Hadronic light-by-light scattering in the muon g - 2

Andreas Nyffeler

PRISMA Cluster of Excellence, Institut für Kernphysik, Helmholtz-Institut Mainz Johannes Gutenberg Universität Mainz, Germany nyffeler@kph.uni-mainz.de

International Workshop on e^+e^- collisions from Phi to Psi 2017 (PhiPsi17) Schloss Waldthausen (near Mainz), Germany, 26 - 29 June 2017

Outline

- Introduction: Hadronic light-by-light scattering (HLbL) in the muon g 2
- Current status: Model calculations
- Model-independent approaches:
 - 1. HLbL from dispersion relations (data driven approach) (Theory Talks on Thursday by Danilkin, Kubis, Pauk, Colangelo)
 - 2. HLbL from Lattice QCD (Talks on Thursday by Wittig, Lehner)
- Conclusions and Outlook

Hadronic light-by-light scattering

HLbL in muon g - 2 from strong interactions (QCD):

- Relevant scales ($\langle VVVV \rangle$ with offshell photons): 0 2 GeV $\gg m_{\mu}$ (hadronic resonance region)
- View before 2014: in contrast to HVP, no direct relation to experimental data \rightarrow size and even sign of HLbL contribution to a_{μ} unknown !
- Approach: use hadronic model at low energies with exchanges and loops of resonances and some (dressed) "quark-loop" at high energies.
- Constrain models using experimental data (processes of hadrons with photons: decays, form factors, scattering) and theory (ChPT at low energies; short-distance constraints from pQCD / OPE at high momenta).
- Problems: Four-point function Π_{μνρσ}(q₁, q₂, q₃) involves many Lorentz structures that depend on several invariant momenta ⇒ distinction between low and high energies not as easy as for two-point function in HVP. Mixed regions: one loop momentum Q₁² large, the other Q₂² small and vice versa.

HLbL in muon g - 2

• Frequently used estimates:

 $\begin{array}{rcl} a_{\mu}^{\text{HLbL}} &=& (105 \pm 26) \times 10^{-11} & (\text{Prades, de Rafael, Vainshtein '09}) \\ && (\text{``Glasgow consensus''}) \\ a_{\mu}^{\text{HLbL}} &=& (116 \pm 39) \times 10^{-11} & (\text{AN '09; Jegerlehner, AN '09}) \end{array}$

Based almost on same input: calculations by various groups using different models for individual contributions. Error estimates are mostly guesses ! For comparison:

 $a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} \approx 300 \times 10^{-11}$ (3 - 4 σ)

• Need much better understanding of complicated hadronic dynamics to get reliable error estimate of $\pm 20 \times 10^{-11}$ (δa_{μ} (future exp) = 16×10^{-11}).

HLbL in muon g - 2

• Frequently used estimates:

 $\begin{array}{rcl} a_{\mu}^{\text{HLbL}} &=& (105 \pm 26) \times 10^{-11} & (\text{Prades, de Rafael, Vainshtein '09}) \\ && (\text{``Glasgow consensus''}) \\ a_{\mu}^{\text{HLbL}} &=& (116 \pm 39) \times 10^{-11} & (\text{AN '09; Jegerlehner, AN '09}) \end{array}$

Based almost on same input: calculations by various groups using different models for individual contributions. Error estimates are mostly guesses ! For comparison:

 $a_{\mu}^{ ext{exp}}-a_{\mu}^{ ext{SM}}pprox 300 imes10^{-11}$ $(3-4\ \sigma)$

- Need much better understanding of complicated hadronic dynamics to get reliable error estimate of $\pm 20 \times 10^{-11}$ (δa_{μ} (future exp) = 16×10^{-11}).
- Recent new proposal: Colangelo et al. '14, '15; Pauk, Vanderhaeghen '14: use dispersion relations (DR) to connect contribution to HLbL from presumably numerically dominant light pseudoscalars to in principle measurable form factors and cross-sections (no data yet !):

 $\gamma^*\gamma^* \rightarrow \pi^0, \eta, \eta'; \pi^+\pi^-, \pi^0\pi^0$

Could connect HLbL uncertainty to exp. measurement errors, like HVP.

