MSW effect

Evolution equation

Adiabaticity condition and adiabatic evolution

Non-adiabatic regime

Graphical interpretation and mechanical analogy

Earth matter effects on ν⊙ (day-night asymmetry)

Neutrino oscillations in matter – parametric resonance

Direct neutrino mass measurement experiments

Neutrinoless double β-decay

Neutrino electromagnetic properties

Subtleties of the theory of neutrino oscillations

Do charged leptons oscillate?

Oscillations of Mössbauer neutrinos

Neutrinos and the baryon asymmetry of the universe
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Plan of the lectures – contd.

Exptl. results: Solar neutrino oscillations and KamLAND

Oscillations of atmospheric and accelerator neutrinos

Discovery of θ13 in reactor and accelerator expts.

Future: What’s next?
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What is left out:

– Oscillations of SN neutrinos (incl. non-linear collective effects)

– Cosmological bounds on # of neutrino species and
∑

mν

– keV sterile neutrinos as Dark Matter

– Geoneutrinos

. . .
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Neutrino oscillations
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Neutrinos can oscillate !

A periodic change of neutrino flavour (identity):

νe → νµ → νe → νµ → νe ...

Happens without any external influence!

Dr. Jekyll / Mr. Hyde kind of story

Neutrinos have two-sided (or even 3-sided) personality !

P (νe → νµ;L) = sin2 2θ · sin2
(

∆m2

4p L
)

Hints of oscillations of solar neutrinos seen since the 1960s

First unambiguous evidence – oscillations of atmospheric

neutrinos (The Super-Kamiokande Collaboration, 1998)
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A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of ν ↔ ν̄ oscillations by
analogy with K0K̄0 oscillations.
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A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo
in 1957. Suggested possibility of ν ↔ ν̄ oscillations by
analogy with K0K̄0 oscillations.

Flavour transitions (“virtual transmutations”) first considered
by Maki, Nakagawa and Sakata in 1962.

B. Pontecorvo S. Sakata Z. Maki M. Nakagawa
1913 - 1993 1911 – 1970 1929 – 2005 1932 – 2001
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Oscillations discovered experimentally !
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Oscillations: a well known QM phenomenon

E 2

Ψ

Ψ
E

1

2

1

Ψ1(t) = e−iE1 tΨ1(0)

Ψ2(t) = e−iE2 tΨ2(0)

Ψ(0) = aΨ1(0) + bΨ2(0) (|a|2 + |b|2 = 1) ; ⇒
Ψ(t) = a e−i E1 tΨ1(0) + b e−i E2 tΨ2(0)

Probability to remain in the same state |Ψ(0)〉 after time t:

♦ Psurv = |〈Ψ(0)|Ψ(t)〉|2 =
∣

∣|a|2 e−i E1 t + |b|2 e−i E2 t
∣

∣

2

= 1− 4|a|2|b|2 sin2[(E2 − E1) t/2]
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Neutrino oscillations: theory
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Leptonic mixing

For mν 6= 0 weak eigenstate neutrinos νe, νµ, ντ do not

coincide with mass eigenstate neutrinos ν1, ν2, ν3

Diagonalization of leptonic mass matrices:

e′L → VL eL , ν ′
L → UL νL . . . ⇒

−Lw+m =
g√
2
(ēLγ

µ V †
LUL νL)W

−
µ + diag. mass terms + h.c.

Leptonic mixing matrix: U = V †
LUL

♦ ναL =
∑

i

Uαi νiL ⇒ |ναL〉 =
∑

i

U∗
αi |νiL〉

(α = e , µ , τ, i = 1 , 2 , 3)
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Master formula for ν oscillations

The standard formula for the oscillation probability of relativistic or

quasi-degenerate in mass neutrinos in vacuum:

♦ P (να → νβ;L) =

∣

∣

∣

∣

∑

i Uβi e
−i

∆m2
ij

2p
L U∗

αi

∣

∣

∣

∣

2

(~ = c = 1)

Problem: prove that the RHS does not depend on the index j.

