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Assumptions

• standard cosmology makes two fundamental assumptions:
1 observable properties of the Universe are isotropic
2 our position in the Universe is not preferred to any other

(cosmological principle);

• such a Universe is homogeneous and isotropic

• only relevant interaction is gravity: search for cosmological
models in general relativity
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Assumptions: Isotropy?

2-Micron All-Sky Survey, 2MASS
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Assumptions: Isotropy?

CMB temperature fluctuations, measured by Planck
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Metric

• metric tensor gµν has ten independent components: g00, g0i,
and gij; two fundamental assumptions greatly simplify the
metric
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Metric

• eigentime should equal coordinate time for fundamental
observers: [signature chosen: (−,+,+,+)]

ds2 = g00dt2 = −c2dt2 ⇒ g00 = −c2

• isotropy requires g0i = 0 and spherical symmetry for
three-space, thus

ds2 = −c2dt2 + a2(t)
[
dw2 + f 2

K(w)dΩ2
]
,

with fK(w) =


K−1/2 sin(K1/2w) (K > 0)
w (K = 0)
|K|−1/2 sinh(|K|1/2w) (K < 0)
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Metric: Lightcone

Minkowski space-time
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Metric: Lightcone

Minkowski space-time Expanding space-time
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Redshift

• space can expand or shrink, leading to red- or blueshift

• propagation condition for light, ds = 0, implies

νe

νo
=
λo

λe
= 1 +

λo − λe

λe
= 1 + z =

a(te)
a(to)

• light is red- or blueshifted by the same amount as space
expands or shrinks

• redshifts of galaxies shows that the Universe is expanding
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Dynamics

• dynamics of the metric is expressed by dynamics of the scale
factor a(t)

• Einstein’s field equations reduce to Friedmann’s equations( ȧ
a

)2
=

8πG
3
ρ −

Kc2

a2 +
Λc2

3
,

ä
a

= −
4πG

3

(
ρ +

3p
c2

)
+

Λc2

3

• they can be combined to give the adiabatic equation

d
dt

(
a3ρc2

)
+ p

d
dt

(
a3

)
= 0

expressing energy conservation



13/121

Remark on Newtonian Dynamics
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Remark on Newtonian Dynamics

• Friedmann equations can also be derived from Newtonian
gravity, except for the Λ term

• study homogeneous sphere of arbitrary radius r, ignore
surrounding matter

• pressure term adds to the density: pressure means kinetic
energy density, equivalent to a mass density; yields equation of
motion

r̈ = −
4πG

3
r
(
ρ +

3p
c2

)
• integrating, using energy conservation, gives( ṙ

r

)2
=

8πG
3
ρ +

C
r2
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Forms of Matter

• two forms of matter can broadly be distinguished, relativistic
and non-relativistic; they are often called radiation and dust,
respectively

• for radiation:

p =
ρc2

3

which implies

ρ(t) = ρ0a−4 ,

(a = 1 today)

• for dust, p = 0 because p � ρc2,
and

ρ(t) = ρ0a−3
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Parameters

• Hubble parameter, relative expansion rate:

H(t) ≡
ȧ
a
, H0 ≡ H(t0) = 100 h

km
s Mpc

= 3.2 × 10−18 h s−1
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Parameters

• Hubble parameter, relative expansion rate:

H(t) ≡
ȧ
a

• critical density

ρcr(t) ≡
3H2(t)
8πG

, ρcr0 ≡ ρcr(t0) =
3H2

0

8πG
= 1.9 × 10−29 h2 g cm−3
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Parameters

• Hubble parameter, relative expansion rate:

H(t) ≡
ȧ
a

• critical density

ρcr(t) ≡
3H2(t)
8πG

• dimension-less density parameters

Ω(t) ≡
ρ(t)
ρcr(t)

, Ω0 ≡
ρ(t0)
ρcr0

, ΩΛ(t) =
Λc2

3H2(t)
, ΩΛ0 ≡

Λc2

3H2
0
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Parameters

• Hubble parameter, relative expansion rate:

H(t) ≡
ȧ
a

• dimension-less density parameters

Ω(t) ≡
ρ(t)
ρcr(t)

, Ω0 ≡
ρ(t0)
ρcr0

, ΩΛ(t) =
Λc2

3H2(t)
, ΩΛ0 ≡

Λc2

3H2
0

• Friedmann’s equation becomes

H2(a) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 −

Kc2

a2

]
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Parameters

• Friedmann’s equation becomes

H2(a) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 −

Kc2

a2

]
specialising to a = 1 allows to solve for K,

−Kc2 = 1 −Ωr0 −Ωm0 −ΩΛ0 ≡ ΩK
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Parameters

• final form for Friedmann’s equation

H2(a) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 + ΩKa−2

]
≡ H2

0E2(a)
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Parameters

• final form for Friedmann’s equation

H2(a) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 + ΩKa−2

]
≡ H2

0E2(a)

• radiation density exceeded matter density before

aeq =
Ωr0

Ωm0
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Parameters

• the density parameters change with time:

Ωm(a) =
Ωm0

a + Ωm0(1 − a) + ΩΛ0(a3 − a)
,

ΩΛ(a) =
ΩΛ0a3

a + Ωm0(1 − a) + ΩΛ0(a3 − a)

• this implies: Ωm(a)→ 1 and ΩΛ(a)→ 0 for a→ 0 regardless of
their present values; if Ωm0 + ΩΛ0 = 1, remains so for a < 1
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Parameters

Evolution of density parameters
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Parameters: Planck 2015

Hubble constant h 0.6727± 0.0066
dark-matter density Ωc0 0.2647± 0.0042
cosmological constant ΩΛ0 0.6844± 0.0091
baryon density ΩB 0.04917± 0.0006
radiation density Ωr0 (8.51± 0.050) · 10−5

Hubble time H−1
0 14.60± 0.14 Gyr

age of the Universe t0 13.813± 0.026 Gyr
matter-radiation aeq (2.711± 0.056) × 10−4

equality zeq 3687.2± 76.9
optical depth τ 0.079± 0.017
fluctuation amplitude σ8 0.831± 0.013
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Age and Expansion of the Universe

• since H = ȧ/a, the age of the Universe is determined by

da
dt

= H0aE(a) ⇒ H0t =

∫ a

0

dx
xE(x)

• in a flat (late) universe with Ωm0 , 0 and ΩΛ = 1 −Ωm0 , 0:

H0t =
2

3
√

1 −Ωm0
arcsinh


√

1 −Ωm0

Ωm0
a3/2


the age of our universe is

t(a = 1) =
0.94
H0

= (13.813 ± 0.026) × 109 yr
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Age and Expansion of the Universe: Constraints

• the Universe should be older than its oldest parts
• three ways of measuring the ages:

1 nuclear cosmo-chronology: decay of long-lived nuclei
≈ 4.6 Gyr for the Earth, 7 . . . 13 Gyr for the Galaxy;

2 ages from stellar evolution:
& 12 Gyr from globular clusters;

3 cooling of white dwarfs:
≈ 10 Gyr

• t(a = 1) & 11 Gyr needs H0 . 61 km s−1 Mpc−1 in an
Einstein-de Sitter universe (Ωm0 = 1, ΩΛ0 = 0)
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Age of the Earth and the Galaxy

• uranium decay series 235U→ 207Pb and 238U→ 206Pb have
half-lives of order Gyr

• comparison of 206Pb and 207Pb to 204Pb and present abundance
ratio

N235

N238
= 0.00725

yields age
tEarth = (4.6 ± 0.1) Gyr

• variant of this method, applied to the Galaxy, gives

7 Gyr . tGalaxy . 13 Gyr

main uncertainty is chemical history of the Galaxy
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Age of Globular Clusters

• stars remain on main sequence
while hydrogen burns, τ ∝ T−1

• then move towards red giant
branch

• turn-off point (L,T) ∝ (τ−3/2, τ−1)
in co-eval star populations is age
indicator

• distances need to be known!