• Future: HLbL from Lattice QCD (model-independent, first-principle). First steps and results: Blum et al. (RBC-UKQCD) '05, ..., '15, '16, '17. Work ongoing by Mainz group: Green et al. '15; Asmussen et al. '16, '17. HLbL in muon g - 2: model calculations (summary of selected results) Exchange of π^0, η, η' $k = n^* - n$ other reso-···· + nances = + ---.... + + $(f_0, a_1, f_2 \dots)$ de Rafael '94: p^4 p^6 p^8 Chiral counting: Nc Nc *N_C*-counting: Nc 1

HLbL in muon $g - 1$	2: model calculation	ns (summary of se	lected results)
$\mu^{-}(p) \xrightarrow{\mu^{+}(p)} \mu^{-}(p) \xrightarrow{\mu^{+}(p)} \mu^{-}(p)$	* · · · + · · + · · · + · · · · · · · ·	Exchange of other reso- + \cdots + nances $(f_0, a_1, f_2 \dots)$	+
de Rafael '94:			
Chiral counting: p	$p^4 p^6$	<i>р</i> ⁸	p^8
N _C -counting: 1	N _C	N _C	N _C
Contribution to a_{μ} :	× 10 ¹¹ :		
BPP: +83 (32) -19 ((13) +85 (13)	-4 (3) $[f_0, a_1]$	+21 (3)
HKS: +90 (15) -5 (8	3) +83 (6)	$+1.7$ (1.7) [a_1]	+10(11)
KN: +80 (40)	+83 (12)		
MV: +136 (25) 0 (10	0) +114 (10)	$+22(5)[a_1]$	0
2007: +110 (40)			
PdRV:+105 (26) -19 ((19) +114 (13)	$+8$ (12) $[f_0, a_1]$	+2.3 [c-quark]
N,JN: +116 (39) -19 ((13) +99 (16)	$+15$ (7) $[f_0, a_1]$	+21 (3)
ud.: -45	$ud.: +\infty$		ud.: +60

ud. = undressed, i.e. point vertices without form factors

Recall (in units of 10^{-11}): $\delta a_{\mu}(\text{HVP}) \approx 30 - 40$; $\delta a_{\mu}(\exp[\text{BNL}]) = 63$; $\delta a_{\mu}(\text{future exp}) = 16$

Pseudoscalars π^0 , η , η' : numerically dominant contribution (according to most models !). Other contributions not negligible. Cancellation between (dressed) π -loop and (dressed) quark-loop !

BPP = Bijnens, Pallante, Prades '96, '02; HKS = Hayakawa, Kinoshita, Sanda '96, '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; 2007 = Bijnens, Prades; Miller, de Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein '09 (compilation; Glasgow consensus); N,JN = AN '09; Jegerlehner, AN '09 (compilation)

HLbL in muon g - 2: model calculations (continued)

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	$114 {\pm} 10$	-	114±13	99 \pm 16
axial vectors	$2.5 {\pm} 1.0$	1.7±1.7	-	22 ± 5	_	15 ± 10	22 ± 5
scalars	$-6.8 {\pm} 2.0$	-	-	-	_	-7 ± 7	-7±2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	-	-	_	$-19{\pm}19$	$-19{\pm}13$
π, K loops +subl. N _C	-	-	-	0±10	-	-	-
quark loops	21±3	9.7±11.1	-	-	-	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	136 ± 25	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