Oscillation disappear when either

U = 1, i.e. Uαi = δαi (no mixing) or

∆m2
ij = 0 (massless or mass-degenerate neutrinos).
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How is it usually derived?

Assume at time t = 0 and coordinate x = 0 a flavour eigenstate

|να〉 is produced:

|ν(0, 0)〉 = |νfl
α〉 =

∑

i

U∗
αi |νmass

i 〉

After time t at the position x, for plane-wave particles:

|ν(t, ~x)〉 =
∑

i

U∗
αi e

−ipix|νmass
i 〉

Mass eigenstates pick up the phase factors e−iφi with

φi ≡ pi x = Et − ~p ~x

P (να → νβ) =
∣

∣〈νfl
β |ν(t, x)〉

∣

∣

2
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How is it usually derived?

Consider ~x || ~p ⇒ ~p~x = px (p = |~p|, x = |~x|)
Phase differences between different mass eigenstates:

∆φ = ∆E · t − ∆p · x

Shortcuts to the standard formula

1. Assume the emitted neutrino state has a well defined

momentum (same momentum prescription) ⇒ ∆p = 0.

For ultra-relativistic neutrinos Ei =
√

p2 +m2
i ≃ p+

m2

i

2p
⇒

∆E ≃ m2
2 −m2

1

2E
≡ ∆m2

2E
; t ≈ x (~ = c = 1)

⇒ The standard formula is obtained
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How is it usually derived?

2. Assume the emitted neutrino state has a well defined

energy (same energy prescription) ⇒ ∆E = 0.

∆φ = ∆E · t − ∆p · x ⇒ − ∆p · x

For ultra-relativistic neutrinos pi =
√

E2 −m2
i ≃ E − m2

i

2p
⇒

−∆p ≡ p1 − p2 ≈ ∆m2

2E
;

⇒ The standard formula is obtained

Stand. phase ⇒ (losc)ik = 4πE
∆m2

ik

≃ 2.5 m E (MeV)

∆m2

ik
eV2
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Same E and same p approaches



Same E and same p approaches

Very simple and transparent



Same E and same p approaches

Very simple and transparent

Allow one to quickly arrive at the desired result



Same E and same p approaches

Very simple and transparent

Allow one to quickly arrive at the desired result

Trouble: they are both wrong
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Kinematic constraints

Same momentum and same energy assumptions: contradict kinematics!

Pion decay at rest (π+ → µ+ + νµ, π− → µ− + ν̄µ):

For decay with emission of a massive neutrino of mass mi:

E2
i =

m2
π

4

(

1−
m2

µ

m2
π

)2

+
m2

i

2

(

1−
m2

µ

m2
π

)

+
m4

i

4m2
π

p2i =
m2

π

4

(

1−
m2

µ

m2
π

)2

− m2
i

2

(

1 +
m2

µ

m2
π

)

+
m4

i

4m2
π

For massless neutrinos: Ei = pi = E ≡ mπ

2

(

1− m2

µ

m2
π

)

≃ 30 MeV

To first order in m2
i :

Ei ≃ E + ξ
m2

i

2E
, pi ≃ E − (1− ξ)

m2
i

2E
, ξ =

1

2

(

1−
m2

µ

m2
π

)

≈ 0.2
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Kinematic constraints

Same momentum or same energy would require

ξ = 1 or ξ = 0 – not the case!

Also: would violate Lorentz invariance of the oscillation

probability

How can wrong assumptions lead to the correct oscillation

formula ?
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Problems with the plane-wave approach

Same momentum ⇒ oscillation probabilities depend only

on time. Leads to a paradoxical result – no need for a far

detector ! “Time-to-space conversion” (??) – assumes

neutrinos to be point-like particles (notion opposite to plane

waves).

Same energy – oscillation probabilities depend only on

coordinate. Does not explain how neutrinos are produced

and detected at certain times. Correspponds to a stationary

situation.