• recent applications give

tGC & (12.5 ± 1.3) Gyr
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Age of White Dwarfs

• white dwarfs are born with
M ≈ (0.55 ± 0.05) M�

• rapid cooling by neutrinos, then
slow cooling by radiation

• population develops peak in
luminosity function

• cooling models and metallicity
measurements imply

tWD = (9.5 ± 1) Gyr
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Cosmic Age

Age as a function of scale factor
Age as function of redshift
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Distances

• distance measures are no longer unique in general relativity

• proper distance Dprop, dDprop = −cdt = −cda/ȧ
• comoving distance Dcom, dDcom = dw
• angular diameter distance Dang

Dang(z1, z2) =

(
δA
δω

)1/2
= a(z2)fK[w(z1, z2)]

• luminosity distance Dlum,

Dlum(z1, z2) =

[
a(z1)
a(z2)

]2

Dang(z1, z2)
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Distances

Distances as functions of redshift
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Distances: The Hubble Constant

• (nearby) galaxies move away from us with velocities
proportional to their distance; Hubble’s law,

D =
cz
H0

⇒ v = cz = H0D ;

• local deviations due to peculiar velocities; z & 0.01 . . . 0.02
necessary

• main difficulty: accurate distance measurements to distant
objects required

• “standard candles”: Cepheids, supernovae, galaxy scaling
relations, surface-brightness fluctuations
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Distances: The Hubble Constant

Hubble & Humason 1931

HST Key Project, Freedman et al.
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Distances: The Hubble Constant

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 40  50  60  70  80  90  100  110

p
ro

b
a

b
ili

ty
 d

e
n

s
it
y

H0 in km/s/Mpc

sum
72 +/- 8
SNe Ia

Tully-Fisher
Fundamental Plane

S-b fluctuations
SNe II

HST Key Project, Freedman et al.

• result from Hubble Key Project:

H0 = (72 ± 8) km s−1 Mpc−1

• result from recent Cepheid
survey in the near infrared

H0 = (74.2 ± 3.6) km s−1 Mpc−1
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Horizons

• between t1 and t2 > t1, light can travel across comoving
distance

∆w(t1, t2) =

∫ t2

t1

cdt
a(t)

= c
∫ a(t2)

a(t1)

da
aȧ
∝ an/2−1 if ρ ∝ ρ0a−n

if n > 2, light can only travel by a finite distance; there exists a
particle horizon

• Hubble radius at aeq, important for structure formation

rH,eq =
c

H(aeq)
=

c
H0

a3/2
eq

√
2Ωm0
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Thermal Evolution
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Assumptions

• the universe expands adiabatically – isotropy requires the
universe to expand adiathermally; entropy generation is
completely negligible

• thermal equilibrium can be maintained despite the expansion

• the cosmic “fluids” can be treated as ideal gases

• those assumptions are the starting point of our considerations;
they need to be verified as we go along
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Properties of Ideal Quantum Gases

• for relativistic boson and fermion gases in thermal equilibrium:

nB = 10gB

(T
K

)3
cm−3 = 1.6 × 1013gB

(
kBT
eV

)3

cm−3 ,

nF =
3
4

gF

gB
nB

uB = 3.8 × 10−15gB

(T
K

)4 erg
cm3 = 2.35 × 10−3gB

(
kBT
eV

)4 erg
cm3 ,

uF =
7
8

gF

gB
uB , PB =

uB

3
, PF =

uF

3

sB

kB
= 36gB

(T
K

)3
cm−3 = 5.7 × 1013gB

(
kBT
eV

)3

cm−3 ,

sF =
7
8

gF

gB
sB
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Adiabatic Expansion of Ideal Gases

• for relativistic boson or fermion gases in thermal equilibrium

P =
u
3

=
E

3V

• first law of thermodynamics implies

dE = −PdV = 3d(PV) ⇒ P ∝ V−4/3

i.e. γ = 4/3; for non-relativistic ideal gases, γ = 5/3
• temperature scaling:

T ∝ P1/4 ∝ V−1/3 ∝ a−1 (relativistic)

T ∝ PV ∝ V−5/3+1 ∝ a−2 (non-relativistic)
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Particle Freeze-Out

• expansion time-scale during radiation-dominated era

texp ≈ (Gρ)−1/2 ∝ a2

• collision rate and time-scale

Γ ≡ n〈σv〉 ∝ n ∝ T3 ∝ a−3 , tcoll = Γ−1 ∝ a3

• ratio texp/tcoll ∝ a−1, thermal equilibrium can be maintained
despite the expansion at early times;

• thermal equilibrium breaks down when Γ � H
• relativistic particle species retain their thermal-equilibrium

density!
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Recombination and Nucleosynthesis
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Neutrino Background

• weak interaction
ν + ν̄↔ e+ + e−

freezes out when temperature drops to
Tν ≈ 1010.5 K ≈ 2.7 MeV

• electron-positron pairs annihilate when temperature drops
below T ≈ 2mec2 ≈ 1 MeV ≈ 1010 K

• their decay heats the photon gas, but not the neutrinos

• photon temperature is ≈ 40% higher than neutrino temperature:

Tγ =

(
11
4

)1/3

Tν
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Photons and Baryons

• number density of baryons today is

nB =
ρB

mp
=

ΩB

mp

3H2
0

8πG
= 1.1 × 10−5 ΩBh2 cm−3

ΩBh2 ≈ 0.02 (1)

• the photon number density today is

nγ = 407 cm−3

• their ratio is constant; about one billion photons per baryon!

η ≡
nB

nγ
= 2.7 × 10−8 ΩBh2
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Recombination Process

• approximation: Saha’s equation; ionisation fraction x is

x2

1 − x
=

√
π

4
√

2ζ(3)η

(
mec2

kT

)3/2

e−χ/kT ≈
0.26
η

(
mec2

kT

)3/2

e−χ/kT

• for recombination to be half-way finished, x = 1/2 = l.h.s.
• since η−1 � 1, kT � χ is required

• setting x = 1/2 yields kTrec = 0.32 eV, or

Trec ≈ 3000 K

• for χ = 13.6 eV, Trec ≈ 105 K: very large photon-to-baryon ratio
η−1 delays recombination considerably
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Recombination Process

Ionisation as function of temperature Probability of last photon scattering
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Recombination Process: Time and Duration

• recombination time follows from expansion history,

trec =

∫ arec

0

da
aH(a)

≈ 374 kyr

• width of “recombination shell” in redshift,

δz ≈
∂z
∂T

∣∣∣∣∣
zrec

δT ≈ 75

• corresponds to time interval

δt ≈
δa

arecH(arec)
=

arecδz
H(arec)

≈ 40 kyr

• provides indirect way of constraining relativistic particle species
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Recombination Process: CMB Spectrum

COBE-FIRAS CMB spectrum, COBE
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Primordial Nucleosynthesis: Concepts

• 4He abundance is ≈ 25 % by mass, far more than stars can
have produced

• Universe must have acted as a fusion reactor

• MeV energies require scale factor

a .
meV
MeV

≈ 10−9 � aeq

• only radiation was important at that time

• baryon-to-photon ratio η is the only relevant parameter,

η = 1010η10 , η10 = 273ΩBh2

• time scale during early radiation-dominated era

t ≈ 0.89
( T
MeV

)−2
s
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Primordial Nucleosynthesis: Helium Abundance

• deuterium fusion is crucial, delayed by photon background until
TD ≈ 78 keV

• further fusion builds upon two-body processes, e.g.

n + p→ 2H + γ , 2H + 2H→ 3He + n ,
3He + 2H→ 4He + p , 4H + 3H→ 7Li + γ (2)

