Meson spectroscopy from lattice calculations

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk

PhiPsi17, Mainz, 26 - 29 June 2017

Lattice QCD Spectroscopy

Systematically-improvable first-principles calculations

- Discretise spacetime in a finite volume
- Compute correlation fns. numerically (Euclidean time, $t \rightarrow \mathrm{i} t$)
Note:
- Finite a and L
- Possibly heavy u, d (\rightarrow unphysical m_{π})

Finite-volume energy eigenstates from:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

Lower-lying mesons (and baryons)

Lower-lying mesons (and baryons)

Excited charmonia

$m_{\pi}=236 \mathrm{MeV}$ [Cheung et al (HadSpec) JHEP 12 (2016) 089], similar pattern to older $m_{\pi}=391 \mathrm{MeV}$

Excited charmonia

$m_{\pi}=236 \mathrm{MeV}$ [Cheung et al (HadSpec) JHEP 12 (2016) 089], similar pattern to older $m_{\pi}=391 \mathrm{MeV}$

Excited charmonia

$m_{\pi}=236 \mathrm{MeV}$ [Cheung et al (HadSpec) JHEP 12 (2016) 089], similar pattern to older $m_{\pi}=391 \mathrm{MeV}$

Excited charmonia

$m_{\pi}=236 \mathrm{MeV}$ [Cheung et al (HadSpec) JHEP 12 (2016) 089], similar pattern to older $m_{\pi}=391 \mathrm{MeV}$

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Scattering and resonances

Most hadrons appear as resonances in scattering of lighter hadrons

Singularity structure of scattering matrix

Scattering in Lattice QCD

Infinite volume - contin. spectrum above thresh.

Scattering in Lattice QCD

Infinite volume - contin. spectrum above thresh.

Finite volume - discrete spectrum

Non-interacting: $\vec{k}_{A, B}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$
Interacting

$$
\vec{k}_{A, B} \neq \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

[periodic b.c.s]

Scattering in Lattice QCD

Infinite volume - contin. spectrum above thresh.

Finite volume - discrete spectrum

Non-interacting: $\vec{k}_{A, B}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$

Interacting:

$$
\vec{k}_{A, B} \neq \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

$$
\mathrm{t}\left(E_{\mathrm{cm}}\right)=\left(\begin{array}{cc}
t_{\pi \pi \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{\pi \pi \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right) \\
t_{K \bar{K} \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{K \bar{K} \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right)
\end{array}\right)
$$

Lüscher method (and extensions): relate finite-volume energy levels to infinite-volume scattering t-matrix

In general under-constrained problem (determinant equ. at each E_{cm})
\rightarrow parameterize E_{cm} dependence of t-matrix and fit $\left\{E_{\text {lat }}\right\}$ to $\left\{E_{\text {param }}\right\}$
Consider many different parameterizations (e.g. K-matrix, eff. range, B.W.)

The ρ resonance: elastic $\pi \pi$ scattering

$$
\left(J^{P C}=1^{--}, I=1\right)
$$

The ρ resonance: elastic $\pi \pi$ scattering

The ρ resonance: coupled-channel $\pi \pi, K \bar{K}$

Light scalar mesons (<1 GeV)

κ in $\pi K, \eta K$

Wilson, Dudek, Edwards, CT
(HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

κ in $\pi K, \eta K$

```
JP}=\mp@subsup{0}{}{+},\mathrm{ Isospin = 1/2, Strangeness = 1
```


Virtual bound state [pole on real axis below threshold on unphysical sheet]
c.f. κ in unitarised χ pt [Nebreda \& Pelaez, PR D81, 054035 (2010)]

Wilson, Dudek, Edwards, CT
(HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

κ in $\pi K, \eta K$

Also: P-wave (1-) bound state, $m=933(1) \mathrm{MeV}, \mathrm{g}=5.93(26)$ c.f. K ${ }^{*}(892)$
and D-wave (2^{+}) narrow resonance c.f. $\mathrm{K}_{2}{ }^{*}(1430)$

Virtual bound state [pole on real axis below threshold on unphysical sheet]
c.f. κ in unitarised χ pt [Nebreda \& Pelaez, PR D81, 054035 (2010)]

Wilson, Dudek, Edwards, CT (HadSpec) [PRL 113, 182001 (2014); PR D91, 054008 (2015)]

a_{0} resonance in $\pi \eta, K \bar{K}$

$$
J^{P}=0^{+}, I=1
$$

a_{0} resonance in $\pi \eta, K \bar{K}$

$J^{P}=0^{+}, I=1$
$\rho_{i} \rho_{j}\left|t_{i j}\right|^{2} \sim \sigma$

$$
m_{\pi}=391 \mathrm{MeV}
$$

Pole (sheet IV) at: $\sqrt{s_{0}}=\left((1177 \pm 27)+\frac{i}{2}(49 \pm 33)\right) \mathrm{MeV}$,
$0.7-$

$$
\left|c_{K \bar{K}} / c_{\pi \eta}\right|=1.30(37)
$$

Resonance strongly coupled to both $\pi \eta$ and $K \bar{K}$

$\because \because . . .{ }^{\circ}$

Dudek, Edwards, Wilson (HadSpec) [PR D93, 094506 (2016)]