Plane wave approach ⇔ exact energy-momentum conservation.

Neutrino energy and momentum are fully determined by those of

external particles ⇒ only one mass eigenstate can be emitted!
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♦ Consistent approaches:



♦ Consistent approaches:

QM wave packet approach – neutrinos described by wave packets rather

than by plane waves



♦ Consistent approaches:

QM wave packet approach – neutrinos described by wave packets rather

than by plane waves

QFT approach: neutrino production and detection explicitly taken into

account. Neutrinos are intermediate particles described by propagators

ν

Pi(q)

Pf (k)

Di(q
′)

Df (k′)
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QM wave packet approach

In QM propagating particles are described by wave packets!

– Finite extensions in space and time.

Plane waves: the wave function at time t = 0 Ψ~p0
(~x) = ei~p0~x

–1.5

–1

–0.5

0

0.5

1

1.5

–4 –2 2 4

x

Wave packets: superpositions of plane waves with momenta in an interval of

width σp around mom. p0 ⇒ constructive interference in a spatial interval

of width σx around some point x0 and destructive interference outside it.

σx σp ≥ 1/2 – QM uncertainty relation
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Wave packets

W. packet centered at ~x0 = 0 at time t = 0:

Ψ(~x; ~p0, σ~p) =

∫

d3p

(2π)3
f(~p− ~p0) e

i~p ~x

Rectangular mom. space w. packet:

f

pp
2σp

0
–1

–0.5

0

0.5

1

–4 –2 2 4

x

Gaussian mom. space w. packet:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8

p

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–4 –3 –2 –1 1 2 3 4

p

σxσp = 1/2 – minimum uncertainty packet
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Propagating wave packets

Include time dependence:

Ψ(~x, t) =

∫

d3p

(2π)3
f(~p− ~p0) e

i~p~x−iE(p)t

Example: Gaussian wave packets

Momentum-space distribution:

f(~p− ~p0) =
1

(2πσ2
p)

3/4
exp

{

− (~p− ~p0)
2

4σ2
p

}

Momentum dispersion: 〈~p 2〉 − 〈~p 〉2 = σ2
p.

Coordinate-space wave packet (neglecting spreading):

Ψ(~x, t) = ei~p0~x−iE(p0)t
1

(2πσ2
x)

3/4
exp

{

− (~x− ~vgt)
2

4σ2
x

}

, σ2
x = 1/(4σ2

p)

〈~x 〉 = ~vgt ; 〈~x 2〉 − 〈~x 〉2 = σ2
x .
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QM wave packet approach

The evolved produced state:

|νflα(~x, t)〉 =
∑

i

U∗

αi |νmass
i (~x, t)〉 =

∑

i

U∗

αiΨ
S
i (~x, t)|νmass

i 〉

The coordinate-space wave function of the ith mass eigenstate (w. packet):

ΨS
i (~x, t) =

∫

d3p

(2π)3
fS
i (~p) e

i~p~x−iEi(p)t

Momentum distribution function fS
i (~p): sharp maximum at ~p = ~P (width of the

peak σpP ≪ P ).

Ei(p) = Ei(P ) +
∂Ei(p)

∂~p

∣

∣

∣

∣

~P

(~p− ~P ) +
1

2

∂2Ei(p)

∂~p2

∣

∣

∣

∣

~p0

(~p− ~P )2 + . . .

~vi =
∂Ei(p)

∂~p
=

~p

Ei
, α ≡ ∂2Ei(p)

∂~p2
=

m2
i

E2
i
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Evolved neutrino state

ΨS
i (~x, t) ≃ e−iEi(P )t+i ~P~x gSi (~x− ~vit) (α → 0)

gSi (~x− ~vit) ≡
∫

d3q
(2π)3 f

S
i (~q +

~P ) ei~q(~x−~vgt) Problem: derive this result

Center of the wave packet: ~x− ~vit = 0. Spatial length: σxP ∼ 1/σpP

(gSi decreases quickly for |~x− ~vit| & σxP ).

