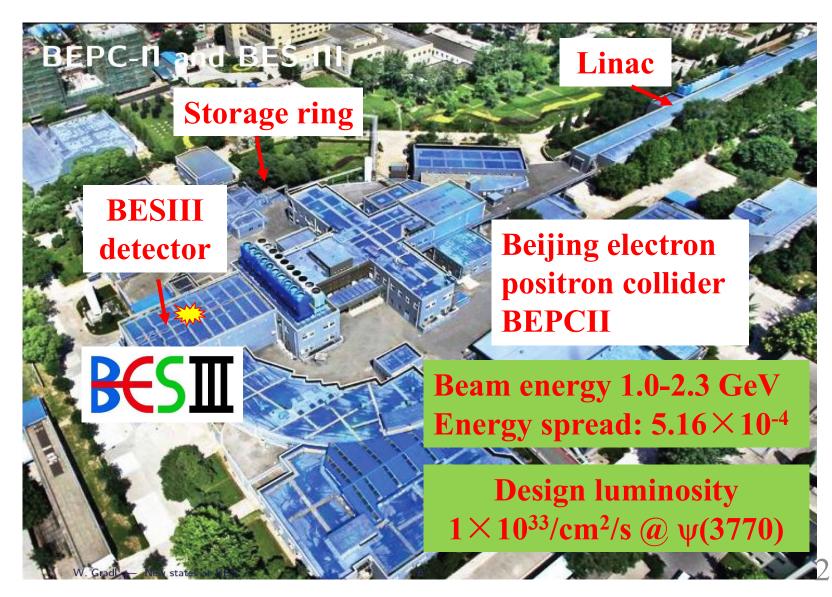
# **Status of Measurement of R** Value at **BESIII** Wenbiao Yan

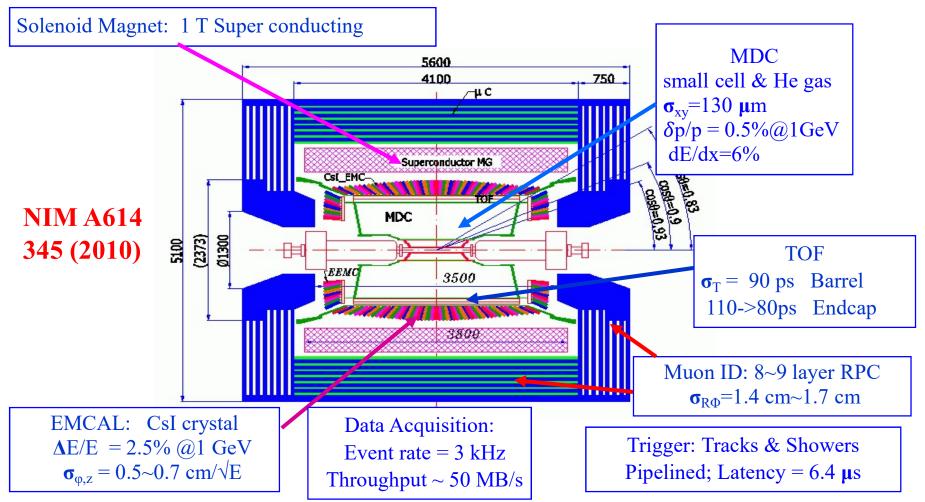
#### **On behalf of BESIII Collaboration**