a_{0} resonance in $\pi \eta, K \bar{K}$

$$
J^{P}=0^{+}, I=1
$$

$\rho_{i} \rho_{j}\left|t_{i j}\right|^{2} \sim \sigma$

$$
m_{\pi}=391 \mathrm{MeV}
$$

0.7- Pole (sheet IV) at: $\sqrt{s_{0}}=\left((1177 \pm 27)+\frac{i}{2}(49 \pm 33)\right) \mathrm{MeV}$,
$0.7-$

$$
\left|c_{K \bar{K}} / c_{\pi \eta}\right|=1.30(37)
$$

Resonance strongly coupled to both $\pi \eta$ and $K \bar{K}$

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

Briceño, Dudek, Edwards, Wilson (HadSpec) [PRL 118, 022002 (2017)]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

Briceño, Dudek, Edwards, Wilson (HadSpec) [PRL 118, 022002 (2017)]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

Briceño, Dudek, Edwards, Wilson (HadSpec) [PRL 118, 022002 (2017)]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

Briceño, Dudek, Edwards, Wilson (HadSpec) [PRL 118, 022002 (2017)]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
\mathrm{J}^{\mathrm{P}}=0^{+}, \mathrm{I}=0
$$

analysis of exp. data, Pelaez [Phys. Rept. 658, 1 (2016)]

$f_{0}(500) / \sigma$ in $\pi \pi$ scattering

$$
J^{P}=0^{+}, I=0
$$

Charm-light: $D \pi, D \eta, D_{s} \bar{K}(I=1 / 2)$

Charm-light: $\mathrm{D} \pi, \mathrm{D} \eta, \mathrm{D}_{\mathrm{s}} \mathrm{K}(\mathrm{I}=1 / 2)$

Summary

- Excited spectra of charmonia including exotic JPC
- supermultiplets of hybrid mesons
- Significant progress in LQCD calculations of resonances, near-threshold states, etc - map out scattering amps.
- Some examples of recent work:
- ρ resonance, light scalars ($\kappa, a_{0}(980), \sigma$)
- Charm-light mesons
- [Also transitions, e.g. ρ resonance $(\pi \pi) \rightarrow \pi \gamma$]
- Use m_{π} dependence as a tool
- Ongoing work on formalism (e.g. 3-hadron scattering)
- Connections with analysis of experimental data

Hadron Spectrum Collaboration

Jefferson Lab, USA: Jozef Dudek, Robert Edwards, David Richards, Raul Briceño

Trinity College Dublin, Ireland:
Mike Peardon, Sinéad Ryan, David Wilson,
Cian O'Hara, David Tims
University of Cambridge, UK:
CT, Graham Moir, Gavin Cheung, Antoni Woss

Tata Institute, India:
Nilmani Mathur

Extra slides

Resonant $\pi^{+} \gamma \rightarrow \rho \rightarrow \pi^{+} \pi^{0}$ amplitude

Need: $\quad C_{i j}\left(t_{f}, t, t_{i}\right)=<0\left|O_{i}\left(t_{f}\right) \bar{\psi}(t) \gamma^{\mu} \psi(t) O_{j}\left(t_{i}\right)\right| 0>$

Charm-light (D) and charm-strange $\left(D_{s}\right)$ mesons

Some earlier LQCD studies:

- Mohler et al [PR D87, 034501 (2012)] - $0^{+} D \pi$ and $1^{+} D^{*} \pi$ resonances
- Mohler et al [PRL 111, 222001 (2013)] - $0^{+} D_{s}(2317)$ below D K threshold
- Lang et al [PRD 90, 034510 (2014)] - $0^{+} D_{s}(2317)$ and $1^{+} D_{s 1}(2460), D_{s 1}(2536)$

Some other recent work on charmonium(-like) mesons:

- Ozaki, Sasaki [PR D87, 014506 (2013)] - no sign of $Y(4140)$ in J/ $\psi \varphi$
- Prelovsek \& Leskovec [PRL 111, 192001 (2013)] - $1^{++} \mathrm{I}=0$ near $D \bar{D}^{*}-X(3872)$?
- Prelovsek et al [PL B727, 172; PR D91, 014504 (2015)] - no sign of $Z^{+}(3900)$ in 1^{+-}
- Chen et al (CLQCD) [PR D89, 094506 (2014)] - $1^{++} \mathrm{I}=1 D \bar{D}^{*}$ weakly repulsive
- Padmanath et al [PR D92, 034501 (2015)] - $1^{++} \mathrm{I}=0$ [X(3872)?]; no l=1 or $Y(4140)$
- Lang et al [JHEP 1509, 089 (2015)] - I=0 $D \bar{D}: 1^{--} \psi(3770)$ and 0^{++}
- Chen et al (CLQCD) [PR D92, 054507 (2015)] - $1^{+-} \mathrm{I}=1 D^{*} \bar{D}^{*}$ weakly repulsive?
- Chen et al (CLQCD) [PR D93, 114501 (2016)] $-0^{--}, 1^{+-} \mathrm{l}=1 D^{*} \bar{D}_{1}$ some attraction?
- Ikeda et al (HAL QCD) [PRL 117, 242001 (2016)] - $\pi \mathrm{J} / \psi, \rho \eta_{c}, D \bar{D}^{*}$ using HAL QCD method - suggest $Z^{+}(3900)$ is a threshold cusp
- Albaladejo et al [EPJ C76, 573 (2016)] - different scenarios for PR D91, 014504