Detected state (centered at ~x = ~L):

|νflβ(~x)〉 =
∑

k

U∗

βk Ψ
D
k (~x)|νmass

k 〉

The coordinate-space wave function of the ith mass eigenstate (w. packet):

ΨD
i (~x) =

∫

d3p

(2π)3
fD
i (~p) ei~p(~x−

~L)
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Oscillation probability

Transition amplitude:

Aαβ(T, ~L) = 〈νflβ |νflα(T, ~L)〉 =
∑

i

U∗

αiUβi Ai(T, ~L)

Ai(T, ~L) =

∫

d3p

(2π)3
fS
i (~p) f

D∗

i (~p) e−iEi(p)T+i~p~L

Strongly suppressed unless |~L− ~viT | . σx. E.g., for Gaussian wave packets:

Ai(T, ~L) ∝ exp

[

− (~L− ~viT )
2

4σ2
x

]

, σ2
x ≡ σ2

xP + σ2
xD

Oscillation probability:

♦ P (να → νβ ;T, ~L) = |Aαβ |2 =
∑

i,k

U∗

αiUβiUαkU
∗

βk Ai(T, ~L)A∗

k(T, ~L)

Evgeny Akhmedov MITP Summer School 2017 August 6-25 – p. 27



Phase difference

Oscillations are due to phase differences of different mass eigenstates:

∆φ = ∆E · T − ∆p · L (Ei =
√

p2i +m2
i )

Consider the case ∆E ≪ E (relativistic or quasi-degenerate neutrinos) ⇒

∆E =
∂E

∂p
∆p+

∂E

∂m2
∆m2 = vg ∆p +

1

2E
∆m2

∆φ = (vg ∆p+
1

2E
∆m2) T − ∆p · L

= − (L − vg T )∆p +
∆m2

2E
T

In the center of wave packet (L − vg T ) = 0 ! In general, |L − vg T | . σx;

if σx ≪ losc , |L − vg T |∆p ≪ 1 ⇒
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∆φ =
∆m2

2E
T , L ≃ vgT ≃ T

– the result of the “same momentum” approach recovered!
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∆φ =
∆m2

2E
T , L ≃ vgT ≃ T

– the result of the “same momentum” approach recovered!

Now instead of expressing ∆E through ∆p and ∆m2 express ∆p through

∆E and ∆m2:

♦ ∆φ = − 1

vg
(L − vg T )∆E +

∆m2

2p
L ⇒ ∆m2

2p
L

– the result of the “same energy” approach recovered!

The reasons why wrong assumptions give the correct result:

Neutrinos are relativistic or quasi-degenerate with ∆E ≪ E

The size of the neutrino wave packet is small compared to the oscillation

length: σx ≪ losc (more precisely: energy uncertainty σE ≫ ∆E)
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Oscillation probability in WP approach

P (να → νβ ;T, ~L) = |Aαβ |2 =
∑

i,k

U∗

αiUβiUαkU
∗

βk Ai(T, ~L)A∗

k(T, ~L)

Ai(T, ~L) =

∫

d3p

(2π)3
fS
i (~p) f

D∗

i (~p) e−iEi(p)T+i~p~L
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Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗

αiUβiUαkU
∗

βk e
−i

∆m2
ik

2P̄
L Ĩik

Ĩik = N

∫

dq

2π
fS
i (rkq −∆Eik/2v + Pi)f

D∗

i (rkq −∆Eik/2v + Pi)

×fS∗

k (riq +∆Eik/2v + Pk)f
D
k (riq +∆Eik/2v + Pk) e

i∆v
v

qL

Here: v ≡ vi+vk

2 , ∆v ≡ vk − vi , ri,k ≡ vi,k

v , N ≡ 1/[2Ei(P )2Ek(P )v],

Problem: derive this result. Hint: use ∆Eik ≃ v∆pik +∆m2

ik
/2E and go to the shifted

integration variable q ≡ p− P where P ≡ (Pi + Pk)/2.
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When are neutrino oscillations observable?