Wenbiao @ PhiPsi2017



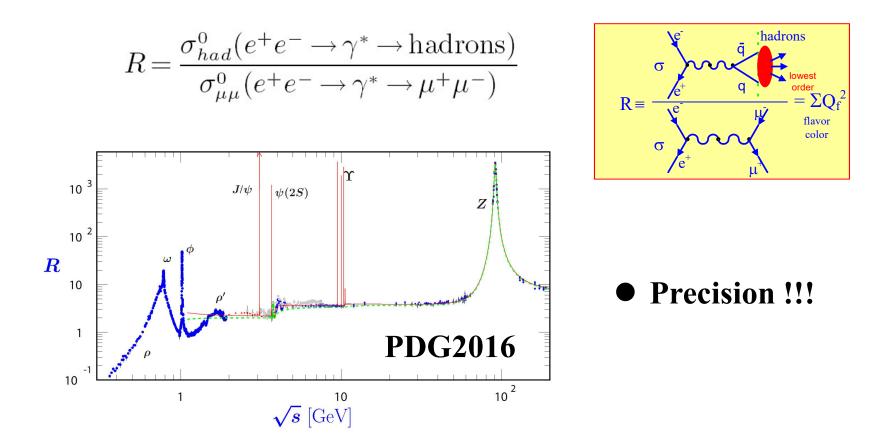

1958


ofChina

University or Science and Technology

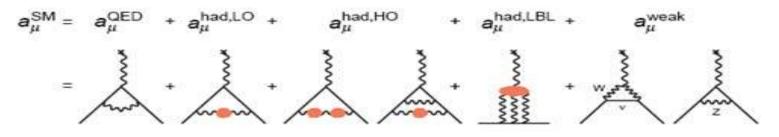
#### **Bird's View of BEPCII & BESIII**




### **BESIII Detector**

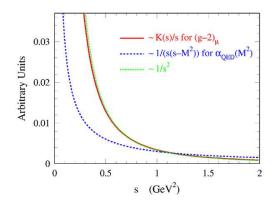


Hermetic spectrometer for neutral and charged particle with excellent resolution, PID, and large coverage


### **R** value

• The Born cross section of  $e^+e^-$  annihilation into hadrons normalized by theoretical  $\mu^+\mu^-$  cross sectiom

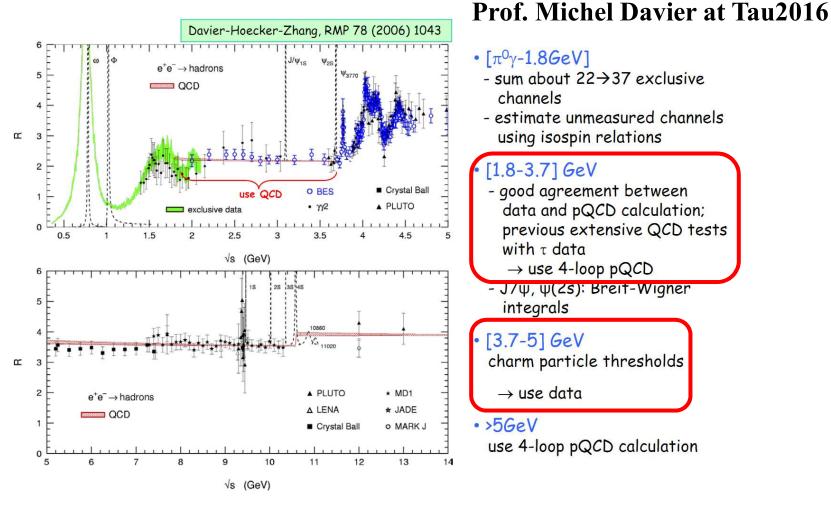



## Muon magnetic moment $(g-2)_{\mu}$

• The Standard Model prediction for muon  $a_{\mu} = (g_{\mu}-2)/2$ 



$$a_{\mu}^{Had}[LO] = rac{1}{3} (rac{lpha}{\pi})^2 \int_{m_{\pi}^2}^{\infty} ds rac{K(s)}{s} R(s)$$


#### K(s): analytically known



#### Prof. Michel Davier @ Tau2016

| QED        | 11658471.885 | +- 0.004 |
|------------|--------------|----------|
| EW         | 15.4         | +- 0.1   |
| had LBL    | 10.5         | +- 2.6   |
| had LO     | 692.8        | +- 3.3   |
| had NLO    | -9.87        | +- 0.09  |
| had NNLO   | 1.24         | +- 0.01  |
| prediction | 11659181.9   | +- 4.2   |
| exp BNL    | 11659208.9   | +- 6.3   |

# Muon magnetic moment $(g-2)_{\mu}$



• BESIII: ISR (talk by Martin) and energy scan

6

#### **EM fine structure constant**

• The running of the electromagnetic fine structure constant is governed by the renormalized vacuum polarization function.