- PdRV (Glasgow consensus): Do not consider dressed light quark loops as separate contribution. Assume it is already taken into account by using short-distance constraint of MV '04 on pseudoscalar-pole contribution (no form factor at external vertex). Added all errors in quadrature.
- N, JN: New evaluation of pseudoscalar exchange contribution imposing new short-distance constraint on off-shell form factors. Took over most values from BPP, except axial vectors from MV. Added all errors linearly.
- Note that recent reevaluations of axial vector contribution lead to much smaller estimates than in MV: a^{HLbL;axial} = (8±3) × 10⁻¹¹ (Pauk, Vanderhaeghen '14; Jegerlehner '14, '15). This would shift central values of compilations downwards:

$$a_{\mu}^{\text{HLbL}} = (98 \pm 26) \times 10^{-11}$$
 (PdRV)
 $a_{\mu}^{\text{HLbL}} = (102 \pm 39) \times 10^{-11}$ (N, JN)

Model calculations of HLbL: other recent developments

• First estimate for tensor mesons (Pauk, Vanderhaeghen '14):

 $a_{\mu}^{\mathrm{HLbL;tensor}} = 1 imes 10^{-11}$

• Dressed pion-loop

Potentially important effect from pion polarizability and a₁ resonance (Engel, Patel, Ramsey-Musolf '12; Engel '13; Engel, Ramsey-Musolf '13) Maybe large negative contribution, in contrast to BPP '96, HKS '96:

 $a_{\mu}^{\mathrm{HLbL};\pi-\mathrm{loop}} = -(11-71) imes 10^{-11}$

Not confirmed by recent reanalysis by Bijnens, Relefors '15, '16. Essentially get again old central value from BPP, but smaller error estimate:

 $a_{\mu}^{
m HLbL; \pi-loop} = (-20\pm5) imes 10^{-11}$

Hopefully new dispersive approaches can settle the issue without the use of models (Colangelo et al.; Danilkin, Pauk, Vanderhaeghen).

Dressed quark-loop

Dyson-Schwinger equation approach (Fischer, Goecke, Williams '11, '13) Large contribution, no damping seen, in contrast to BPP '96, HKS '96:

```
a_{\mu}^{\mathrm{HLbL;quark-loop}} = 107 	imes 10^{-11} (Incomplete calculation !)
```

More general questions: How to get proper matching of models with perturbative QCD ? How to avoid double-counting of dressed quark-loop with hadronic contributions ?

Pion-pole contribution to $a_{\mu}^{\mathrm{HLbL};\pi^{0}}$ (analogously for η,η')

where [Jegerlehner, AN '09]

$$\begin{split} s^{\mathrm{HLbL};\pi^{0}(1)}_{\mu} &= \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \; w_{1}(Q_{1}, Q_{2}, \tau) \; \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -(Q_{1}+Q_{2})^{2}) \; \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2}, 0) \\ s^{\mathrm{HLbL};\pi^{0}(2)}_{\mu} &= \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \; w_{2}(Q_{1}, Q_{2}, \tau) \; \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2}, -Q_{2}^{2}) \; \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2}, 0) \end{split}$$

 $w_{1,2}(Q_1, Q_2, \tau)$ are model-independent weight functions which are concentrated at small momenta [AN '16]. Multiply the double- and single-virtual pion transition form factors (TFF's).

3-dim. integration over lengths $Q_i = |(Q_i)_{\mu}|, i = 1, 2$ of the two Euclidean momenta and angle θ between them: $Q_1 \cdot Q_2 = Q_1 Q_2 \cos \theta$ with $\tau = \cos \theta$. Note in arguments of form factors: $(Q_1 + Q_2)^2 \equiv Q_1^2 + 2Q_1 \cdot Q_2 + Q_2^2 = Q_1^2 + 2Q_1 Q_2 \tau + Q_2^2$.