Keyword: Coherence

Neutrino flavour eigenstates νe, νµ and ντ are coherent superpositions of

mass eigenstates ν1, ν2 and ν3 ⇒ oscillations are only observable if

neutrino production and detection are coherent

coherence is not (irreversibly) lost during neutrino propagation.

Possible decoherence at production (detection): If by accurate E and p

measurements one can tell (through E =
√

p2 +m2) which mass eigenstate

is emitted, the coherence is lost and oscillations disappear!

Full analogy with electron interference in double slit experiments: if one can

establish which slit the detected electron has passed through, the interference

fringes are washed out.
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When are neutrino oscillations observable?

Another source of decoherence: wave packet separation due to the difference

of group velocities ∆v of different mass eigenstates.

If coherence is lost: Flavour transition can still occur, but in a non-oscillatory

way. E.g. for π → µνi decay with a subsequent detection of νi with the

emission of e:

P ∝
∑

i

Pprod(µ νi)Pdet(e νi) ∝
∑

i

|Uµi|2|Uei|2

– the same result as for averaged oscillations.

How are the oscillations destroyed? Suppose by measuring momenta and

energies of particles at neutrino production (or detection) we can determine its

energy E and momentum p with uncertainties σE and σp. From

Ei =
√

p2i +m2
i :

σm2 =
[

(2EσE)
2 + (2pσp)

2
]1/2
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When are neutrino oscillations observable?

If σm2 < ∆m2 = |m2
i −m2

k| – one can tell which mass eigenstate is emitted.

σm2 < ∆m2 implies 2pσp < ∆m2, or σp < ∆m2/2p ≃ l−1
osc.

But: To measure p with the accuracy σp one needs to measure the momenta

of particles at production with (at least) the same accuracy ⇒ uncertainty

of their coordinates (and the coordinate of ν production point) will be

σx, prod & σ−1
p > losc

⇒ Oscillations washed out. Similarly for neutrino detection.

Natural necessary condition for coherence (observability of oscillations):

Lsource ≪ losc , Ldet ≪ losc

No averaging of oscillations in the source and detector

Satisfied with very large margins in most cases of practical interest
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Wave packet separation

Wave packets representing different mass eigenstate components have

different group velocities vgi ⇒ after time tcoh (coherence time) they

separate ⇒ Neutrinos stop oscillating! (Only averaged effect observable).

Coherence time and length:

∆v · tcoh ≃ σx ; lcoh ≃ vtcoh

∆v =
pi
Ei

− pk
Ek

≃ ∆m2

2E2

lcoh ≃ v
∆v

σx = 2E2

∆m2 vσx

The standard formula for Posc is obtained when the decoherence effects

are negligible.
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A manifestation of neutrino coherence

Even non-observation of neutrino oscillations at distances L ≪ losc is a

consequence of and an evidence for coherence of neutrino emission and

detection! Two-flavour example (e.g. for νe emission and detection):

Aprod/det(ν1) ∼ cos θ , Aprod/det(ν2) ∼ sin θ ⇒

A(νe → νe) =
∑

i=1,2

Aprod(νi)Adet(νi) ∼ cos2 θ + e−i∆φ sin2 θ

Phase difference ∆φ vanishes at short L ⇒

P (νe → νe) = (cos2 θ + sin2 θ)2 = 1

If ν1 and ν2 were emitted and absorbed incoherently) ⇒ one would have

to sum probabilities rather than amplitudes:

P (νe → νe) ∼
∑

i=1,2

|Aprod(νi)Adet(νi)|2 ∼ cos4 θ + sin4 θ < 1
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Are coherence constraints compatible?

Observability conditions for ν oscillations:

Coherence of ν production and detection

Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences ∆m2 :

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ; (2)

∆m2
jk

2E2
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Are coherence constraints compatible?

