

Light quark physics at BESIII

Kang Xiaoshen Nankai University On Behalf of the BESIII Collaboration

Out line

- BEPCII and BESIII
- Recent highlights from BESIII on Light Hadrons
 - Research on Helicity-selection-rule suppressed decays
 - Research on $\eta(1405)/\eta(1475)$
 - Research on X(1835) and X($p\bar{p}$)
 - Research on glueballs
- Summary and Conclusions

BEPCII and BESIII

Beijing Electron Positron Collider II

The BESIII Detector

World **largest** J/ ψ , ψ (3686), ψ (3770), ...

Produced directly from e⁺ e⁻ annihilation: an ideal factory to study hadron spectroscopy

Light Hadrons

Helicity-selection-rule suppressed decay

Helicity-selection-rule suppressed decay

- $\chi_{c2} \rightarrow$ VP suffers not only from the **suppression** of the helicity selection rule, but also from the approximate G-parity or isospin (U-spin for strange mesons) conservation
- Because of the relatively large mass difference between the u/d quark and s quark, the intermediate meson loops may still bring in sizeable branching ratios for $\chi_{c2} \rightarrow K^*K + c.c.$
- No experimental results available

PWA:
$$\chi_{c2} \rightarrow K^+K^-\pi^0$$

 $\chi_{c2} \rightarrow K_sK^{\pm}\pi^{\pm}$

Xiao-Hai Liu, Qiang Zhao

Phys. Rev. D81(2010)014017

Br (x10 ⁻⁵)	K*0K0+c.c.	K*⁺K⁻+c.c.
Meson Loop	4.0~6.7	4.0~6.7

Helicity-selection-rule suppressed decay

Relativistic Breit-Wigner has been used for resonances. The mass and width for Breit-Wigner are fixed with PDG.

Br($\chi_{c2} \rightarrow K^*K, K^* \rightarrow K\pi$ +c.c.) [or Br($\chi_{c2} \rightarrow a_2\pi, a_2 \rightarrow KK$ +c.c.] (×10⁻⁴)

	Charged	Neutral
K*(892)	1.6±0.1±0.2	1.3±0.2±0.2
(* ₂ (1430)	8.0±0.3±0.6	6.5±0.5±0.9
۲* ₃ (1780)	1.0±0.1±0.1	^{***} 1.1±0.3±0.3
a ₂ (1320)	0.9±0.16±0.23	0.66±0.08±0.12
		10

$\eta(1405)/\eta(1475)$

Pseudoscalar (0⁻⁺)--η(1440)

The Structure of $\eta(1440)$

≻Experiment

- ✓ $\eta(1440)$ split to $\eta(1405)$ and $\eta(1475)$ (from PDG04)
- ✓ η(1405)→ηππ , or through $a_0(980)π$ (or direct) to KKπ
- $\checkmark \eta(1475) {\rightarrow} K^*(892) K$

≻Quark-model

- $\eta(1475)$: the first radial excitation of the η'
- η(1405) ?

>Phys. Rev. D87, 014023(2013)

• $\eta(1405)$ and $\eta(1475)$ are the same state with a mass shift in different modes

Pseudoscalar (0⁻⁺)-- η (1440)

- 1. $J/\psi \rightarrow \gamma \gamma \rho$ [Phys. Lett. B594, 47(2004)]
- 2. J/ψ → φηππ [**Phys. Rev. D91, 052017(2011**)]
- 3. $J/\psi \rightarrow \omega \eta \pi \pi$ [Phys. Rev. Lett. 107, 182001(2011)]
- 4. J/ $\psi \rightarrow \gamma \pi \pi \pi$ [Phys. Rev. Lett. 108, 182001 (2012)]

Pseudoscalar (0⁻⁺)-- η (1440)

Triangle Singularity (TS) One $\eta(1440)$ is enough to describe the experimental data

J. J. Wu et al. , Phys. Rev. Lett. 108, 081803

Phys. Rev. Lett. 108, 182001 (2012)

The isospin violated decay $\eta(1405) \rightarrow f_0(980)\pi^0$ is observed for the first time with a significance >10 σ .

X(1835) and X($p\bar{p}$)

- The second radial excitation of η'[Phys. Rev. D83. 114007(2011)]
- The NN bound state [Phys. Rev. D91. 074003 [3]
- The pseudo-scalar glueball [Phys. Lett. B633. 283 (2006)]

. . .

- Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^ \gg M = 1836.5 \pm 3.0^{+5.6}_{-2.1} \text{ MeV/c}^2$ $\gg \Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV/c}^2$

► Angular distribution is consistent with 0⁻

17

$\mathbf{X}(p\bar{p})$

- Discovered by BESII in $J/\psi \rightarrow \gamma p \bar{p}$
- Confirmed by BESIII and CLEO-c in ψ (3686) $\rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \gamma p\bar{p}$
- Confirmed by BESIII in $J/\psi \rightarrow \gamma p \bar{p}$ and its J^{PC} determined by PWA

≻0-+

```
M = 1832^{+19}_{-5} + \frac{18}{-17} \pm 19 \text{ MeV/c}^2

\Gamma = 13 \pm 19 \text{ MeV/c}^2 (<76 \text{ MeV/c}^2 @)

90% C.L.)
```


Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- X(1560)
 - $J^{PC} = 0^{-+}; X(1560) \rightarrow K_S K_S \eta (>8.9\sigma)$
 - $M = 1566 \pm 8^{+0}_{-63} MeV/c^2$
 - $\Gamma = 45 + 14 + 21 13 28 \text{ MeV/c}^2$
 - Consistent with $\eta(1405)/\eta(1475)$ (from its tail) within 2.0 σ
- X(1835)
 - J^{PC} determined to be 0⁻⁺
 - $X(1835) \rightarrow K_S K_S \eta$ (>12.9 σ), dominated by $f_0(980)$ production
 - $M = 1844 \pm 9^{+16}_{-25} MeV/c^2$
 - $\Gamma = 192^{+20}_{-17} + \frac{62}{-43}$ MeV/c²
 - Consistent with X(1835) parameters obtained from $J/\psi \rightarrow \gamma \eta' \pi \pi$

Phys. Rev. Lett. 115, 091803

X(1835) && X(pp)

X(pp̄)	X(1835)	
0-+	0-+	
$M = 1832^{+19}_{-5}{}^{+18}_{-17} \pm 19 \text{ MeV}/c^2$	$M = 1836.5 \pm 3.0^{+5.6}_{-2.1} \text{ MeV}/c^2$	
$\Gamma = 13 \pm 19 \text{ MeV}/c^2$ (< 76 MeV/ c^2 @ 90% C.L.)	$\Gamma = 190 \pm 9^{+38}_{-36} \text{ MeV/c}^2$	
pp̄ bound state?	pp bound state? η' excitation? glueball?	
	•••	
The SAME state?		

Anomalous line shape of $\eta' \pi \pi$ near the $p\bar{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi \pi$

- Simultaneous fits to two η' decay modes
- Simple Breit-Wigner function fails in describing the $\eta' \pi \pi$ line shape near the $p\bar{p}$ mass threshold
- Two typical circumstances where an abrupt distortion of a resonance's line shape shows up
 - Threshold structure caused by the opening of an additional $p\bar{p}$ decay mode
 - Use Flatté formula for the line shape
 - Interference between two resonances with one very narrow close to threshold
 - Use coherent sum of two Breit-Wigner amplitudes for the line shape

Both models fit the data well with almost equally good quality

Phys. Rev. Lett. 117, 042002

 $[\]log \mathcal{L} = 630503.3$

PhiPsi2017

Glueballs

Glueballs

- Formed by gluon-gluon interaction
 - Predicted by QCD
 - Not established in experiment
- LQCD prediction
- 0^{++} ground state: $1^2 GeV/c^2$
- 2^{++} ground state: $2.3^2.4 \text{ GeV/c}^2$
- 0⁻⁺ ground state: $2.3^2.6 \text{ GeV/c}^2$
- Radiative J/ψ decays are believed to be an ideal place to search for glueballs

PWA of J/ $\psi \rightarrow \gamma \eta \eta, \eta \rightarrow \gamma \gamma$

- $f_0(1710)$ and $f_0(2100)$ are dominant scalars
- f₀(1500) exists (8.2σ)
- f₂'(1525) is the dominant tensor
- f₂(1810) and f₂(2340) exist (6.4 and 7.6 σ)
- No evidence for $f_J(2220)$

Resonance Mass(Me	V/c^2) Width(MeV/c^2) $\mathcal{B}(J)$	$J/\psi \to \gamma X \to \gamma \eta \gamma$	η) Significance
-------------------	------------------	------------------------------	--	-----------------------

f_0	$_{0}(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2 σ
fo	(1710)	$1759{\pm}6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0 σ
fo	o(2100)	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
f_2	(1525)	$1513 \pm 5^{+4}_{-10}$	75_{-10-8}^{+12+16}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
f_2	$_{2}(1810)$	1822^{+29+66}_{-24-57}	$229_{-42-155}^{+52+88}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4 σ
f_2	$_{2}(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

PWA of J/ $\psi \rightarrow \gamma \pi^0 \pi^0$

PRD 92, 052003(2015)

- Model-independent PWA;
- Provide a description of the scalar and tensor components of the $\pi^0\pi^0$ system;
- Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- Only Model Dependent PWA of global PWA fit can rigerously extract resonance parameters, but cross-check between MDPWA and MIPWA is helpful.