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha_{1ep}(s) - \Delta \alpha_{top}(s) - \Delta \alpha_{had}^{5}(s)}$$

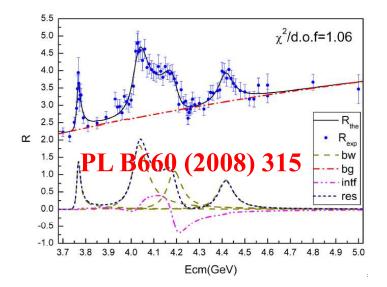
$$\Delta \alpha_{1ep}(M_Z^2) = 0.03142$$
$$\Delta \alpha_{top}(M_Z^2) = 0.00007(1)$$
$$\Delta \alpha_{had}^5(M_Z^2) = 0.0280 \pm 0.0009$$

$$\Delta \alpha_{\text{had}}^5(M_Z^2) = -\frac{\alpha(0)M_Z^2}{3\pi} \operatorname{Re} \int_{4m_\pi^2}^{\infty} ds \, \frac{R(s)}{s(s-M_Z^2) - i\epsilon}$$

### R value @ pQCD and charmonium

• Test pQCD prediction on R values

$$R = 3\sum_{f} Q_{f}^{2} \left[1 + \left(\frac{\alpha_{s}(s)}{\pi}\right) + 1.411\left(\frac{\alpha_{s}(s)}{\pi}\right)^{2} - 12.8\left(\frac{\alpha_{s}(s)}{\pi}\right)^{3} + \ldots\right]$$


 Fitting to R values: resonance parameters of Ψ(3770), Ψ(4040), Ψ(4160) and Ψ(4410).



 $I^{G}(J^{PC}) = 0^{-}(1^{-})$ 

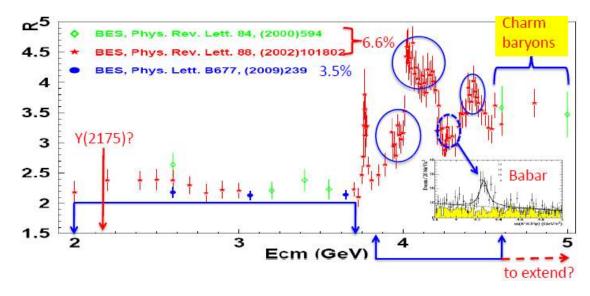
ψ(4040) MASS

| VALUE (MeV)                              | DOCUMENT ID                            |            | TECN    | COMMENT                                                                      |
|------------------------------------------|----------------------------------------|------------|---------|------------------------------------------------------------------------------|
| 4039 $\pm$ 1 OUR EST<br>4039.6 $\pm$ 4.3 | I <b>MATE</b><br><sup>1</sup> ABLIKIM  | 08D        | BES2    | $e^+ e^- \rightarrow hadrons$                                                |
| • • • vve do not use th                  | e tonowing data for average            | s, ms,     | innits, | etc. • • •                                                                   |
| $4034 \pm 6$                             | <sup>2</sup> MO                        | 10         | RVUE    | $e^+ e^- \rightarrow \text{hadrons}$                                         |
| 4034 1 0                                 |                                        |            |         |                                                                              |
| 4034 $\pm$ 0<br>4037 $\pm$ 2             | <sup>3</sup> SETH                      | 05A        | RVUE    | $e^+e^- \rightarrow hadrons$                                                 |
|                                          | <sup>3</sup> SETH<br><sup>4</sup> SETH | 05A<br>05A |         | $e^+ e^- \rightarrow \text{hadrons}$<br>$e^+ e^- \rightarrow \text{hadrons}$ |



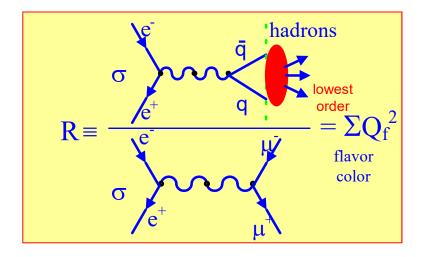
#### **Data sets for R value**

• Phase I: test run @ 2012


 $\checkmark$  Ecm = 2.232/2.400/2.800/3.400 GeV, ~12pb<sup>-1</sup>

• Phase II: fine scan for heavy charm resonant @2013-2014

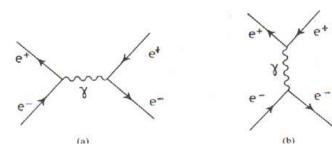
✓ Ecm ∈ [3.800, 4.590]GeV, 104 energy points, ~800pb<sup>-1</sup>