Observability conditions for ν oscillations:

Coherence of ν production and detection

Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences ∆m2 :

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ; (2)

∆m2
jk

2E2
L ≪ σx ≃ vg/σE

But: The constraints on σE work in opposite directions:

(1) ∆Ejk ∼
∆m2

jk

2E
≪ σE ≪ 2E2

∆m2
jk

vg
L

(2)

Are they compatible? – Yes, if LHS ≪ RHS ⇒

2π
L

losc
≪ vg

∆vg
(≫ 1) – fulfilled in all cases of practical interest
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Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but

astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the

tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

msterile ∼ eV − keV − MeV scale ⇒ heavy compared to the “usual”

(active) neutrinos

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE),

reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via

ν oscillations, SN r-process nucleosynthesis, unconventional contributions to

2β0ν decay ...

Production/detection coherence has to be re-checked – important

implications for some neutrino experiments!
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Neutrino oscillations: Coherence at macroscopic distances –

L > 10,000 km in atmospheric neutrino experiments !
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Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗
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Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately

measured) in most experiments ⇒ integration over T :

P (να → νβ ;L) =

∫

dT P (να → νβ ;T, L) =
∑

i,k

U∗

αiUβiUαkU
∗

βk e
−i

∆m2
ik

2P̄
L Ĩik

Ĩik = N

∫

dq

2π
fS
i (rkq −∆Eik/2v + Pi)f

D∗

i (rkq −∆Eik/2v + Pi)

×fS∗

k (riq +∆Eik/2v + Pk)f
D
k (riq +∆Eik/2v + Pk) e

i∆v
v

qL

Here: v ≡ vi+vk

2 , ∆v ≡ vk − vi , ri,k ≡ vi,k

v , N ≡ 1/[2Ei(P )2Ek(P )v]

For (∆v/v)σpL ≪ 1 (i.e. L ≪ lcoh = (v/∆v)σx) Ĩik is approximately

independent of L; in the opposite case Ĩik is strongly suppressed

Ĩik is also strongly suppressed unless ∆Eik/v ≪ σp, i.e. ∆Eik ≪ σE

– coherent production/detection condition
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The standard osc. probability?

The standard formula for the oscillation probability corresponds to Ĩik = 1.

If the two above conditions are satisfied, Ĩik is not suppressed and is L-, E-

and i, k-independent (i.e. a constant).

The standard probability is obtained when this constant is 1 (normalization

necessary!)

Normaliz. condition:
∫

d3p

(2π)3
|fS

i (~p)|2|fD
i (~p)|2 = 1
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The normalization prescription

Oscillation probability calculated in QM w. packet approach is not

automatically normalized ! Can be normalized “by hand” by imposing the

unitarity condition:
∑

β

Pαβ(L) = 1 .

This gives

∫

dT |Ai(L, T )|2 = 1 ⇒ Ĩii = N1

∫

dp

2πv
|fS

i (p)|2 |fD
i (p)|2 = 1

– important for proving Lorentz invariance of the oscillation probability.

Depends on the overlap of fS
i (p) and fS

i (p) ⇒ no independent

normalization of the produced and detected neutrino wave function would do!

In QFT approach the correctly normalized Pαβ(L) is automatically obtained

and the meaning of the normalization procedure adopted in the w. packet

approach clarified
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Oscillations and QM uncertainty relations

Neutrino oscillations – a QM interference phenomenon, owe their existence

to QM uncertainty relations

Neutrino energy and momentum are characterized by uncertainties σE and

σp related to the spatial localization and time scale of the production and

detection processes. These uncertainties

allow the emitted/absorbed neutrino state to be a coherent superposition

of different mass eigenstates

determine the size of the neutrino wave packets ⇒ govern

decoherence due to wave packet separation

σE – the effective energy uncertainty, dominated by the smaller one between

the energy uncertainties at production and detection. Similarly for σp.
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The paradox of σE and σp

QM uncertainty relations: σp is related to the spatial localization of the

production (detection) process, while σE to its time scale ⇒
independent quantities.