PWA : $J/\psi \rightarrow \gamma \phi \phi$

\blacktriangleright Pure Tensor-glueball rate in J/ ψ radiative decays > BR(J/ $\psi \rightarrow \gamma G(2^{++}))=1.1(2)\times 10^{-2}$ > BR(J/ $\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \phi \phi$)=(1.91 ± 0.14^{+0.72}_{-0.73})×10⁻⁴ > BR(J/ $\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta$)=(5.60^{+0.62}_{-0.65}^{+2.37}_{-2.07})×10⁻⁵ PhiPsi2017

Decay rate of pure glueball from LQCD

 \blacktriangleright Pure scalar-glueball rate in J/ ψ radiative decays

> BR(J/ $\psi \rightarrow \gamma G(0^{++}))=3.8(9)\times 10^{-3}$

heng Gui et al. RL 110 (2013) 021601 \geq BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma K\overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$ > BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$

> BR(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \omega \omega) = (3.1 \pm 1.0) \times 10^{-4}$ > BR(J/ $\psi > \gamma f_0(1710) > \gamma \eta \eta$)=(2.35^{+0.13+1.24}_{-0.11-0.74})×10⁻⁴

BESIII results

YI-Bo Yang et al. PRL 111, 091601

Summary

BESIII started data taking for physics since 2009

- World largest data samples at J/ ψ , ψ ', ψ (3770), ψ (4040), Y(4260) already collected, more data in future coming soon
- BESIII is in her golden age, more results will appear: charm meson, form factors, tau physics, two-photon, rare processes ...
- BESIII is playing leading role on hadron spectroscopy
- Expect more results from BESIII in the future !

Thanks for your attention!

Backup

• Helicity Selection Rule (HSR): $\sigma^{\text{initial}} = \sigma_1 \cdot \sigma_2$ (, $\sigma = P \cdot (-1)^J$)

	VV	V P
χ_{c0}	V	Suppressed
χ_{c1}	Suppressed	\checkmark
χ _{c2}	V	Suppressed

Anomalous line shape of $\eta' \pi \pi$ near the $P\bar{P}$ mass threshold in $J/\psi \rightarrow \eta' \pi \pi$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- η' decay modes:
 - η' → γππ
 - $\eta' \rightarrow \eta \pi \pi; \eta \rightarrow \gamma \gamma$
- Clear peaks of X(1835), X(2120), X(2370), η_c , and a structure near 2.6 GeV/c²
- A significant distortion of the $\eta' \pi \pi$ line shape near the $p\bar{p}$ mass threshold

Anomalous line shape of $\eta' \pi \pi$ near the $P\bar{P}$ mass threshold in $J/\psi \rightarrow \eta' \pi \pi - Model I$

PhiPsi2017

• Use the Flatté formula for the line shape

$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - S - i \sum_k g_k^2 \rho_k}$$

• $\sum_k g_k^2 \rho_{k^{\sim}} g_0^2 \left(\rho_0 + \frac{g_{P\bar{P}}^2}{g_0^2} \rho_{P\bar{P}} \right)$

• $g_{P\bar{P}}^2/g_0^2$ is the ratio between the coupling strength to the pp channel and the summation of all other channels

The state around 1.85 GeV/e	2
\mathcal{M} (MeV/ c^2)	1638.0 +121.9 +127.8 -121.9 -254.3
g_0^2 ((GeV/c ²) ²)	93.7 +35.4 +47.6 -35.4 -43.9
$g_{p\overline{p}}^2/g_0^2$	2.31 ^{+0.37+0.83} -0.37 ^{-0.60}
$M_{pole} (MeV/c^2)^*$	1909.5 +15.9 +9.4 -15.9 -27.5
Γ_{pole} (MeV/ c^2) *	273.5 +21.4 +6.1 -21.4 -64.0
Branching Ratio	$(3.93 {}^{+0.38}_{-0.38} {}^{+0.31}_{-0.84}) imes 10^{-4}$