• neutrons form when weak interaction freezes out at
Tn ≈ 0.87 MeV, at t ≈ 2s

• abundance controlled by Boltzmann factor,

nn

np
= exp

(
−

Q
kTn

)
• and subsequent neutron decay with half-life

τn = (885.7 ± 0.8) s



53/121

Primordial Nucleosynthesis: Results

• neutron abundance Xn ≈ 0.17 by mass at freeze-out

• neutron decay until onset of fusion at tD ≈ 150 s reduces this to
Xn ≈ 0.14, which implies 4He abundance of Y ≈ 0.28

• D is most trustworthy baryometer; measured abundance

nD

nH
=

(
2.68+0.27

−0.25

)
× 10−5

• abundances of D and 3He decrease with η, 4He increases, 7Li
has characteristic valley

• measured element abundances imply

0.0207 . ΩBh2 . 0.0234
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Primordial Nucleosynthesis: Results

Deuterium signal in QSO spectrum
From Steigman 2007
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The Growth of Perturbations
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Newtonian Equations

• Newtonian hydrodynamics is a valid approximation (flatness,
no retardation, short mean free path)

• continuity equation (mass conservation)

∂ρ

∂t
+ ~∇ ·

(
ρ~v

)
= 0

• Euler’s equation (momentum conservation)

∂~v
∂t

+
(
~v · ~∇

)
~v = −~∇Φ −

~∇p
ρ

• Poisson equation
∇2Φ = 4πGρ
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Density Perturbations: Equations

• split ρ and ~v into background and fluctuations,

ρ(t,~x) = 〈ρ〉(t) + δρ(t,~x) , ~v(t,~x) = 〈~v 〉(t) + δ~v(t,~x)

split velocity into Hubble flow and peculiar velocity

~v = ~̇r = ȧ~x + a~̇x = H~r + a~̇x = 〈~v〉 + δ~v

• comoving coordinates ~x = ~r/a, comoving peculiar velocities
~u ≡ δ~v/a, density contrast δ = δρ/〈ρ〉

• we are now left with the three equations

δ̇+ ~∇·~u = 0 , ~̇u+2H~u = −
~∇δΦ

a2 −
~∇δp

a2〈ρ〉
, ∇2δΦ = 4πG〈ρ〉a2δ
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Density Perturbations: Equations

• combining these, decomposing δ into plane waves

δ̈ + 2Hδ̇ =

(
4πG〈ρ〉 −

c2
s k2

a2

)
δ

sound speed c2
s = δp/δρ
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Density Perturbations: Equations

• combining these, decomposing δ into plane waves

δ̈ + 2Hδ̇ = 4πG〈ρ〉δ

sound speed c2
s = δp/δρ

• assume large perturbations,

c2
s k2

a2 � 4πG〈ρ〉 ⇒ k � a

√
4πG〈ρ〉

cs

• linear growth factor
δ(a) = δ0D+(a)
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Density Perturbations: Growth

Growth factor divided by scale factor
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Density Perturbations: Growth

Planck CMB map

2MASS sky map

SDSS map
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The Amount of Dark Matter

• stellar populations need approximately 6.4 M�/L�
• stellar kinematics in galaxies reveals substantially more than

the stellar mass

• galaxy population comes up for Ωg0 ≈ 0.08
• gas-to-mass ratio in galaxy clusters suggests Ωm0 ≈ 0.3
• evolution of galaxy clusters (slower for lower Ωm0) supports this

• most of the matter is dark; most of the baryons are not shining
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The Amount of Dark Matter

Coma cluster, X-ray and optical

NGC 3198
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Velocity Perturbations

• ignoring pressure gradients, the second equation (30) says

~̇u + H~u =
~∇δΦ

a2

• defining

f (Ω) ≡
d ln D+(a)

d ln a
≈ Ω0.6 ,

• the peculiar velocity field can be written as

δ~v = a~u =
2f (Ω)
3aHΩ

~∇δΦ
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Velocity Perturbations: Our Local Neighbourhood

local velocity field

reconstructed local density field
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Statistics and Non-Linear Evolution

5 The Growth of Perturbations
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7 Structures in the CMB
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Power Spectra

• variance of δ in Fourier space defines the power spectrum P(k),〈
δ̂(~k)δ̂∗(~k′)

