Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

G. Venanzoni on behalf of the KLOE-2 Collaboration

Sezione INFN di Pisa, Italy

$\alpha_{_{em}}$ running and the Vacuum Polarization

- Due to Vacuum Polarization effects α_{em}(q²) is a running parameter from its value at vanishing momentum transfer to the effective q².
- The "Vacuum Polarization" function Π(q²) can be "absorbed" in a redefinition of an effective charge:

$$e^{2} \rightarrow e^{2}(q^{2}) = \frac{e^{2}}{1 + (\Pi(q^{2}) - \Pi(0))} \qquad \alpha(q^{2}) = \frac{\alpha(0)}{1 - \Delta\alpha}; \quad \Delta\alpha = -\Re e \left(\Pi(q^{2}) - \Pi(0)\right)$$
$$\Delta\alpha = \Delta\alpha_{l} + \Delta\alpha_{top}^{(5)} + \Delta\alpha_{top}^{(5)}$$

> Δ a takes a contribution by non perturbative hadronic effects ($\Delta a^{(5)}_{had}$) which exibits a different behaviour in time-like and space-like region

$\alpha_{_{em}}$ running and the Vacuum Polarization

- Due to Vacuum Polarization effects α_{em}(q²) is a running parameter from its value at vanishing momentum transfer to the effective q².
- The "Vacuum Polarization" function Π(q²) can be "absorbed" in a redefinition of an effective charge:

$$e^{2} \rightarrow e^{2}(q^{2}) = \frac{e^{2}}{1 + (\Pi(q^{2}) - \Pi(0))} \qquad \alpha(q^{2}) = \frac{\alpha(0)}{1 - \Delta\alpha}; \quad \Delta\alpha = -\Re e \Big(\Pi(q^{2}) - \Pi(0) \Big)$$

$$\Delta \alpha = \Delta \alpha_{\rm I} + \Delta \alpha^{(5)}_{\rm had} + \Delta \alpha_{\rm top}$$

 Aa takes a contribution by non perturbative hadronic effects (∆a⁽⁵⁾_{had}) which exibits a different behaviour in time-like and space-like region

Running of α_{em}

Direct measurement of α_{em} running

Previous tests of the hadronic contribution to VP

1) '73: $\phi(1020)$ contribution to VP at ACO (Orsay e+e-) in the e⁺e⁻ $\rightarrow \mu + \mu$ - process: evidence at 3 σ in the region ±5 MeV around the ϕ peak [**Phys.Rev.Lett. 30** (**1973**) **462-464**)]

2) 70's: g-2 experiment at CERN: evidence for hadronic contribution to g-2 at 6σ
[Phys. Lett. 67B (1977) 225; Phys. Lett. 68B (1977) 191]

3) 2006: OPAL at LEP: evidence for hadronic contributon Δa_{had} (t) (t<0) at 3 σ in Bhabha scattering at small angle [Eur.Phys.J. C45 (2006) 1-21]

G. Venanzoni, PHIPSI17, Mainz, 26 June 2017

0.997

-t (GeV²)

KLOE measurement of α(s) below 1 GeV with 1.7 fb⁻¹ Phys. Lett. B 767 (2017) 485-492

$$\frac{\alpha(s)}{\alpha(0)}|^{2} = \frac{d\sigma_{data}(e^{+}e^{-} \to \mu^{+}\mu^{-}\gamma(\gamma))|_{ISR}/d\sqrt{s}}{d\sigma_{MC}^{0}(e^{+}e^{-} \to \mu^{+}\mu^{-}\gamma(\gamma))|_{ISR}/d\sqrt{s}} \qquad \vdots \qquad \text{data}$$

$$\text{MC with } \alpha(s) = \alpha(o)$$

- FSR correction done using PHOKHARA MC event generator [H. Czyz, A. Grzelinska, J.H. Kuhn, G. Rodrigo, Eur. Phys. J. C 39 (2005) 411]
- Statistical significance of the hadron contribution to the effective $\alpha(\textbf{s})$ is evaluated
- For the first time in a single experiment the real and Imaginary part of $\Delta \alpha$
- Measurement of $BR(\omega \rightarrow \mu^+ \mu^-)$