• Phase III: R & QCD scan @ 2015

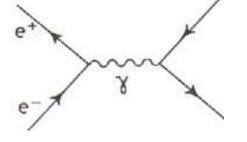
✓ Ecm ∈ [2.000, 3.080]GeV, 21 energy points, ~500pb<sup>-1</sup>



## **R** value

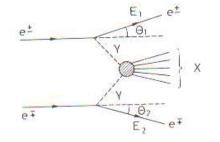

#### • R values are measured as

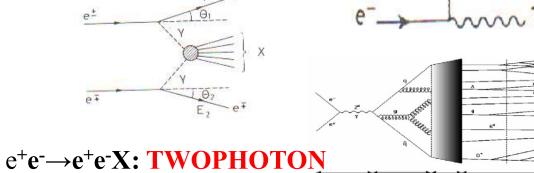



$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had}} \cdot (1 + \delta)$$

Lintegrated luminosity $1+\delta$ radiative correction factor $N_{had}$ observed hadronic events $N_{bg}$ from background events $\varepsilon_{had}$ selection efficiency $\sigma_{\mu\mu}$ Born cross section of  $\mu$  pairproduction in QED

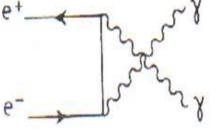
#### Generators (a) R analysis





 $e^+e^- \rightarrow (\gamma)e^+e^-$ : Babayaga



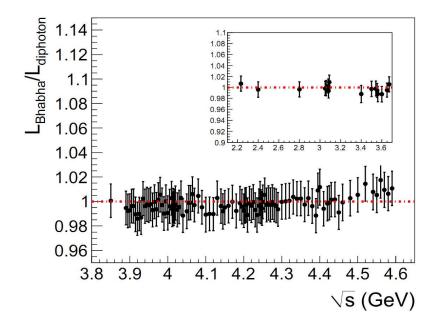
 $e^+e^- \rightarrow (\gamma)\mu^+\mu^-$ : Babayaga  $e^+e^- \rightarrow (\gamma)\tau^+\tau^-$ : KKMC








Pert. QCD

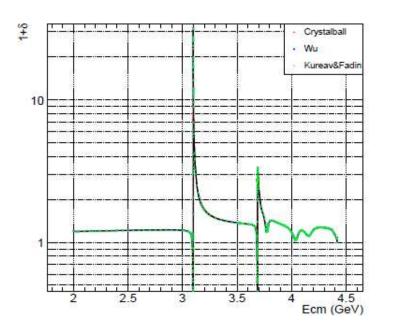

Detecto



e<sup>+</sup>e<sup>-</sup>→hadrons: **ConExc & LUARLW** 

# Luminosity

• Large-angle Bhabha  $e^+e^- \rightarrow (\gamma)e^+e^-$  and diphoton  $e^+e^- \rightarrow (\gamma)\gamma\gamma$ : about 0.8% uncetainty