On the other hand: Neutrinos propagating macroscopic distances are on the

mass shell. For on-shell mass eigenstates E2 = p2 +m2
i means

EσE = pσp

How can this be understood?

The solution: At production, neutrinos are not on the mass shell. They go on

shell only after they propagate x ∼ (a few)× De Broglie wavelengths. After

that their energy and momentum get related by E2 = p2 +m2
i ⇒ the

larger uncertainty shrinks towards the smaller one to satisfy EσE = pσp.

On-shell relation between E and p allows to determine the less certain of

the two through the more certain one, reducing the error of the former.
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What determines the length of ν w. packets?

The length of ν w. packets: σx ∼ 1/σp. For propagating on-shell neutrinos:

σp ≃ min{σprod
p , (E/p)σprod

E } = min{σprod
p , (1/vg)σ

prod
E }

Which uncertainty is smaller at production, σprod
p or σprod
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What determines the length of ν w. packets?

The length of ν w. packets: σx ∼ 1/σp. For propagating on-shell neutrinos:

σp ≃ min{σprod
p , (E/p)σprod

E } = min{σprod
p , (1/vg)σ

prod
E }

Which uncertainty is smaller at production, σprod
p or σprod

E ?

Consider neutrino production in decays of an unstable particle localized in a

box of size LS . Time between two collisions with the walls of the box: TS .

If TS < τ (τ – lifetime of the parent unstable particle) ⇒
σE ≃ T−1

S (collisional broadening). Mom. uncertainty: σp ≃ L−1
S .

But: LS = vSTS ⇒ σE < σp (a consequence of vS < 1)

If TS > τ (quasi-free parent particle) ⇒ σE ≃ τ−1 = Γ.

σp ≃ [(p/E)τ ]−1 ≃ [(p/E)σE ]
−1, i.e. σE ≃ (p/E)σp < σp.
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The length of ν w. packets – contd.

In both cases σprod
E < σprod

p ⇐ also when ν′s are produced in collisions.

=⇒ σp eff ≃ σE

vg
, σx ≃ vg

σE

In the stationary limit (σE → 0) one has σp eff → 0 even though σp is finite!

Therefore σx → ∞ and so the coherence length lcoh → ∞
– a well known result.
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Universal oscillation formula?

The complete process: production – propagation – detection: factorization

Ptot = Pprod Pprop Pdet

with a universal Pprop is only possible when all 3 processes are independent

In general not true, and production – propagation – detection should be

considered as a single inseparable process!

To get the standard formula one assumes for the emitted and absorbed states

|νfla 〉 =
∑

i

U∗

ai |νmass
i 〉

The weights of the mass eigenstaes are just U∗
ai – do not depend on the

masses of νi ⇒ only true when the phase space volumes at production

and detection do not depend on the mass of νi.
⇒
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Universal oscillation formula?

This is only true if the charact. energy E at production (and detection) is large

compared to all mi (relativistic neutrinos), or compared to all |mi −mk|
(quasi-degenerate neutrinos).

⇒ Neutrino oscillations can be described by a universal probability only

when neutrinos are relativistic or quasi-degenerate

Also: loss of coherence of propagating neutrino state depends on the

coherence of the production and detection processes

⇒ The standard formula for the oscillation probability is only valid when

all decoherence effects are negligible !
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1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. π → µνµ):
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Lorentz invariance of oscillation probability

1. “Paradox” of neutrino w. packet length

For neutrino production in decays of unstable particles at rest (e.g. π → µνµ):

σE ≃ τ−1 = Γπ , σx ≃ vg
σE

≃ vg
Γπ

(= vgτ)

For decay in flight: Γ′
π = (mπ/Eπ)Γπ. One might expect

σ′

x ≃ Eπ

mπ
σx > σx .

