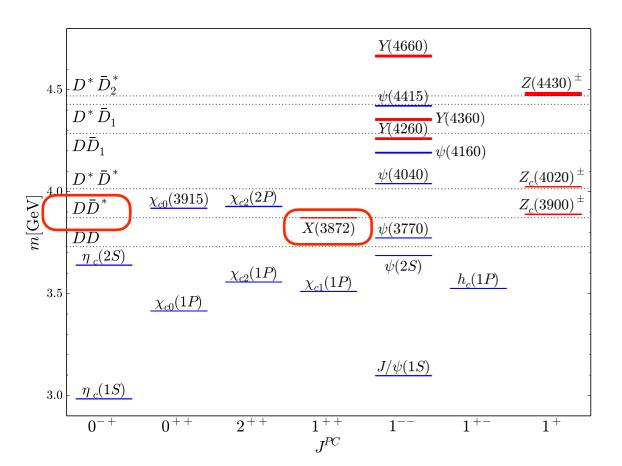


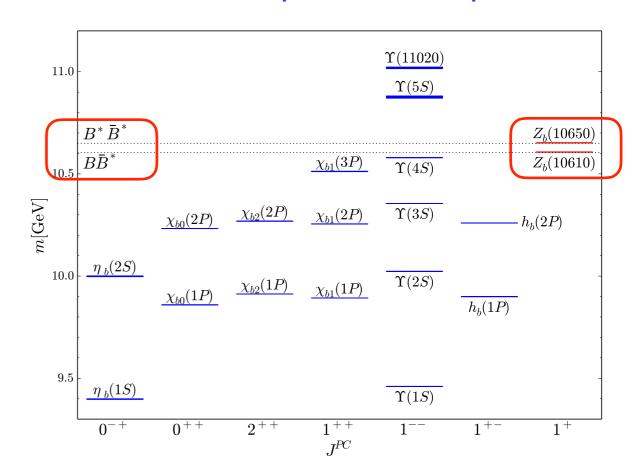
Heavy-quark spin-symmetry partners of Zb(10610) and Zb(10650) molecules

Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany Institute for Theoretical and Experimental Physics, Moscow, Russia

From ϕ to ψ 2017, Mainz


in collaboration with


E. Epelbaum, A.A. Filin, C. Hanhart, U.-G. Meißner and A.V. Nefediev

Key Refs: PLB 763, 20 (2016) and arXiv:1704.07332 (JHEP 2017)

Introduction

• Plenty of experimentally observed XYZ states do not fit in quark model picture

Enigmatic examples: JPC = 1++ X(3872) and 1+- Zb(10610)/Zb(10650) Belle (2010-2016)

decay predominantly to open-flavour channels

hadronic molecules

reside very close to hadronic thresholds

- (talks by C. Hanhart and M. Karliner)
- strong coupling to nearby open flavour channels in S waves

But very precise measurements are needed to unambiguously disentangle from tetraquarks!

Heavy quark spin symmetry

The XYZ states contain heavy quark and antiquark \implies employ heavy quark spin symmetry

HQSS implies:

In the limit $\Lambda_{\rm QCD}/m_Q \to 0$ strong interactions are independent of HQ spin

Consequences of HQSS — number of partner states, location and decay properties — are different for different scenarios — Cleven et al. (2015)
 (talk by Christoph Hanhart)

 \implies Search for spin partner states \implies useful insights into the nature of XYZ states

This Talk: Discuss HQSS predictions for the molecular scenario

Molecular partners: contact theory

Basis states J^{PC} made of a Pseudoscalar (P) and a Vector (V):

C-parity states:
$$C=\pm$$
 $PV(\pm)=\frac{1}{\sqrt{2}}\left(Par{V}\pm Var{P}\right)$ $P=D \text{ or } B$, $V=D^* \text{ or } B^*$

 $0^{++}: \quad \{P\bar{P}(^{1}S_{0}), V\bar{V}(^{1}S_{0})\},$ $1^{+-}: \quad \{P\bar{V}(^{3}S_{1}, -), V\bar{V}(^{3}S_{1})\},$ $1^{++}: \quad \{P\bar{V}(^{3}S_{1}, +)\},$ $2^{++}: \quad \{V\bar{V}(^{5}S_{2})\}.$

Consequences of HQSS for S-wave contact interactions

Grinstein et al. (1992), AlFiky et al. (2006), Nieves and Valderrama (2012)

only two parameters at LO: LECs C and C'

 $ightharpoonup V_{\mathrm{LO}}^{(1++)}$ and $V_{\mathrm{LO}}^{(2++)}$ are the same!