| $\sqrt{s}/{ m GeV}$ | $\mathrm{e^+e^-} \rightarrow (\gamma) \mathrm{e^+e^-/pb^{-1}}$ | $\mathrm{e^+e^-} \rightarrow (\gamma)\gamma\gamma/\mathrm{pb^{-1}}$ |
|---------------------|----------------------------------------------------------------|---------------------------------------------------------------------|
| 2.2324              | $2.645 {\pm} 0.006 {\pm} 0.020$                                | $2.627{\pm}0.009{\pm}0.028$                                         |
| 2.4000              | $3.415 {\pm} 0.007 {\pm} 0.024$                                | $3.428 {\pm} 0.011 {\pm} 0.040$                                     |
| 2.8000              | $3.753 {\pm} 0.008 {\pm} 0.026$                                | $3.766 {\pm} 0.014 {\pm} 0.042$                                     |
| 3.0500              | $14.893 {\pm} 0.030 {\pm} 0.103$                               | $14.919{\pm}0.029{\pm}0.158$                                        |
| 3.0600              | $15.040{\pm}0.030{\pm}0.131$                                   | $15.060{\pm}0.029{\pm}0.158$                                        |
| 3.0800              | $31.019{\pm}0.060{\pm}0.189$                                   | $30.942{\pm}0.044{\pm}0.338$                                        |
| 3.0830              | $4.740 {\pm} 0.011 {\pm} 0.029$                                | $4.769{\pm}0.017{\pm}0.052$                                         |
| 3.0900              | $15.709{\pm}0.031{\pm}0.099$                                   | $15.558 {\pm} 0.030 {\pm} 0.162$                                    |
| 3.0930              |                                                                | $14.910{\pm}0.030{\pm}0.157$                                        |
| 3.0943              |                                                                | $2.143 \pm 0.011 \pm 0.023$                                         |
| 3.0952              |                                                                | $1.816{\pm}0.010{\pm}0.019$                                         |
| 3.0958              |                                                                | $2.135{\pm}0.011{\pm}0.023$                                         |
| 3.0969              | —                                                              | $2.069{\pm}0.011{\pm}0.024$                                         |
| 3.0982              | —                                                              | $2.203 {\pm} 0.011 {\pm} 0.023$                                     |
| 3.0990              | _                                                              | $0.756 {\pm} 0.007 {\pm} 0.008$                                     |

• Chinese Physics C41 (2017) 063001

## Radiative correction factor $(1+\delta)$

• The Feynman diagrams scheme (CB) and structure function schemes (KF & WU) are used, results by there methods are consistent within 1.2%.



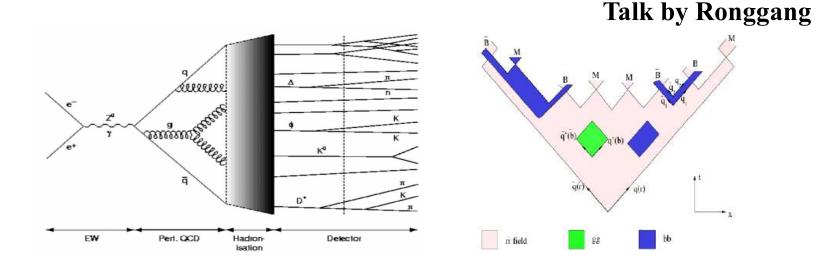
• R value @ PDG2016 as input

#### $e^+e^- \rightarrow e^+e^- + X$

| Measured quantity or reaction           | Studied physical object or investigated problem                                                                                      | The $ee \rightarrow eeh$ cross section<br>(cm <sup>2</sup> ) to be measured<br>(at $\sqrt{s} \sim 5 - 10$ GeV)<br>$10^{-33}$ |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $\gamma\gamma \rightarrow \pi^+\pi^-$   | Threshold theorems, Born term                                                                                                        |                                                                                                                              |
| $\pi^0\pi^0$                            | PCAC, current algebra                                                                                                                | $10^{-35} - 10^{-36}$                                                                                                        |
|                                         | Two-particle unitarity approximation                                                                                                 |                                                                                                                              |
|                                         | (Range of validity)                                                                                                                  | $10^{-34} - 10^{-35}$                                                                                                        |
|                                         | The number of essential partial waves                                                                                                | 25                                                                                                                           |
|                                         | $\pi\pi$ -phase and scattering lengths                                                                                               | $10^{-35} - 10^{-36}$                                                                                                        |
|                                         | Going out of mass shell                                                                                                              | $10^{-35} - 10^{-36}$                                                                                                        |
|                                         | The first Weinberg sum rule                                                                                                          | $10^{-33} - 10^{-34}$                                                                                                        |
| $\gamma\gamma \to K\bar{K}$ <b>Ph</b>   | the first Weinberg sum rule<br><b>S</b> <sup>*</sup> , <b>Fusicity</b><br><b>Connection with the trace of energy-momentum tensor</b> | 181                                                                                                                          |
| // -/ MA                                | FESR                                                                                                                                 |                                                                                                                              |
| $\gamma\gamma \rightarrow n\pi; n > 2$  | PCAC, chiral Lagrangians                                                                                                             | $10^{-36} - 10^{-37}$                                                                                                        |
| $\gamma \gamma \rightarrow \pi^0(\eta)$ | $\pi^{0}$ -lifetime                                                                                                                  | $10^{-33}$                                                                                                                   |
|                                         | Triangle anomaly, q2-dependence                                                                                                      |                                                                                                                              |
| $\gamma \gamma \rightarrow R$           | Resonance parameters ( $\epsilon$ , $f$ , $A_{s}$ , etc.)                                                                            | $10^{-33} - 10^{-35}$                                                                                                        |
| (resonance)                             | Spin of $X^0$ , E                                                                                                                    | $10^{-33} - 10^{-34}$                                                                                                        |
|                                         | FESR, symmetries                                                                                                                     | $\lesssim 10^{-35}$                                                                                                          |
|                                         | Parameters of A1, etc                                                                                                                | $\gtrsim 10$                                                                                                                 |