Generalization to full HLbL tensor (Master formula from Colangelo et al. '15):

$$a_{\mu}^{\rm HLbL} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} d\tau \sqrt{1-\tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \tilde{\Pi}_i(Q_1, Q_2, \tau)$$

 $a_{\mu}^{\text{HLbL};\text{P}}$: relevant momentum regions and results from models Model-independent weight functions $w_{1,2}(Q_1, Q_2, \tau)$ for π^0 with $\theta = 90^{\circ}(\tau = 0)$:

Model-independent weight functions $w_1(Q_1, Q_2, \tau)$ for η (left) and η' (right):

- Relevant momentum regions below 1 GeV for π^0 , below 1.5 2 GeV for η, η' .
- w_1 : behavior for large Q_1 corresponds to OPE limit in first TFF $\sim 1/Q_1^2$.
- Most model calculations for light pseudoscalars (poles or exchanges) agree at level of 15%, but full range of estimates (central values) much larger:

$$\begin{array}{lll} a_{\mu}^{\mathrm{HLbL};\pi^{0}} & = & (50-80)\times10^{-11} & = & (65\pm15)\times10^{-11} & (\pm23\%) \\ a_{\mu}^{\mathrm{HLbL};\mathrm{P}} & = & (59-114)\times10^{-11} & = & (87\pm27)\times10^{-11} & (\pm31\%) \end{array}$$

 Hopefully soon DR approach to TFF's (Hoferichter et al. '14; Talk Kubis), data on γ^{*}γ^{*} → π⁰, η, η' (AN '16; Talk Redmer) and lattice QCD calculations of TFF's (Gérardin, Meyer, AN '16) can give precise and model-independent results.

Short-distance constraint from OPE on HLbL in g - 2

Melnikov; Vainshtein '04, further explanations in Prades, de Rafael, Vainshtein '09. In HLbL contribution to g - 2 consider OPE limit $k_1^2 \approx k_2^2 \gg k_3^2$ and $k_1^2 \approx k_2^2 \gg m_2^2$:

$$\int d^4 x_1 \int d^4 x_2 \,\mathrm{e}^{-ik_1 \cdot x_1 - ik_2 \cdot x_2} \, j_\nu(x_1) \, j_\rho(x_2) = \frac{2}{\hat{k}^2} \,\epsilon_{\nu\rho\delta\gamma} \hat{k}^\delta \int d^4 z \,\mathrm{e}^{-ik_3 \cdot z} \, j_5^\gamma(z) + \mathcal{O}\left(\frac{1}{\hat{k}^3}\right)$$

 $j_5^\gamma = \sum_q Q_q^2 \, ar q \gamma^\gamma \gamma_5 q$ is the axial current, $\hat k = (k_1 - k_2)/2 pprox k_1 pprox -k_2$

- Strong constraints from the (AVV) triangle diagram (non-renormalization theorems: Adler, Bardeen '69; 't Hooft '80; Vainsthein '03; Knecht et al. '04).
- At large k_1^2, k_2^2 the pseudoscalar and axial-vector exchanges dominate in HLbL.
- Constraints seem to imply that in pion-pole contribution there is no pion transition form factor at external vertex ⇒ enhanced contribution.
- Saturation of this QCD short-distance constraint by pion-pole alone as suggested by Melnikov, Vainshtein '04 is, however, only a model ansatz !
- Only sum of all contributions to HLbL, i.e. exchanges and loops of resonances, has to match the QCD constraint from OPE / pQCD (global quark-hadron duality). See also Dorokhov, Broniowski '08; Greynat, de Rafael '12.

Data-driven approach to HLbL using dispersion relations

Strategy: Split contributions to HLbL into two parts:

- I: Data-driven evaluation using DR (hopefully numerically dominant):
 - (1) π^0, η, η' poles
 - (2) $\pi\pi$ intermediate state
- II: Model dependent evaluation (hopefully numerically subdominant):
 - (1) Axial vectors (3π -intermediate state), ...
 - (2) Quark-loop, matching with pQCD

Error goals: Part I: 10% precision (data driven), Part II: 30% precision. To achieve overall error of about 20% ($\delta a_{\mu}^{Hbl} = 20 \times 10^{-11}$).

Colangelo et al. '14, '15: Classify intermediate states in 4-point function. Then project onto g - 2.