 $V_{\text{LO}}^{(0++)} = \frac{1}{4} \begin{pmatrix} 3C + C' & -\sqrt{3}(C - C') \\ -\sqrt{3}(C - C') & C + 3C' \end{pmatrix},$ $V_{\text{LO}}^{(1+-)} = \frac{1}{2} \begin{pmatrix} C + C' & C - C' \\ C - C' & C + C' \end{pmatrix},$

C and C' -different for isoscalars and isovectors

• strict HQSS limit: V-P mass splitting much smaller than all other scales

$$\delta = m_* - m \ll E_{\text{Bound}} \ll m$$

⇒ solutions of coupled-channel problem: two decoupled sets of partner states

$$E_{1++}^{(0)} = E_{2++}^{(0)} = E_{1+-}^{(0)} = E_{0++}^{(0)} \quad \text{and} \quad E_{0++}^{(0)'} = E_{1+-}^{(0)'} \quad \text{our work (2016)}$$

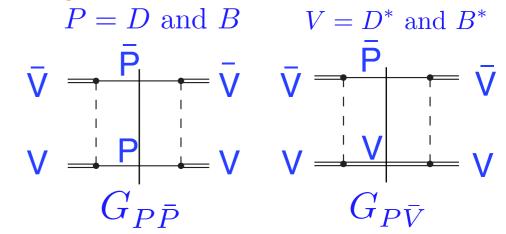
 $V_{\text{LO}}^{(1++)} = V_{\text{LO}}^{(2++)} \equiv C$

Contact theory with HQSS breaking

Bondar et al. (2011), Voloshin (2011), Mehen and Powell (2011) propose a different expansion
to account for HQSS breaking

$$E_{
m Bound}\ll\delta\ll m$$
 with $\delta\simeq 140~{
m MeV}$ $\delta/m\simeq 7\%$ in the c-sector $\delta\simeq 45~{
m MeV}$ $\delta/m\simeq 1\%$ in the b-sector

• Leading effect — the states reside near their thresholds: $P\bar{P},\ P\bar{V}\ \mathrm{and}\ V\bar{V}$


$$M_{2++} = M_{1++} + \delta$$

- Next-to-leading terms $O(\delta)$ and $O\left(\frac{\gamma^2}{\sqrt{m\delta}}\right) \simeq O\left(\sqrt{\frac{E_{\rm bound}}{\delta}}\,\gamma\right)$ our work (2016) $D^*\bar{D}^* \to D\bar{D}^* \to D^*\bar{D}^*$
- Binding energies of 1+- and 0++ states acquire an $\it Im$ part due to coupled-channels $B^*\bar B^* \to B\bar B^* \to B^*\bar B^*$

