The Belle II Experiment at SuperKEKB

Changzheng Yuan (苑长征)

(for the Belle II Collaboration)

IHEP, Beijing Mainz, June 29, 2017

Outline

- Introduction
- Commissioning status and plans
 - SuperKEKB accelerator
 - Belle II detector
- Summary and outlook

The Belle experiment @ KEKB

World record:

 $L = 2.1 \times 10^{34} / \text{cm}^2 / \text{s}$

The B Factory Legacy

- Next Generation SuperKEKB+ Belle II with > 50 ab⁻¹
 - Discover (or constrain) new physics!

Physics at a Belle II

- Good chance to see/confirm new phenomena:
 - CPV from the new physics (non KM).
 - lepton universality in B decays (R_D, R_{D*}, R_K)
 - B→τν to probe charged Higgs.
 - Lepton flavor violations in τ decays.

- Will help to diagnose (if found) or constrain (if not found) NP.
- Physics motivation independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics.
- Many more topics: CPV in charm, new hadrons, ...

Physics reach with 50 ab⁻¹ (75 ab⁻¹):

- 1. Physics at Super B Factory (Belle II authors + guests) > arXiv:1002.5012
- 2. SuperB Progress Reports: Physics (SuperB authors + guests) > arXiv:1008.1541
- 3. B2TIP report: confluence.desy.de/display/BI/B2TiP+WebHome: > PTEP soon

Physics related to this workshop

b family

new states

PRL 108, 122001 PRL 108, 032001

c family

XYZ states

Review in EPJC71, 1534

u,d,s families

– via ISR, $\gamma \gamma$: g-2, $\Delta \alpha$, ...

PRL 103, 231801 PRD 86, 092007

Q2 (GeV2)

Tau, dark sectors, ...

6

Belle & Belle II talks at this workshop

- Results at Belle and perspectives for ISR physics at Belle II,
 by Boris Shwartz
- Experimental review of tau lepton studies at the B factories,
 by Denis Epifanov
- Dark Photon Search at Belle, by Igal Jaegle
- Recent results on XYZ physics from Belle, by Roman Mizuk
- γγ physics results from Belle and perspectives for Belle II,
 by Hideyuki Nakazawa

$\mathscr{L}_{\text{peak}}\text{=}2\text{\cdot}10^{34} \rightarrow 8\text{\cdot}10^{35}\text{/cm}^2\text{s}$

Strategies to increase luminosity

- (1) Smaller β_v^*
- (2) Increase beam currents
- (3) Increase ξ_v

"Nano-Beam" scheme

Collision with very small spot-size beams (P. Raimondi for SuperB)

Very focused beams, large crossing angle (83 mrad)

From KEKB to SuperKEKB

Grey is recycled, coloured is new

New superconducting / permanent final focusing quads near the IP

Replace short dipoles with longer ones (LER)

Low emittance positrons to inject

electrons to inject

Redesign the lattices of HER & LER to squeeze the emittance

> TiN-coated beam pipe with antechambers

Damping ring

Positron source New positron target / capture section

Target: $L = 8x10^{35}/cm^2/s$

Machine design parameters

parameters		KE	KB	Super	units	
		LER	HER	LER	HER	uiiito
Beam energy	E _b	3. 5	8	4	7	GeV
Half crossing angle	ф	1	1	41	mrad	
Horizontal emittance	εχ	18	24	3. 2	4. 3-4. 6	nm
Emittance ratio	K	0.88	0.66	0. 27	0. 25	%
Beta functions at IP	β_x*/β_y*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	I_{b}	1.64	1. 19	3. 60	2. 60	A
beam-beam parameter	ξ y	0. 129	0. 090	0. 0886	0.0830	
Luminosity	L	2. 1 x	1034	8 x	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	

- Small beam size & high current to increase luminosity
- Large crossing angle (83 mrad)
- Change beam energies to solve the problem of LER short lifetime

SuperKEKB Commissioning

Phase I (2016): No Belle II, circulate both beams without collisions **Phase II** (2018): With Belle II without vertex detector, first collisions

SuperKEKB

Commissioning Goals

Belle II

- Clean beam pipe (vacuum scrubbing)
- Real-time monitoring of beam conditions
- Tune accelerator optics, collimators etc.
- Isolate sources of beam loss and collect data for simulations