Colangelo et al. '17: pion-box contribution (middle diagram) using precise information on pion vector form factor and S-wave $\pi\pi$ -rescattering effects from pion-pole in left-hand cut (LHC) (part of right diagram):

$$\begin{array}{rcl} a_{\mu}^{\pi-\mathrm{box}} &=& -15.9(2)\times 10^{-11} \\ a_{\mu,J=0}^{\pi\pi,\pi-\mathrm{pole\ LHC}} &=& -8(1)\times 10^{-11} \\ \mathrm{Sum\ of\ the\ two} &=& -24(1)\times 10^{-11} \end{array}$$

Pauk, Vanderhaeghen '14: DR directly for Pauli FF $F_2(k^2)$.

HLbL sum rules to get constraints from experimental data or lattice QCD on models: Pascalutsa, Vanderhaeghen '10; Pascalutsa, Pauk, Vanderhaeghen '12; Green et al. '15; Danilkin, Vanderhaeghen '17

Data-driven approach to HLbL using dispersion relations (continued)

Intro HLbL: gauge & crossing HLbL dispersive Conclusions

Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arXiv:1408.2517 (PLB '14)

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions by and a collaboration among theorists and experimentalists

From talk by Colangelo at Radio Monte Carlo Meeting, Frascati, May 2016

HLbL in muon g - 2 from Lattice QCD: RBC-UKQCD approach

- Blum et al. '05, ..., '15: First attempts: Put QCD + (quenched) QED on the lattice. Subtraction of lower-order in α HVP contribution needed, very noisy.
- Jin et al. '15, '16, '17: Step by step improvement of method to reduce statistical error by one or two orders of magnitude and remove some systematic errors.
- Calculate a^{HLbL}_μ = F₂(q² = 0) via moment method in position-space (no extrapolation to q² = 0 needed).
- Use exact expression for all photon propagators. Treat r = x - y stochastically by sampling points x, y. Found empirically: short-distance contribution at small |r| < 0.6 fm dominates.

Results (for $m_{\pi} = m_{\pi,\text{phys}}$, lattice spacing $a^{-1} = 1.73$ GeV, L = 5.5 fm):

 $\begin{array}{lll} a_{\mu}^{\rm cHLbL} & = & (116.0 \pm 9.6) \times 10^{-11} & ({\rm quark-connected \ diagrams}) \\ a_{\mu}^{\rm dHLbL} & = & (-62.5 \pm 8.0) \times 10^{-11} & ({\rm leading \ quark-disconnected \ diagrams}) \\ a_{\mu}^{\rm HLbL} & = & (53.5 \pm 13.5) \times 10^{-11} \end{array}$

Beware ! Statistical error only ! Missing systematic effects:

- Expect large finite-volume effects from QED ~ 1/L². Blum et al. '17: use infinite volume, continuum QED (like Mainz approach: Asmussen et al. '16).
- Expect large finite-lattice-spacing effects.
- Omitted subleading quark-disconneced diagrams (10% effect ?).

HLbL in muon g - 2 from Lattice QCD: Mainz approach

Developed independently (Asmussen, Green, Meyer, AN '15, '16, '17) Master formula in position-space:

$$\begin{aligned} a_{\mu}^{\mathrm{HLbL}} &= \frac{me^{6}}{3} \int d^{4}y \Bigg[\int d^{4}x \underbrace{\bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)}_{\mathrm{QED}} \underbrace{i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y)}_{\mathrm{QCD}} \Bigg] & \overbrace{i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y)}^{\mathcal{Z}} = -\int d^{4}z \, z_{\rho} \left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0) \right\rangle & \overleftarrow{\mathbf{U}}_{\mathbf{U}}(y) \left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0) \right\rangle \end{aligned}$$

- Semi-analytical calculation of QED kernel.
- QED kernel computed in continuum and in infinite volume (Lorentz covariance manifest, no power law 1/L² finite-volume effects).
- Kernel parametrized by 6 weight functions (and derivatives thereof), calculated on 3D grid in |x|, |y|, x · y and stored on disk.
- Test of QED kernel function: pion-pole contribution, lepton loop.
- Result for pion-pole contribution with VMD model agrees with known results for m_π > 300 MeV. Need already rather large lattice size > 4 fm for smaller pion masses.
- Analytical result for lepton loop (QED) with $m_{\text{loop}} = m_{\mu}, 2m_{\mu}$ is reproduced at the percent level.