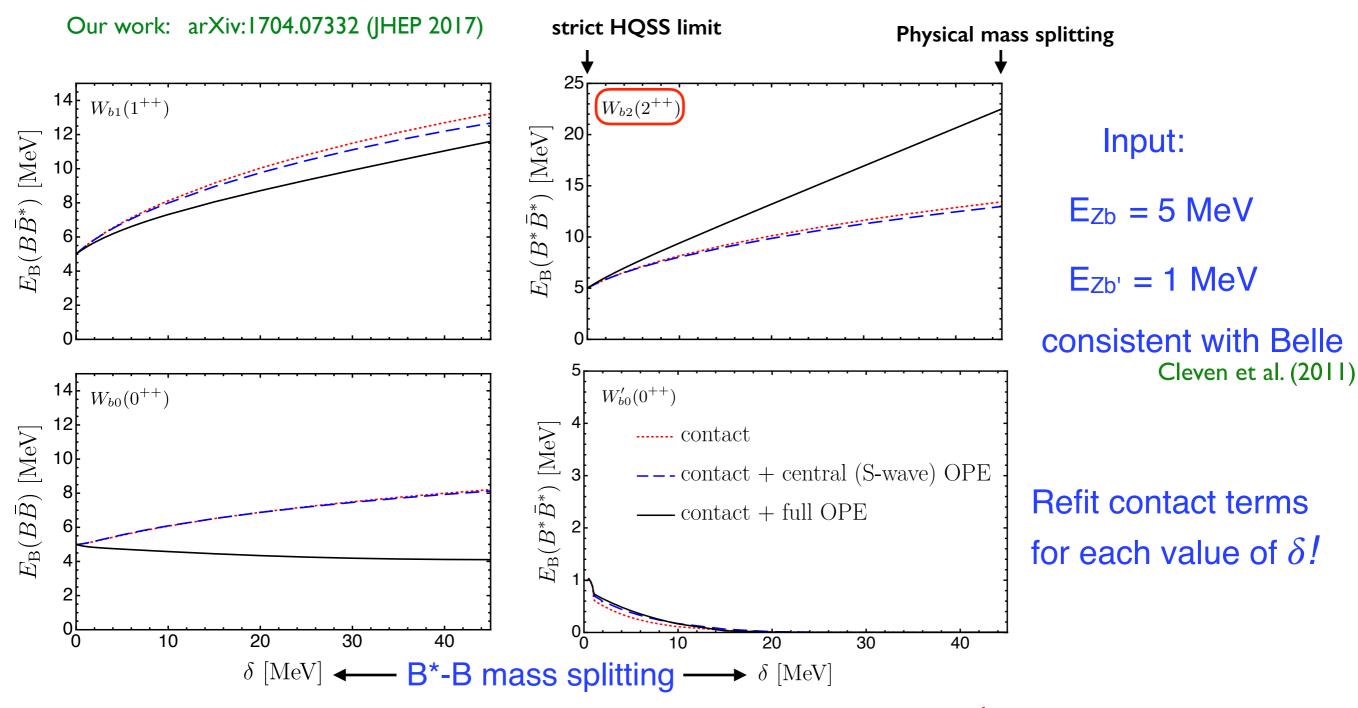
 \Rightarrow 2⁺⁺ tensor state is uncoupled \Rightarrow has no *lm* part in the contact problem

Contact + one-pion exchange (OPE) interactions

- Extended basis states: $0^{++}: \{P\bar{P}(^{1}S_{0}), V\bar{V}(^{1}S_{0}), V\bar{V}(^{5}D_{0})\},$
- $1^{+-}: \quad \{P\bar{V}(^3S_1,-), P\bar{V}(^3D_1,-), V\bar{V}(^3S_1), V\bar{V}(^3D_1)\},$ Coupled channel transitions
- Coupled-channel transitions $1^{++}: \{P\bar{V}(^3S_1,+), P\bar{V}(^3D_1,+), V\bar{V}(^5D_1)\},$ in S, D and even G-waves
 - $2^{++}: \quad \{ \underline{P}\bar{P}(^{1}D_{2}), \underline{P}\bar{V}(^{3}D_{2}), V\bar{V}(^{5}S_{2}), V\bar{V}(^{1}D_{2}), V\bar{V}(^{5}D_{2}), V\bar{V}(^{5}G_{2}) \}$
- coupled-channel dynamics is very important: inconsistent omission our work (2016) (as done by Nieves, Valderrama (2012)) strongly cutoff dependent results
- Pions enhance HQSS violation due to V-P mass splitting
 - PP and PV intermediate states can go on shell
 - ⇒ also 2⁺⁺ VV states acquire finite widths

- pionic (S-D) tensor forces play dominant role due to relatively large momentum scales
 - Non-perturbative pion dynamics is to be important

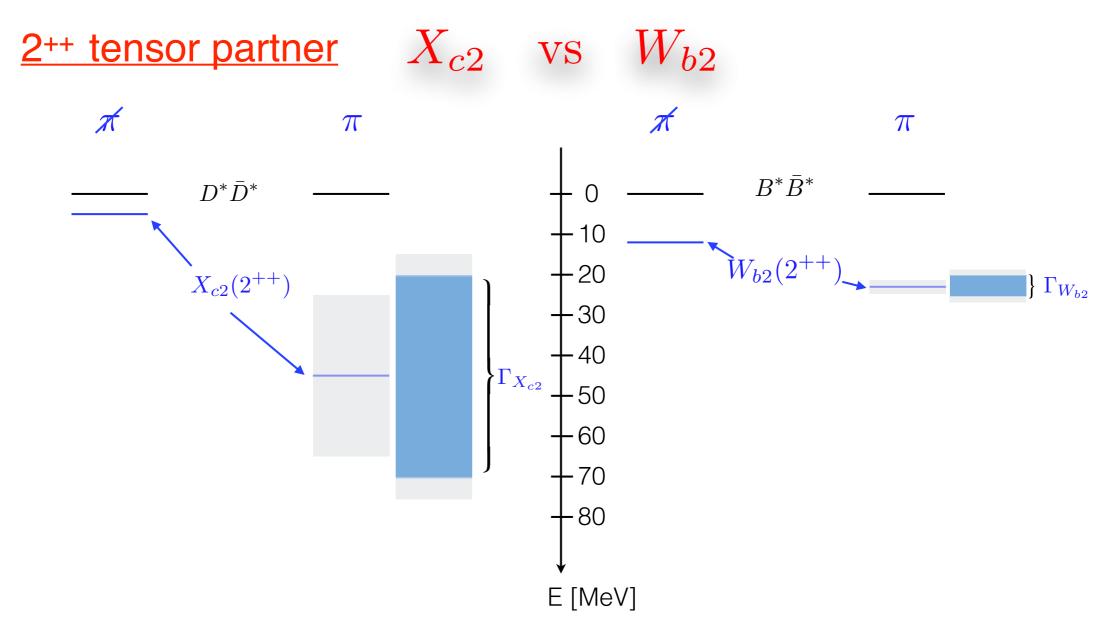
Chiral EFT based approach for hadronic molecules