〉
≡ (2π)3P(k)δD(~k − ~k′)

• variance of δ on spatial scale R:

δ̄R(~x) ≡
∫

d3y δ(~x) WR(|~x − ~y|)

• the variance of the filtered density-contrast field is

σ2
R = 4π

∫
k2dk
(2π)3 P(k)Ŵ2

R(k)

σ8 is often used for normalizing the power spectrum
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Power Spectra: Smoothing

Simulated density field, progressively smoothed
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Evolution of the Power Spectrum

• modes entering the horizon (Hubble radius) while radiation
dominates are relatively suppressed compared to larger modes

• assumed time-independence of fluctuation power entering the
horizon, combined with suppression for k > keq gives

P(k) ∝
{

kn (k < keq)
kn−4 (k � keq)

with n ≈ 1
• this is the shape of the spectrum for cold dark matter (CDM)

• hot dark matter (HDM) cuts off the spectrum exponentially
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Evolution of the Power Spectrum: Suppression

Suppression of small perturbations
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Evolution of the Power Spectrum: Nonlinear

Linear and nonlinear density-fluctuation spectra
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Power Spectrum: Measurements

Measured density-fluctuation power
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The Observed Power Spectrum

• observable is the correlation function

ξ(r) =

∫ ∞

0

k2dk
2π2 P(k)

sin kx
kx

• correlation function is measured through pair counts,

1 + ξ(r) =
〈DD〉
〈RR〉

• complicated by shape of the survey volume, masking,
inhomogeneous survey coverage, biasing, redshift-space
distortions, shot noise, Malmquist bias, ...
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The Observed Power Spectrum

WiggleZ survey, Poole et al.

shape of the measured power
spectrum

• supports CDM

• constrains matter-density
parameter to

Ωm0 = 0.233 ± 0.022

• shows indications of baryonic
acoustic oscillations (BAO)
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The Zel’dovich Approximation

• Zel’dovich: approximate kinematical treatment of particle
trajectories,

~r = a
[
~x +

~u
Hf (Ω)

]
, Fij ≡

∂ri

∂xj

• important consequence is the probability distribution
p(λ1, λ2, λ3) for the eigenvalues of the deformation tensor Fij:

p(λ1, λ2, λ3) ∝ |(λ3 − λ2)(λ3 − λ1)(λ2 − λ1)|

probability for two eigenvalues of Fij to be equal is zero,
implying anisotropic collapse! (starting from Gaussian random
field)
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Nonlinear Evolution

• non-linear evolution so far requires numerical simulations;
decompose the matter distribution into particles whose
equations of motion are solved

• non-linear evolution causes mode coupling: modes of different
wave lengths couple, causing power transport from large to
small scales as structures collapse

• even originally Gaussian density perturbation fields δ must
develop non-Gaussianities during non-linear evolution

• typical behaviour seen in numerical simulations shows the
formation of “pancakes”, filaments and voids
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Nonlinear Evolution: Simulations
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Structures in the CMB

6 Statistics and Non-Linear Evolution

7 Structures in the CMB
Simplified Theory of CMB Temperature Fluctuations
CMB Power Spectra and Cosmological Parameters
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CMB Theory: Dipole, Fluctuation Level

• Earth’s motion causes temperature dipole,

T(θ) = T0

(
1 +

v
c

cos θ
)

+ O

(
v2

c2

)
• δ & 1 today implies

δ(aCMB) =
δ(a = 1)

D+(aCMB)
& a−1

CMB ≈ 10−3

and similar temperature fluctuations in the CMB

• such fluctuations are not found

• assuming dark matter, temperature fluctuations are expected to
be δT/T ≈ 10−5

• detected by COBE in 1992; strongest argument for dark matter



80/121

CMB Theory: Dipole

CMB dipole measured by WMAP
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CMB Theory: Temperature Fluctuations

CMB temperature fluctuations measured by Planck
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CMB Theory: Multipoles

Low-order multipoles of Earth map (ETOPO-5)
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CMB Theory: Acoustic Oscillations