DAΦNE: A Φ-Factory in Frascati (near Rome)

e^+e^- - collider with $\sqrt{s}=m_{\Phi}\approx 1.0195$ GeV Integrated Luminosity

• 240 pb⁻¹ at = 1000 MeV (off-peak data)

DAΦNE is running with the KLOE-2 detector with the aim to collect additional 5fb⁻¹ (see Berlowski & Perez del Rio presentations) [~4fb⁻¹ collected so far]

Our analysis is based on 1.7pb⁻¹ of data taken in 2004/05

Phys. Lett. B 767 (2017) 485-492

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90⁰ tracks) $\sigma_{xy} \approx 150 \text{ mm}, \sigma_z \approx 2 \text{ mm}$ *Excellent momentum resolution*

Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀

KLOE Detector

Electromagnetic Calorimeter

 $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ $\sigma_{\rm T}$ = 54 ps / $\sqrt{E(GeV)}$ \oplus 100 ps (Bunch length contribution subtracted from constant term) **Excellent timing resolution**

Event Selection: Small Angle (SA)

Muon tracks at large angles $50^{\circ} < \theta_{\mu} < 130^{\circ}$

Photons at small angles $\theta_{y} < 15^{\circ} \text{ or } \theta_{y} > 165^{\circ}$

Photon momentum from kinematics:

$$\vec{p}_{\gamma}=\vec{p}_{\rm miss}=-(\vec{p}_++\vec{p}_-)$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Event Selection: Small Angle (SA)

KLOE

Muon tracks at large angles $50^{\circ} < \theta_{\mu} < 130^{\circ}$

Photons at small angles $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$ \Rightarrow Photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_+ + \vec{p}_-)$$

- Careful work to achieve a control of ~1% in the muon selection and background subtraction
- Efficiencies done on data

μμγ cross section measurement Integrated Luminosity 1.7 fb⁻¹

Measurement of the running of $\alpha(s)$

N

1.1

$$|\frac{\alpha(s)}{\alpha(0)}|^{2} = \frac{\frac{d\sigma^{ISR}}{dM_{\mu\mu}}}{\frac{d\sigma^{MC}}{dM_{\mu\mu}}}$$
MC with $\alpha = \alpha(0)$

$$\left|\frac{\alpha(s)}{\alpha(0)}\right|^{2} = \frac{1}{|1 - \Delta\alpha(s)|^{2}}$$

$$\Delta\alpha(s) = \Delta\alpha_{lep} + \Delta\alpha_{had}$$
(we neglect the top contribution)
$$-\Delta a_{had}$$
obtained by dispersive approach using data in time-like provided by F. Jegerlehner

- Excellent agreement with other R compilation (Teubner / Ignatov)

а

$$\begin{bmatrix} 0 & 1.08 \\ 1.06 \\ 1.04 \\ 1.02 \\ 1 \\ 0.98 \\ 0.96 \\ 0.94 \\ 0.92$$

Systematic error at ~1% level

$$\Delta \alpha_{had}(s) = -\left(\frac{\alpha(0)s}{3\pi}\right) Re \int_{m_{\pi}^2}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\epsilon)} \qquad R(s) = \frac{\sigma_{tot}(e^+e^- \to \gamma * \to hadrons)}{\sigma_{tot}(e^+e^- \to \gamma * \to \mu^+\mu^-)}$$

Test of leptonic and hadronic contribution to $\alpha(s)$

 χ^2 -test for two hypotheses: no running and running due to lepton pairs only is performed.

We exclude the onlyleptonic hypothesis at 6σ Our result is consistent with the lepton and hadron hypothesis with a statistical significance of 0.3 $(\chi^2/ndf = 41.2/37)$.