Our works: PLB 763, 20 (2016), arXiv:1704.07332 (JHEP 2017)

- A systematic approach for studying various molecular candidates with special emphasis on:
 - pionic dof, coupled-channel dynamics, HQSS and the pattern of its breaking
 - three-body effects $(P\bar{P}\pi)$ and the η -meson from SU(3) GB octet are included also
- nonperturbative solutions of the LS integral Eqs. for various $J^{PC} = 1^{++}$, 2^{++} , 0^{++} and 1^{+-}
 - Potential: contact operators (2 parameters) + OPE ⇒ input is needed!
 - leading HQSS violation is included via the *V-P* mass splitting
- Can be applied to study very different aspects of light quark dynamics:
- identification of the long-distance modes in the resonance w.f.

 Our works (2010)
- implications of HQSS: 1++ X(3872), 1+- Zb(10610)/Zb(10650), ... This Talk!
- chiral extrapolations of lattice results

 Our works (2013), (2015)


Application: HQSS partners of Zb(10610)/Zb(10650)

- W_{b2} (0++), W_{b2} (1++) and W_{b2} (2++) remain bound for physical δ , W_{b2} (0++) turn to be virtual
- W_{b2} (2++) state:
 ➡ Binding energy exhibits large HQSS violation
 - OPE Tensor forces: large shift of EB
 - Effect of η-meson is opposite to OPE but minor

HQSS implications: X(3872) vs Zb(10610)/Zb(10650)

Our works: PLB 763, 20 (2016), arXiv:1704.07332 (JHEP 2017)

Impact of HQSS violation together with nonperturbative pions on the tensor:

much larger than with perturbative pions

For perturbative approach see Albaladejo et al. (2015)

much stronger in the c-sector than in the b-sector

Summary

- We propose a systematic approach consistent with chiral and heavy quark symmetries and including all relevant scales to probe various molecular candidates in c and b-sectors
- Applied in this talk to predict HQSS partners of X(3872) and Zb(10610)/Zb(10650)
- HQSS breaking and non-perturbative pions have significant impact on the partner states
- The effect from OPE is stronger in the c-quark sector, than in the b-quark one.

 X_{c2++} is significantly shifted from D*D* threshold and has the width $\Gamma_{X_{c2++}} \simeq 50 \pm 10 \ {
m MeV}$

W_{b2++} is still located around B*B* threshold and has a few MeV width

 \Rightarrow should be detectable in BB(*) and also in $\chi_{b1}\pi$ and $\chi_{b2}\pi$ channels

• To predict other partners of the X(3872) one more experimental input is needed

Could X(3915) be a 0++ molecule — spin partner of X(3872)?

Spares

HQSS partners of the Zb(10610) and Zb(10650)

A comment on the sign of the OPE potential in isoscalar and isovector channels:

- Isospin coefficient: $3 2I(I + 1) = \begin{cases} 3 & I=0 \\ -1 & I=1 \end{cases}$ different signs
- sign also depends on C-parity
- central (S-wave) OPE for isospin-0 0++, 1++ and 2++ states is attractive for 1+- repulsive
- central (S-wave) OPE for isospin-1 0++, 1++ and 2++ states is repulsive for 1+- attractive
- Naively, OPE should reduce the binding energies of the partner states W_{b2} (0++), W_{b2} (1++) and W_{b2} (2++)
- ⇒ But tensor forces (off diagonal transitions) bring additional attraction!