

measurements of meson decays and meson transition form factors with CLAS

Susan Schadmand, IKP for the CLAS collaboration PhiPsi17, June 2017

List of Meson Decays

CLAS approved analysis CAA-LMD

From Lmdwiki

meson decay	physics	people	data	status	publication
π → γe ⁺ e ⁻	transition form factor, Me+e- (dark photon)	Michael Kunkel (Jülich)	g12	PhD 2014, ODU	pi0 cross section in preparation
η' → γe ⁺ e⁻	transition form factor	Michaela Schever	g12	Master 2015, RWTH Aachen	\rightarrow proposed for CLAS12
η → γe ⁺ e⁻	transition form factor				
$\omega \rightarrow \pi^0 e^+ e^-$	transition form factor	Susan Schadmand (Jülich)	g12	this talk	
$\eta \rightarrow \pi^0 e^+ e^-$	C violation				
$\eta' \to \pi^+ \pi^- \gamma$	box anomaly upper limit branching ratio	Georgie Mbianda Njencheu	g11	PhD 2017, ODU analys	is report in preparation
		Daniel Lersch (Jülich)	g12		
$\eta \to \pi^+ \pi^- \gamma$	box anomaly	Torri Roark (ODU)	g11		
		Daniel Lersch (Jülich)	g12		
$\varrho \rightarrow \pi^+ \pi^- \gamma$		Tyler Viducic (ODU)	g11 ?		
η, ω, φ → π ⁰ π ⁺ π ⁻	Dalitz plot analysis η ω φ	(JPAC and CLAS) Daniel Lersch, (Diane Schott) Carlos Salgado + , Chris Pederson	g11/g12		
$\eta' ightarrow \pi^+ \pi^- \eta$	Dalitz plot analysis pi+ pi- correlation	Sudeep Ghosh (Indore)	g12, (g11)	analy	sis report in preparation

Moskov Amaryan (ODU) Ankhi Roy (IIT Indore)

transition form factor

status of the $\omega\text{-}\pi$ transition form factor

conclusion:

- A2 results are in better agreement with theoretical calculations, compared to earlier experiments
- statistical accuracy of the present data points at large m (ee) masses does not allow a final conclusion

CLAS6 experiment

CLAS g12 experiment

fixed target experiment with energy-tagged Bremsstrahlung photon beam from 6GeV CEBAF

LH ₂ target	main source for <i>external γ conversion</i>
magnetic field	charged particle tracking momenta and <i>charge state</i>
Cerenkov Counters	excellent electron-positron identification
EM calorimeter	particle identification (limited acceptance photon detection)

analysis strategy

e+e- detection and missing particle

missing pion:

- missing mass is pion mass
- missing energy finite

missing photon:

- missing mass zero
- missing energy finite

missing nothing: - missing mass zero

missing energy zero

ρ/ω→ee

η(′)→γee

ω→πее

missing mass cut is crucial

analysis $\omega \rightarrow \pi ee$ candidates

• smooth background

- ← fit and subtract
- in-peak background (competing decays) ← simulations
- photon conversion from $\pi \rightarrow \gamma \gamma$

 \leftarrow simulations, small ee masses

simulation **w** decays

PLUTO event generator incl. Bremsstrahlung beam profile and ω angular distribution

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update

ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	p (MeV/c)						
$\pi^+\pi^-\pi^0$	(89.2 \pm 0.7) %		327						
$\pi^{0}\gamma$	(8.28±0.28) %	S=2.1	380						
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})\%$	S=1.2	366						
neutrals (excluding $\pi^{0}\gamma$)	(8 + 8 - 5) imes	10 ⁻³ S=1.1	-						
$\eta \gamma$	(4.6 \pm 0.4) $ imes$	10^{-4} S=1.1	200						
$\pi^0 e^+ e^-$	(7.7 \pm 0.6) $ imes$	10-4	380						
$\pi^0 \mu^+ \mu^-$	(1.3 \pm 0.4) $ imes$	10^{-4} S=2.1	349						
e^+e^-	$(7.28\pm0.14) \times$	10^{-5} S=1.3	391						
$\pi^+\pi^-\pi^0\pi^0$	< 2 ×	10^{-4} CL=90%	262						
$\pi^+\pi^-\gamma$	< 3.6 ×	10^{-3} CL=95%	366						
$\pi^+\pi^-\pi^+\pi^-$	< 1 ×	10^{-3} CL=90%	256						
$\pi^0 \pi^0 \gamma$	(6.6 ± 1.1) $ imes$	10 ⁻⁵	367						
$\eta \pi^{0} \gamma$	< 3.3 ×	10^{-5} CL=90%	162						
$\mu^+\mu^-$	(9.0 \pm 3.1) $ imes$	10 ⁻⁵	377						
3γ	< 1.9 ×	10 ⁻⁴ CL=95%	391						
Charge conjugation (C) violating modes									
$\eta \pi^0$ C	< 2.1 ×	10 ⁻⁴ CL=90%	162						
$2\pi^0$ C	< 2.1 ×	10 ⁻⁴ CL=90%	367						
$3\pi^0$ C	< 2.3 ×	10^{-4} CL=90%	330						

ρ

ρ-ω interference

PoS Hadron2013 (2013) 176 JLAB-PHY-13-1839

based on same data CLAS g12 experiment

targeted channel $\gamma + p \rightarrow p + ee$ (in the ρ regime)

event selection via

- PID dilepton
- missing mass MM(ee)=M(p)

interference causes low-mass tail

suppression of ee contribution

contribution from $\rho/\omega \rightarrow ee$ could cause excess yield

$\omega {\rightarrow} \pi ee \ candidates$

bin-wise subtraction of smooth background (in bins of Mee)

$\omega \rightarrow \pi ee \ candidates$

preliminary

- cut-based and exploratory analysis
- in-peak background strongly reduced
- statistics
 - external conversion dominates the branching ratio
- combinatorics
 - tendency for combinatorics seen

preliminary conclusion

trend: no excess yield at large masses