Spectroscopy on the lattice

Energy eigenstates from: $\quad C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>$

$$
\text { Interpolating operators } \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x)[\ulcorner\overleftrightarrow{D} \leftrightarrows \stackrel{D}{D} \ldots] \psi(x)
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Spectroscopy on the lattice

Energy eigenstates from:

$$
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

$$
\text { Interpolating operators } \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x)[\ulcorner\overleftrightarrow{D} \overleftrightarrow{D} \ldots] \psi(x)
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Large basis of ops \rightarrow matrix of corrs. - generalised eigenvalue problem

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

$\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad v_{i}^{(n)} \rightarrow Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>\quad\left(t \gg t_{0}\right)$

Scattering in Lattice QCD

Scattering in Lattice QCD

Infinite volume - continuous
spectrum above threshold

Scattering in Lattice QCD

Infinite volume - continuous spectrum above threshold

Finite volume - discrete spectrum

Non-interacting: $\vec{k}_{A, B}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$
[periodic b.c.s]

Scattering in Lattice QCD

Infinite volume - continuous spectrum above threshold

$$
\begin{aligned}
& \operatorname{Im} E_{\mathrm{cm}} \\
& \hline
\end{aligned}
$$

Finite volume - discrete spectrum

[periodic b.c.s]

Non-interacting: $\vec{k}_{A, B}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)$

Interacting:

$$
\vec{k}_{A, B} \neq \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

c.f. 1-dim: $k=\frac{2 \pi}{L} n+\frac{2}{L} \delta(k)$
scattering phase shift

Scattering in Lattice QCD

Lüscher method [NP B354, 531 (1991)] extended by many others: relate finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix

Scattering in Lattice QCD

Lüscher method [NP B354, 531 (1991)] extended by many others: relate finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix

Elastic scattering: from E_{cm} get $t\left(E_{\mathrm{cm}}\right)$ or equivalently $\delta\left(E_{\mathrm{cm}}\right)$

$$
\text { Scattering t-matrix: } \quad S=I+2 i \rho t
$$

$$
\rho=\frac{2 k_{\mathrm{cm}}}{E_{\mathrm{cm}}}
$$

$$
t^{(\ell)}=\frac{1}{\rho} e^{i \delta_{\ell}} \sin \delta_{\ell}
$$

Larger set of $E_{\text {cm }}$ by e.g. overall non-zero mom., twisted b.c.s, different vols.
[Complication: reduced symmetry of lattice volume \rightarrow mixing of partial waves]

Scattering in Lattice QCD

Lüscher method [NP B354, 531 (1991)] extended by many others: relate finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix

Coupled-channel scattering:

$$
\text { E.g. } \quad \mathrm{t}\left(E_{\mathrm{Cm}}\right)=\left(\begin{array}{cc}
t_{\pi \pi \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{\pi \pi \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right) \\
t_{K \bar{K} \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{K \bar{K} \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right)
\end{array}\right)
$$

Determinant equation for $\mathbf{t}\left(E_{\mathrm{cm}}\right)$ at each E_{cm}

- Given $\mathbf{t}\left(E_{\mathrm{cm}}\right)$: solns. of equ. \rightarrow finite-vol. spec. $\left\{E_{\mathrm{cm}}\right\}$ But we need: spectrum $\rightarrow \mathbf{t}\left(E_{\mathrm{cm}}\right)$
- Under-constrained problem (e.g. 2 channels: 3 unknowns but 1 equ.)

Scattering in Lattice QCD

Lüscher method [NP B354, 531 (1991)] extended by many others: relate finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix

Coupled-channel scattering:

$$
\text { E.g. } \quad \mathrm{t}\left(E_{\mathrm{cm}}\right)=\left(\begin{array}{cc}
t_{\pi \pi \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{\pi \pi \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right) \\
t_{K \bar{K} \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{K \bar{K} \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right)
\end{array}\right)
$$

Determinant equation for $\mathbf{t}\left(E_{\mathrm{cm}}\right)$ at each E_{cm}

- Given $\mathbf{t}\left(E_{\mathrm{cm}}\right)$: solns. of equ. \rightarrow finite-vol. spec. $\left\{E_{\mathrm{cm}}\right\}$ But we need: spectrum $\rightarrow \mathbf{t}\left(E_{\mathrm{cm}}\right)$
- Under-constrained problem (e.g. 2 channels: 3 unknowns but 1 equ.)
\rightarrow Parameterize E_{cm} dependence of t-matrix and fit $\left\{E_{\text {lattice }}\right\}$ to $\left\{E_{\text {param }}\right\}$
Try different parameterizations, e.g. various K-matrix forms (for elastic scattering also Breit Wigner, effective range expansion).