 \sim

Conclusions and Outlook

- a_{μ} : Test of Standard Model, potential window to New Physics.
- Current situation:

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (309 \pm 82) \times 10^{-11}$$
 [3.8 σ]

Hadronic effects ? Sign of New Physics ?

• Frequently-used model-estimates for HLbL (updated axial-vectors):

 $\begin{array}{lll} a_{\mu}^{\rm HLbL} &=& (98 \pm 26) \times 10^{-11} & ({\rm PdRV} \; ("{\rm Glasgow \; consensus"})) \\ a_{\mu}^{\rm HLbL} &=& (102 \pm 39) \times 10^{-11} & ({\rm N}, \; {\rm JN}) \end{array}$

- Two new g 2 experiments at Fermilab (E989) and J-PARC (E34) with goal of $\delta a_{\mu}^{exp} = 16 \times 10^{-11}$ (factor 4 improvement)
- Theory for HLbL needs to match this precision !
- Concerted effort needed of experiments (measuring processes with hadrons and photons), phenomenology / theory (data-driven using dispersion relations, matching with QCD short-distance constraints and modelling) and lattice QCD to improve HLbL estimate with reliable uncertainty.
- Muon g 2 Theory Initiative (Working Group on HLbL) (Talk El-Khadra) First Workshop recently near Fermilab, more to come in future.

Backup slides

Muon g - 2: current status

Contribution	$a_{\mu} imes 10^{11}$		Reference	
QED (leptons)	116 584 718.85	$3\pm$ 0.036	Aoyama et al. '12	
Electroweak	153.6	\pm 1.0	Gnendiger et al. '13	
HVP: LO	6889.1	±35.2	Jegerlehner '15	
NLO	-99.2	\pm 1.0	Jegerlehner '15	
NNLO	12.4	\pm 0.1	Kurz et al. '14	
HLbL	102	\pm 39	Jegerlehner '15 (JN '09)	
NLO	3	\pm 2	Colangelo et al. '14	
Theory (SM)	116 591 780	±53		
Experiment	116 592 089	±63	Bennett et al. '06	
Experiment - Theory	309	\pm 82	3.8 <i>σ</i>	

Discrepancy a sign of New Physics ?

Hadronic uncertainties need to be better controlled in order to fully profit from future g - 2 experiments at Fermilab (E989) and J-PARC (E34) with $\delta a_{\mu} = 16 \times 10^{-11}$.

Numerical test of QED kernel: Pion-pole contribution to a_{μ}^{HLbL}

VMD model for pion transition form factor for illustration. Result for arbitrary pion mass can easily be obtained from 3-dimensional momentum-space representation (Jegerlehner + AN '09).

3-dim. integration in position space:

- $\int_{y} \rightarrow 2\pi^{2} \int_{0}^{\infty} \mathrm{d}|y||y|^{3}$
- $\int_x \rightarrow 4\pi \int_0^\infty d|x| \, |x|^3 \int_0^\pi d\beta \sin^2 \beta$ (cutoff for x integration: $|x|^{\text{max}} = 4.05 \text{ fm}$)

Integrand after integration over $|x|, \beta$:

Result for $a_{\mu}^{\text{HLbL}}(|y|^{\max})$:

- All 6 weight functions contribute to final result, some only at the percent level.
- $|x|^{\max}, |y|^{\max} > 4$ fm needed for $m_{\pi} < 300$ MeV.
- For the physical pion mass, one needs to go to very large values of |x| and |y|, i.e. very large lattice volumes, to reproduce known result of 5.7 · 10⁻¹⁰.