G. Venanzoni, PHIPSI17, Mainz, 26 June 2017

Systematics

Syst. errors	$\sigma_{\mu\mu\gamma}$	$ \alpha(s)/\alpha(0) ^2$
Trigger	< 0.1%	
Tracking	s dep. (0.5% at ρ -peak)	
Particle ID	< 0.1%	
Background subtraction	s dep. (0.1% at $\rho\text{-peak})$	
M_{TRK}	0.4%	
σ_{MTRK}	s dep. (0.05% at $\rho\text{-peak})$	
Acceptance	s dep. (0.3% at $\rho\text{-peak})$	
Software Trigger	0.1%	
Luminosity	0.3%	
$\Delta \alpha_{had}$ dep. (Normalization)	-	0.2%
FSR treatment	0.2%	
Rad. function H	-	0.5%
Total systematic error	s dep. (0.7% at $\rho{\rm -peak})$	(0.9% at $\rho{\rm -peak})$

Real and Imaginary part of $\Delta \alpha(s)$

In the contribution to the running of α the imaginary part is usually neglected. This approximation is not sufficient in the presence of resonances like the ρ meson, where the accuracy of the cross section measurements reaches the order of (or even less than) 1%.

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha}; \quad \Delta \alpha = -(\Pi(s) - \Pi(0))$$

$$Re \Delta \alpha = 1 - \sqrt{|\alpha(0)/\alpha(s)|^2 - (Im \Delta \alpha)^2}.$$

$$Im\Delta \alpha = -\frac{\alpha}{3} R(s) \qquad R(s) = \sigma_{tot} / \frac{4\pi \alpha(s)^2}{3s}$$

$$R(s) = R_{lep}(s) + R_{had};$$

$$R_{lep} = \sqrt{1 - \frac{4m_l^2}{s}} \left(1 + \frac{2m_l^2}{s}\right) \qquad (l = e, \mu, \tau)$$

$$R_{had}(s) = \frac{1}{4} \left(1 - \frac{4m_{\pi}^2}{s} \right)^{\frac{3}{2}} |F_{\pi}^0(s)|^2$$

$$|F_{\pi}^{0}(s)|^{2} = |F_{\pi}(s)|^{2} \left|\frac{\alpha(0)}{\alpha(s)}\right|^{2}$$

Physics Letters B 720 (2013) 336-343

In collaboration with F. Jegerlehner

Real and Imaginary part of $\Delta \alpha(s)$

In the contribution to the running of α the imaginary part is usually neglected. This approximation is not sufficient in the presence of resonances like the ρ meson, where the accuracy of the cross section measurements reaches the order of (or even less than) 1%.

$$\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha}; \quad \Delta \alpha = -(\Pi(s) - \Pi(0))$$

$$Re \,\Delta \alpha = 1 - \sqrt{|\alpha(0)/\alpha(s)|^2 - (Im \,\Delta \alpha)^2}.$$
$$Im \Delta \alpha = -\frac{\alpha}{3} R(s) \qquad R(s) = \sigma_{tot} / \frac{4\pi \alpha(s)^2}{3s}.$$

$$R(s) = R_{lep}(s) + R_{had},$$

$$R_{lep} = \sqrt{1 - \frac{4m_l^2}{s}} \left(1 + \frac{2m_l^2}{s}\right) \qquad (l = e, \mu, \tau)$$

$$R_{had}(s) = \frac{1}{4} \left(1 - \frac{4m_{\pi}^2}{s} \right)^{\frac{3}{2}} |F_{\pi}^0(s)|^2$$

$$|F_{\pi}^{0}(s)|^{2} = |F_{\pi}(s)|^{2} \left|\frac{\alpha(0)}{\alpha(s)}\right|^{2}$$

Physics Letters B 720 (2013) 336-343

In collaboration with F. Jegerlehner

Imaginary part of $\Delta\alpha(s)$

Results obtained for the 2π contribution to $\Lambda\alpha$ by using KLOE12 measurement of the pion form factor (red full circles) and the ones obtained by using the $R_{had}(s)$ compilation with the 2π channel only and removing KLOE data (blue solid line).

