

Dark Photon Search at BESIII with ISR Method

Yuping Guo (On behalf of B€5Ⅲ Collaboration)
Johannes Gutenberg University, Mainz

Dark Photon (γ')

- New Abelian gauge group U(1) force carrier, kinetic mixing with SM U(1) with mixing coefficient ε
- \blacksquare Could explain deviation of muon anomaly (g-2) $_{\!\mu}$ Also large number of astrophysical anomalies
- Typical mix strength: 10⁻² ~ 10⁻⁵
- Expected mass scale: MeV/c² ~ GeV/c²

BEPCII and BESIII Dector

- Energy range: 2.0 ~ 4.6 GeV
- Design luminosity: 10³³ cm⁻¹s⁻¹

Search Strategy

Decay channel: Initial State Radiation process:

$$e^+e^- \rightarrow \gamma_{ISR}\gamma' \rightarrow \gamma_{ISR}l^+l^-$$

- Search for narrow structure on top of the continuum QED background ($e^+e^- \rightarrow \gamma_{ISR}l^+l^-$)
- ISR photon untagged (flies along the beam)
- Data sample: 2.93 fb⁻¹ @ ψ (3770) peak

Number of Signal Events

- Fit the QED background with 4th order polynomial function
- Look for peaking structure in M(data-fit)
- Set 90% confidence level using profile likelihood approach

Calculation of ε

Number of dark photon events

Mixing coefficient

Dark photon mass

$$\frac{\sigma_i(e^+e^- \to \gamma'\gamma_{\rm ISR} \to l^+l^-\gamma_{\rm ISR})}{\sigma_i(e^+e^- \to \gamma^*\gamma_{\rm ISR} \to l^+l^-\gamma_{\rm ISR})} = \frac{3\pi}{2N_f^{l^+l^-}} \cdot \frac{\varepsilon^2}{\alpha} \cdot \frac{m_{\gamma'}}{\delta_m^{l^+l^-}}$$

Number of QED events from annihilation process

Fine structure constant

Bin width

Ratio of possible decay channels of the dark photon and the phase space

$$N_f^{l^+l^-} = \frac{\Gamma_{\text{tot}}}{\Gamma(\gamma' \to l^+l^-)} = 1 + \frac{\Gamma_{\mu\mu}}{\Gamma_{ee} + \Gamma_{\mu\mu}} \cdot (1 + R(\sqrt{s}))$$

Summary

- Dark photon search in mass region 1.5 GeV/c² ~ 3.4 GeV/c² with untagged method
- Analysis approach has no dependence on the radiator function
- \blacksquare No candidates with significance larger than 3σ found
- Mixing coefficient between 10⁻³ and 10⁻⁴, competitive limit in this mass region