• perturbation equation for relative temperature fluctuation
Θ ≡ δT/T0:

¨̂Θ +
c2k2

3
Θ̂ −

k2

3
δΦ̂ −

δ ¨̂Φ
c2 = 0

• for small k: Sachs-Wolfe-effect, Θ̂ ∝ δΦ̂/c2

• otherwise, oscillator equation for Θ̂ − δΦ̂/c2 ≡ θ̂; solution
assuming ˙̂θ = 0 at t = 0

θ̂(trec) = θ̂(0) cos
[

ck
√

3
trec

]
c/
√

3 trec ≡ rs: sound horizon; oscillations for k > 2π/rs
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CMB Theory: Silk Damping

• damping occurs due to photon diffusion; diffusion scale:

λD =
√

Nλ , λ =
1

neσT

• number of collisions per unit time is dN = neσTcdt; thus,

λ2
D =

∫ trec

0

cdt
neσT

• structures smaller than the diffusion length are damped, hence
damping sets in for wave numbers

k > kD =
2π
λD
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CMB Spectra: Principal Effects

Principal physical effects on the CMB spectrum
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CMB Spectra: Cosmological Parameters

Effect of dark-matter density
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Polarization

• Thomson scattering (of CMB photons) is anisotropic:

dσ
dΩ

=
3σT

8π

∣∣∣~e′ · ~e∣∣∣2
~e′ and ~e: polarization directions of incoming and scattered light

• quadrupolar intensity anisotropy of infalling radiation causes
scattered radiation to be polarized

• CMB is expected to be linearly polarized

• intensity of polarized light should be ≈ 10% that of the
unpolarized light, amplitude of order 10−6 K
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Polarization

Linear polarization by Thomson scattering
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Polarization

BICEP-2 E-mode polarization map
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Instruments and Measurements

COBE
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Instruments and Measurements

COBE

Boomerang, Maxima
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Instruments and Measurements

WMAP

Boomerang, Maxima
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Instruments and Measurements

WMAP
Planck
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Instruments and Measurements

T power spectrum, measured by Planck
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Instruments and Measurements

T-E power spectrum, measured by Planck
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Foregrounds

• CMB shines through the entire visible universe on its way to us

• microwave emission from our own Galaxy: warm dust in the
plane of the Milky Way with a temperature near 20 K;
synchrotron emission from electrons gyrating in the Galactic
magnetic field; thermal bremsstrahlung from ionised hydrogen;
line emission from molecules like CO

• hot plasma in galaxy clusters inverse-Compton scatters
microwave background photons to higher energies:
Sunyaev-Zel’dovich effect

• point sources appearing in the microwave background, such as
high-redshift galaxies, planets, asteroids, possibly comets in
the Solar System, dust in the plane of the Solar System
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Foregrounds

microwave sky in Planck frequency bands
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Foregrounds

Planck map with thermal SZ signal
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Cosmological Weak Lensing
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Light Deflection

• density inhomogeneities deflect light:
gravitational lensing

• astigmatism causes coherent distortions with
power spectrum

Pγ(l) = Ω2
m0

∫ w

0
dw′W2Pδ

(
l

fK(w′)

)
• correlation functions

ξγ(φ) =

∫ ∞

0

ldl
2π

Pγ(l)J0(lφ)

are measurable through coherent distortions
of distant galaxy images
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Measurements

constraints from
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Measurements

constraints from CFHTLenS, Fu et al. 2008
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Measurements

constraints from KiDS-450, Hildebrandt et al. 2017
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Measurements

constraints from DES, Troxel et al. 2017
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Measurements

Sky maps by DES, Chang et al. 2017
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Type-Ia Supernovae

8 Cosmological Weak Lensing

9 Type-Ia Supernovae
Classification and Principle
Measurements

10 Cosmological Inflation and Dark Energy
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Classification and Principle

Supernova 1994d

• SN-Ia: white dwarfs in binaries,
driven over Chandrasekhar limit

• “standardisable” candles;
measured flux gives distance;
spectrum gives redshift