- Guarantee a safe operating environment for Belle II
- Mitigate beam backgrounds around the IP
- Test beam abort system based on diamond sensors
- Collect beam background data to validate background simulations

BEAST II - phase 1

Beam Exorcisms for A Stable Belle II ExperimenT

Goals

- Measure BG levels near IP
 - X-rays, charged tracks, neutrons
 - online feedback to SuperKEKB
 - offline for analysis
- Test and calibration of diamond sensor VXD beam abort
- First measurements of SuperKEKB injection backgrounds
- First comparison of SuperKEKB beam-loss simulation with experimental data

Expected SuperKEKB Backgrounds

Phase 1 (no collisions)

Touschek scattering:

- intra-bunch scattering process
- dominant with highly compressed beams
- · 20 times higher

Beam-gas scattering:

 Bremsstrahlung (negligible) & Coulomb interactions (up to 100 times higher) with residual gas atoms & molecules

Synchrotron radiation:

 emission of photons by charged particles (e⁺e⁻) when deflected in B-field

Phase 2 (collisions)

Radiative Bhabha process:

- photon emission prior or after
 Bhabha scattering
- interaction with iron in the magnets leads to neutron background

Two photon process:

- very low momentum e⁺e⁻
 pairs via e⁺e⁻
 >e⁺e⁻e⁺e⁻
- increased hit occupancy in inner detectors

Injection Background:

History of Phase 1 operation

June 21: LER beam current exceeded 1 Ampere

First 4 months of beam commissioning

KEKB

LER: 540 mA

HER: 300 mA

SuperKEKB

LER: 820 mA

HER: 740 mA

- SuperKEKB startup much faster than KEKB
- All upgraded components worked fine!
- KEKB experience was key

Beam "Scrubbing"

BEAST II - Phase 1

Cleaning a new beam pipe

- A key goal of phase 1 was to "scrub" the beam pipes
 - High currents stimulate desorption of impurities from beam pipe walls
 - Over time, **vacuum improves** lowering beam-gas backgrounds
- BEAST quantified distinct improvements in beam-gas in phase 1

SuperKEKB measurements of dP/dI vs integrated current

BEAST measurements of Rates/I² vs integrated current

Requirements on the detector

Critical issues at L= 8×10^{35} /cm²/s

Higher background (×10-20)

- radiation damage and occupancy
- fake hits and pile-up noise in the EM Calorimeter

Higher event rate (×10)

higher rate trigger, DAQ and computing

Special features required

- low momentum μ identification
- Hermeticity, v "reconstruction"

Result: significant upgrade

Belle II detector upgrade

The tracking system

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10~\mu\mathrm{m}$ Au, $0.6~\mathrm{mm}$ Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μ m ²		$\sigma_{z_0} \sim 20~\mu\mathrm{m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi}=100~\mu\mathrm{m},\sigma_z=2~\mathrm{mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\%p_t)^2 + (0.3\%/eta)^2}$
		- 83 $\leq z \leq$ 159 cm		$\sigma_{p_t}/p_t = \sqrt{(0.1\%p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)

Combined PXD+SVD beam test at DESY

Improvements of vertex detector

- Extrapolations of detector performance confirmed after beamtest results, and realistic software implementation
- Currently, in spite of

$$\langle \beta \gamma \rangle^{\text{Belle II}} = 28/44 \cdot \langle \beta \gamma \rangle^{\text{Belle}}$$

$$\sigma_{\Delta_t}^{\rm Belle~II} \sim \frac{3}{4} \sigma_{\Delta t}^{\rm Belle}$$

The Central Drift Chamber (CDC)

- Installed on Oct, 2016
- Commissioning with cosmic ray tracks is ongoing

Barrel PID: Time Of Propagation (TOP)

Forward PID: the Aerogel RICH

Use two aerogel layers in focusing configuration to increase n. of photons without resolution degradation

HAPD – Hybrid Avalanche Photo-Detector

- Developed in collaboration with Hamamatsu photonics
- Basic requirements: 1.5 T n,γ tolerance ($10^{12}~n/\mathrm{cm}^2$)

- position resolution
- large coverage (3.5 m^2)

ARICH Rings from cosmic ray muons

 First events from CR tracks recorded in a partially instrumented sector of the ARICH

Installation on the structure complete!