#### Measurement of electromagnetic transition form factors in two-photon collisions at ₿€5Ⅲ


June 29, 2017 | Christoph Florian Redmer for the BESIII collaboration

> 11<sup>th</sup> International Workshop on e+e- Collisions from Phi to Psi Schloss Waldthausen

#### Talk by Christoph

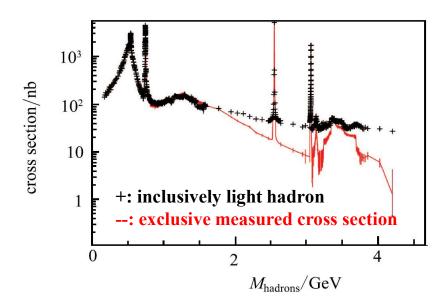
- Background from two photon process
  - ✓ Underestimation by BesTwoGam MC
  - ✓ Use generator for (dominant) exclusive processes:
  - $e^+e^-e^+e^-$ ;  $e^+e^-\mu^+\mu^-$ ;  $e^+e^-\pi^+\pi^-$ ;  $e^+e^-K^+K^-$ ;  $e^+e^-\eta$  and  $e^+e^-\eta^-$
- Other process: unclear but tiny

## **MC** generator for e<sup>+</sup>e<sup>−</sup>→hadrons

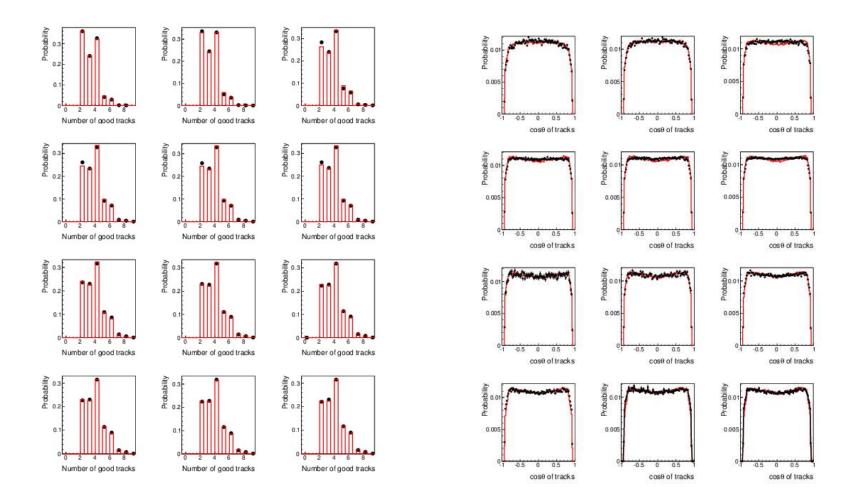


- High energy e<sup>+</sup>e<sup>-</sup> collision: Herwig @ Cluster model; Jetset and Pythia @ String model
- Low energy e<sup>+</sup>e<sup>-</sup> collision: LUND Area Law, hep-ph/9910285
  - ✓ Simulate ISR inclusive continuous channels and J<sup>PC</sup>=1<sup>-</sup> resonance between 2GeV and 5GeV. Need MC tuning