• spectra required for
classification: no hydrogen, but
silicon lines

• expansion history of the
Universe can be recovered
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Measurements

Union data set
type-Ia supernovae require

Ωm0 = 0.263 ± 0.037
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Cosmological Inflation and Dark Energy

9 Type-Ia Supernovae

10 Cosmological Inflation and Dark Energy
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Accelerated Expansion
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Problems

• angular size of the particle horizon at recombination is

θrec =
arec∆w(0, arec)

Dang(0, zrec)
≈

√
Ω0arec ≈ 1.7◦

√
Ω0

causal connection? horizon problem

• evolution of flatness:

|Ωtotal − 1| ∝
{

t radiation-dominated era
t2/3 early matter-dominated era

tiny deviations of Ωtotal from unity grow rapidly! flatness
problem

• where do structures originate from in the first place?
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Problems: Causality Problem

Size of the causal horizon
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Inflation: Idea

• accelerated expansion, ä > 0, can drive universe towards
flatness; this seems incompatible with gravity

• Friedmann’s equation: accelerated expansion if

ρc2 + 3p < 0 , p < −
ρc2

3

• simple scalar field with Lagrangian

L =
1
2
∂µφ∂

µφ − V(φ)

has negative pressure if

φ̇2 < V(φ)
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Inflation: Slow Roll, Measurements

• slow-roll conditions:

ε ≡
1

24πG

(
V ′

V

)2

� 1 ,

η ≡
1

8πG

(
V ′′

V

)
� 1
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Inflation: Slow Roll, Measurements

• slow-roll conditions: ε, η � 1
• flatness requires increase in

scale factor by ≈ e60

• this would also solve the horizon
(or causality) problem

• inflaton field must decay through
some coupling to “ordinary”
matter: reheating
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Inflation: Slow Roll, Measurements

• slow-roll conditions: ε, η � 1
• flatness requires increase in

scale factor by ≈ e60

• this would also solve the horizon
(or causality) problem

• inflaton field must decay through
some coupling to “ordinary”
matter: reheating

Planck 2015

ns = 0.9677 ± 0.0060

ε < 0.011

η = −0.0092+0.0074
−0.0127
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Inflation: Structure Formation

• inflaton field must have undergone vacuum fluctuations

• inflation quickly drives them out of the horizon, “freeze in”
because they lack causal contact

• the (primordial) density power spectrum predicted by inflation is

Pi(k) ∝ kn , n . 1

• density fluctuations are expected to be Gaussian because of
the central limit theorem

• inflation provides a possibility for solving the horizon and
flatness problems and provides a natural explanation for the
origin of structures in the universe
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Inflation: Causality and Structure Formation
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Expansion of the Universe

• CMB: Universe is spatially flat, i.e. its total energy density
equals the critical density

• dark matter contributes . 30% to the total energy density;
light-element abundances requires the baryon density to be
much lower

• type-Ia supernovae reveal need for cosmological constant or
accelerated expansion

• high-z supernovae show transition from decelaration to
acceleration near z ∼ 1
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Modified Equation of State

• cosmological constant may be dissatisfactory

• as for inflation, assume scalar field (“cosmon”, “quintessence”)
with negative pressure,

p = wρc2 , w < −
1
3

• for constant w,
ρQ = ρQ0a−3(1+w)

• Friedmann equation becomes

H2(a) = H2
0

[
Ωm0a−3 + (1 −Ωm0 −ΩQ0)a−2 + ΩQ0a−3(1+w)

]
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Effects on Cosmology

• early expansion is tightly constrained by light-element
abundances

• effects on the CMB: width of the recombination shell, amount of
Silk damping

• modified angular-diameter and luminosity distances affect
supernovae of type Ia, apparent size of CMB fluctuations,
cosmic volume, overall geometry of the universe, gravitational
lensing

• growth factor is modified; structures form earlier in
quintessence models

• dark-matter haloes tend to be denser, which may have strong
effects on their appearance
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Effects on Cosmology: Examples

Euclid satellite
Sensitivity of observables
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