On the other hand, if the decaying pion is boosted in the direction of the

neutrino momentum, the neutrino w. packet should be Lorentz-contracted !

The solution: pion decay takes finite time. During the decay time the pion

moves over distance l = uτ ′ (“chases” the neutrino if u > 0).

σ′

x ≃ v′g/Γ
′ − l = v′gτ

′ − uτ ′ = (v′g − u)γuτ =
vgτ

γu(1 + vgu)
,

[the relativ. law of addition of velocities: v′g = (vg + u)/(1 + vgu)].
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Lorentz invariance issues – contd.

That is

σ′

x =
σx

γu(1 + vgu)

For relativistic neutrinos vg ≈ v′g ≈ 1 ⇒

σ′

x = σx

√

1− u

1 + u

⇒ when the pion is boosted in the direction of neutrino emission (u > 0)

the neutrino wave packet gets contracted; when it is boosted in the opposite

direction (u < 0) – the wave packet gets dilated.
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The oscillation probability must be Lorentz invariant ! But: L. invariance is not

obvious in QM w. packet approach which (unlike QFT) is not manifestly

Lorentz covariant.

How can we see Lorentz invariance of the standard formula for the oscillation

probability ? Pab depends on L/p (contains factors exp[−i
∆m2

ik

2p L]). Is L/p

Lorentz invariant? Lorentz transformations:

L′ = γu(L+ ut) , t′ = γu(t+ uL) ,

E′ = γu(E + up) , p′ = γu(p+ uE) .

The stand. osc. formula results when (i) production and detection and

(ii) propagation are coherent; for neutrinos from conventional sources (i)

implies σx ≪ losc ⇒ one can consider neutrinos pointlike and set L = vgt.

⇒ L′ = γuL(1 + u/vg). On the other hand: vg = p/E

⇒ p′ = γup(1 + u/vg).

⇒ L′/p′ = L/p
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Lorentz invariance issues – contd.

A more general argument (applies also to Mössbauer neutrinos which are not

pointlike): Consider the phase difference

♦ ∆φ = − 1

vg
(L − vg t)∆E +

∆m2

2p
L

– a Lorentz invariant quantity, though the two terms are in not in general

separately Lorentz invariant.

But: If the 1st term is negligible in all Lorentz frames, the second term is

Lorentz invariant by itself ⇒ L/p is Lorentz invariant.

The 1st term can be neglected when the production/detection coherence

conditions are satisfied. In particular, it vanishes in the limit of pointlike

neutrinos L = vgt. N.B.:

L′ − v′gt
′ = γu

[

(L+ ut)− vg + u

1 + vgu
(t+ uL)

]

=
L− vgt

γu(1 + vgu)
,

i.e. the condition L = vgt is Lorentz invariant. MB neutrinos: ∆E ≃ 0.
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Lorentz invariance issues – contd.

The oscillation probability must be Lorentz invariant even when the coherence

conditions are not satisfied !

Lorentz invariance is enforced by the normalization condition.

Pab(L) =
∑

i,k

UaiU
∗

biU
∗

akUbk Iik(L) , where

Iik(L) ≡
∫

dT Ai(L, T )A∗

k(L, T )e
−i∆φik

From the norm. cond.
∫

dT |Ai(L, T )|2 = 1 ⇒

|Ai|2dT = inv. ⇒ |Ai||Ak|dT = inv. ⇒ AiA∗

kdT = inv.

The phase difference ∆φik = ∆EikT −∆pikL is also Lorentz invariant ⇒
so is Iik(L), and consequently Pab(L).
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Oscillation probability in vacuum – summary

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

Neutrinos are ultra-relativistic or quasi-degenerate in mass

Coherence conditions for neutrino production, propagation

and detection are satisfied.

Gives also the correct result in the case of strong coherence

violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence

parameters are of order one.

But: Conditions for partial decoherence are difficult to realize

They may still be realized if relatively heavy sterile neutrinos exist
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