15

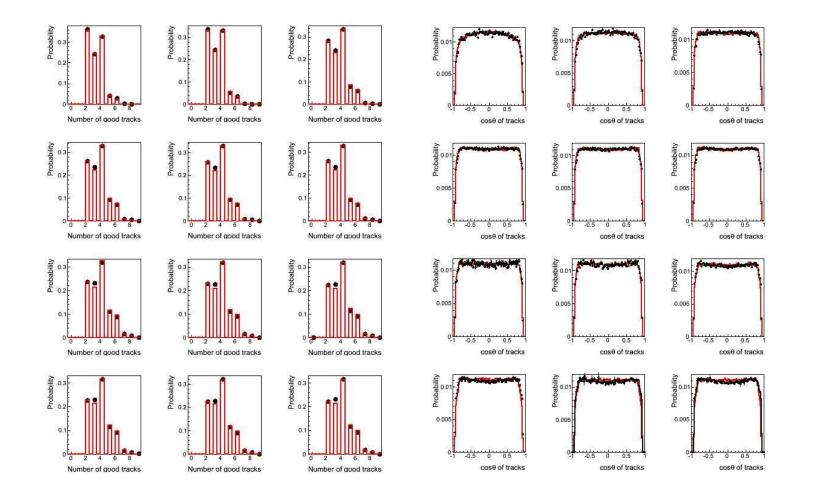

✓ Left-right symmetry, NO

### **MC** generator for e<sup>+</sup>e<sup>−</sup>→hadrons


#### • LUARLW: 100% by LUARLW

• ConExc generator:

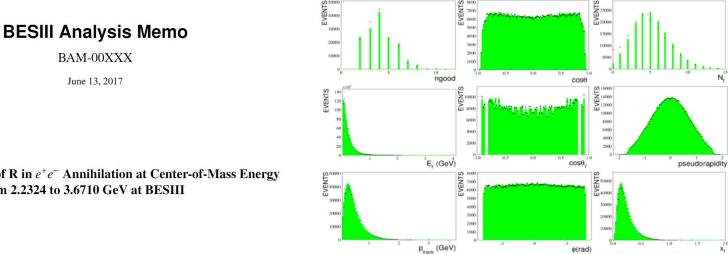
- ✓ ConExc + Phokhara + LUARLW
- ✓ Phokhara deal with 10 exclusive processes
- ✓ Others measured processes with ConExc
- ✓ unknown by LUNDARLW




### ConExc @[2.232, 3.671]GeV



• ConExc could describe experimental data


## LUARLW @[2.232, 3.671]GeV



• LUARLW could describe experimental data

# **Status of R Measurement**

#### **BESIII memo at Convener's review**



Shade:MC Dot:Data

The Measurements of R in  $e^+e^-$  Annihilation at Center-of-Mass Energy from 2.2324 to 3.6710 GeV at BESIII

#### MC tuning at [3.800, 4.590]GeV

4.26GeV

 $e^+e^- \Rightarrow \gamma^* \Rightarrow \begin{cases} \psi(4040) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s; \\ \psi(4160) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*; \\ \psi(4415) \Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{cases}$ 

 $e^+e^- \Rightarrow \gamma^* \Rightarrow X(4160), X(4260) \cdots$  with  $J^{PC} = 1^{--}$ 

# Summary

- R values are important for  $(g-2)_{\mu}$ ,  $\alpha(M_z)$ ,  $\alpha_s(s)$ , and test pQCD prediction, and resonance parameters of charmonium states
- BESIII have collected with R scan data @ [2.0, 4.6]GeV
- Data analysis @ [2.232, 3.671]GeV is finished
  - ✓ Integrated luminosity: about 0.8% uncertainty
  - ✓ Radiative correction factor (1+ $\delta$ ): 1.2% uncertainty
  - ✓ MC generator: ConExc and LUARLW
- Data analysis @ [3.800, 4.590]GeV is in progress