• Install in Belle II in September.

E.M. Calorimeter (ECL)

- High rates (machine+physics) ⇒ upgrade of electronics
 - shorter signal shaping
 - waveform fit to extract signal time and amplitude

Belle calorimeter

- 8736 CsI(Tl) crystals
- 6624 Barrel
- 1152 Fwd Endcap
- 960 Bwd Endcap

Early prototype tested at Belle

ECL commissioning

BWD endcap installation January 2017

- Barrel ECL under CR test since 2015
- Endcap calorimeter CR test ongoing

Combined CDC-ECL cosmic ray test

The KLong and Muon detector KLM

- 14 iron layers 4.7cm thick
- 15 barrel active layers
 - ✓2 x [scintillator strips + WLS + Side | SiPM] ← NEW
 - √13 x [double glass RPC + 5 cm orthogonal phi, z strips]
- 14 endcap active layers
 - √14 x [scintillator strips + WLS + SiPM] ← NEW

Endcap KLM

Pole Tip

Barrel KLM

- Installation is complete
- Commissioning with cosmic rays ongoing

Oho Side

Belle II Roll In

April 11th, 2017, Belle II Milestone!

Who are working on these?

- ~ 700 members from 104 institutes in 24 countries
- → Distributed collaboration → distributed computing

When do we start Belle II?

- Phase II Operation: Starts in Nov. 2017
 - Begin with damping ring commissioning
 - Main ring (Feb. 2018): first collisions!
 - Two main goals:
 - SuperKEKB luminosity with nano-beams reach KEKB maximum luminosity at the end of phase 2.
 - Ensure background levels are compatible with the operation of the vertex detector
 - Limited physics without vertex detectors
- Phase III: Starts late 2018
 - Belle II Physics Running (with vertex detectors in)

Luminosity profile of SuperKEKB

KEKB Peak Luminosity

year

3.85 years

 $x10^{33}$

Expected data sample @ full luminosity

Channel	Belle	BaBar	Belle II (per year)*
$B\bar{B}$	7.7×10^{8}	4.8×10^{8}	1.1×10^{10}
$B_s^{(*)}\bar{B}_s^{(*)}$	7.0×10^{6}	_	6.0×10^8
$\Upsilon(1S)$	1.0×10^{8}		1.8×10^{11}
$\Upsilon(2S)$	1.7×10^{8}	0.9×10^7	$7.0 imes 10^{10}$
$\Upsilon(3S)$	1.0×10^{7}	1.0×10^8	$3.7 imes 10^{10}$
$\Upsilon(5S)$	3.6×10^{7}	_	3.0×10^{9}
ττ	1.0×10^{9}	0.6×10^{9}	1.0×10^{10}

^{*} assuming 100% running at each energy

Assumptions:

- same commission time to reach design lum. as KEKB
- 9 months/year running
- 20 days/month

Summary and Outlook

- Phase 1 of the SuperKEKB commissioning successfully completed in 2016, with BEAST II commissioning detector on the beam line
- Belle II rolled in on April 11, 2017!
- June 2017 B-field measurement, start global cosmic ray run
- Sept. 2017- Installation of A-RICH and forward ECL
- Nov. 2017 Spring 2018: Phase 2 commissioning
 (+ first Physics runs, without vertex detector)
- Summer 2018 Install vertex detectors
- Late 2018 full detector operation Start of Physics runs

More slides

SuperKEKB/Belle II schedule

Phase II Unique data sets

Only ~20-40 fb⁻¹ in Phase II

- Unique E_{CM}, e.g. Y(6S) for bottomonium - strong interaction studies
- New trigger menu to greatly enhance low multiplicity & dark sector physics

			\										
Experiment	Scans	$\Upsilon(6S)$		$\Upsilon(5S)$		$\Upsilon(4S)$ $\Upsilon(3S)$		(SS)	$\Upsilon(2S)$		$\Upsilon(1S)$		
	Off. Res.	fb^{-1}	h	b^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	-		0.1	0.4	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R_{l}	ь	can		433	471	30	122	14	99	_	
Belle	100	~ 5.5	/	36	121	711	772	3	12	25	158	6	102

Final focus magnets

Superconducting quadrupole magnets with 30+25 coils

The second one delivered on Feb 13

World's most complex SC final focus!