(//c²) 1510) 1835) 1-Resonan **Me** 1500 Background pp threshold Events / (10 1.85 1.9 1000 500 1.3 1.4 1.5 1.8 1.9 2.1 1.6 1.7 2.2 $M[n'\pi^{\dagger}\pi^{-}]$ (GeV/c²)

2500

 $log\mathcal{L} = 630549.5$

Phys. Rev. Lett. 117, 042002

June 25, 20 the pole nearest to the pp mass threshold

Data Global Fit

Anomalous line shape of $\eta'\pi\pi$ near the $P\overline{P}$ mass threshold in $J/\psi \rightarrow \eta'\pi\pi - Model II$

• Use coherent sum of two Breit-Wigner amplitudes

•
$$T = \frac{\sqrt{\rho_{out}}}{\mathsf{M}_1^2 - s - i\mathsf{M}_1} \Gamma_1 + \frac{\beta e^{i\theta} \sqrt{\rho_{out}}}{\mathsf{M}_2^2 - s - i\mathsf{M}_2} \Gamma_2$$

X(1835)	
M (MeV/c ²)	1825.3 +2.4 +17.3 -2.4 -2.4
Γ (MeV/c ²)	245.2 +14.2 +4.6 -12.6 -9.6
B.R. (constructive interference)	$(3.01 \stackrel{+0.17}{_{-0.17}} \stackrel{+0.26}{_{-0.28}}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72 + 0.21 + 0.18)_{-0.21} \times 10^{-4}$
X(1870)	
M (MeV/c ²)	1870.2 ⁺²²⁺²³ -23-0.7
M (MeV/c ²) Γ (MeV/c ²)	1870. 2 +2.2 +2.3 -2.3 -0.7 13. 0 +7.1 +2.1 -5.5 -3.8
M (MeV/ c^2) Γ (MeV/ c^2) B.R. (constructive interference)	$1870.2 \begin{array}{c} +2.2 \\ -2.3 \\ -2.3 \\ -0.7 \end{array}$ $13.0 \begin{array}{c} +7.1 \\ -5.5 \\ -3.8 \end{array}$ $(2.03 \begin{array}{c} +0.12 \\ -0.12 \\ -0.70 \end{array}) \times 10^{-7}$
M (MeV/ c^2) Γ (MeV/ c^2) B.R. (constructive interference) B.R. (destructive interference)	$\begin{array}{c} \textbf{1870.2} \stackrel{+2.2}{_{-2.3}}\stackrel{+2.3}{_{-0.7}}\\ \textbf{13.0} \stackrel{+7.1}{_{-5.5}}\stackrel{+2.1}{_{-3.8}}\\ (2.03 \stackrel{+0.12}{_{-0.12}}\stackrel{+0.43}{_{-0.70}}) \times 10^{-7}\\ (1.57 \stackrel{+0.09}{_{-0.09}}\stackrel{+0.49}{_{-0.86}}) \times 10^{-5} \end{array}$

Phys. Rev. Lett. 117, 042002

 $log \mathcal{L} = 630540.3$

Anomalous line shape of $\eta' \pi \pi$ near the $P \overline{P}$ mass threshold connection between X(1835) and X($P \overline{P}$)

- Both models fit the data well with almost equally good quality
 - Cannot distinguish them with current data
 - Suggest the existence of a state, either a broad state with strong couplings to $P\overline{P}$, or a narrow state just below the $P\overline{P}$ mass threshold
 - Support the existence of a $P\overline{P}$ molecule-like state or bound state
- To understand the nature of the state(s)
 - More J/ψ data to distinguish two models
 - Study line shapes in other decay modes
 - $J/\psi \rightarrow \gamma P \overline{P}$
 - $J/\psi \rightarrow \gamma K_s K_s \eta$
 - ...

PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- The $\pi^0\pi^0$ system
 - Very clean
 - Large statistics and many open channels
 - Many broad and overlapping resonances
 - Model independent PWA

More than 440,000 reconstructed events

➢ Background level ~ 1.8%

$\mathsf{PWA}: \mathsf{J}/\psi \xrightarrow{} \gamma \phi \phi$

- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- PWA procedure
 - Covariant tensor formalism
 - Data-driven background subtraction
 - Resonances are parameterized by relativistic Breit-Wigner with constant width
 - Resonances with significance > 5 σ are selected as components in solution

Phys. Rev. D 93, 112011

PhiPsi2017