$$= 0.005 \\ -0.015 \\ -0.025 \\ -0.025 \\ -0.03 \\ 0.6 \\ 0.65 \\ 0.7 \\ 0.7 \\ 0.75 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.9$$

 $Im\Delta\alpha = -\frac{\alpha}{3}R(s)$

Real part of $\Delta \alpha(s)$

 $Re\Delta\alpha$ obtained by KLOE $\mu\mu\gamma$ data compared with theoretical prediction with leptonic contribution only and with leptonic and hadronic contributions. Excellent agreement for Re $\Delta \alpha(s)$ has been obtained with the databased compilation

$$Re\,\Delta\alpha = 1 - \sqrt{|\alpha(0)/\alpha(s)|^2 - (Im\,\Delta\alpha)^2}.$$

Fit of Re $\Delta \alpha$ (s)

We fit Re $\Delta \alpha$ by a sum of the leptonic and hadronic contributions, where the hadronic contribution is parametrized as a sum of $\rho(770)$, $\omega(782)$ and $\phi(1020)$ resonances components and a non resonant term (param. with a pol1)

$$Re \,\Delta \alpha_{V=\omega,\phi} = \frac{3\sqrt{BR(V \to e^+e^-) \cdot BR(V \to \mu^+\mu^-)}}{\alpha M_V} \frac{s(s - M_V^2)}{(s - M_V^2)^2 + M^2 \Gamma_V^2} \quad \text{For } \omega, \phi$$

$$F_{\pi}(s) = BW_{\rho(s)}^{GS} = \frac{M_{\rho}^2 (1 + d\Gamma_{\rho}/M_{\rho})}{M_{\rho}^2 - s + f(s) - iM_{\rho}\Gamma_{\rho}(s)}$$

For $\rho,$ neglecting interference with ω and high exc. stat. of ρ

 Γ_{ω} , M_{ϕ} , Γ_{ϕ} , and BR($\phi \rightarrow e^+e^-$)BR($\phi \rightarrow \mu^+\mu^-$) fixed to PDG values [pdg]

[pdg] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.

Fit of Re $\Delta \alpha$ (s)

$$BR(\omega \to \mu^+ \mu^-)BR(\omega \to e^+ e^-) = (4.3 \pm 1.8 \pm 2.2) \cdot 10^{-9}$$

Assuming lepton universality and multiplying for the phase space correction

$$\xi = \left(1 + 2\frac{m_{\mu}^2}{m_{\omega}^2}\right) \left(1 - 4\frac{m_{\mu}^2}{m_{\omega}^2}\right)^{1/2}$$

$$BR(\omega \to \mu^+ \mu^-) =$$

= (6.6 ± 1.4_{stat} ± 1.7_{syst}) · 10⁻⁵

 $(9.0 \pm 3.1) \cdot 10^{-5}$ from PDG

Parameter	Result from the fit	PDG
M_{ρ}, MeV	775 ± 6	775.26 ± 0.25
$\Gamma_{\rho}, \mathrm{MeV}$	146 ± 9	147 ± 0.9
$M_{\omega}, {\rm MeV}$	782.7 ± 1.0	782.65 ± 0.12
$BR(\omega \to \mu^+ \mu^-) BR(\omega \to e^+ e^-)$	$(4.3\pm 1.8)\cdot 10^{-9}$	$(6.5\pm2.3)\cdot10^{-9}$
χ^2/ndf	1.19	-

Inclusion of ω - ρ interference doesn't change the results (within the error)

FUTURE: a_{μ}^{HLO} from $\Delta \alpha$ (t) in the space-like region

$$a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had} (-\frac{x^2}{1-x} m_{\mu}^2) dx$$

$$t = \frac{x^2 m_{\mu}^2}{x - 1} \quad 0 \le -t < +\infty$$
$$x = \frac{t}{2m_{\mu}^2} (1 - \sqrt{1 - \frac{4m_{\mu}^2}{t}}); \quad 0 \le x < 1;$$

- a_μ^{HLO} is given by the integral of the curve (smooth behaviour)
- It requires a measurement of the hadronic contribution to the effective electromagnetic coupling in the space-like region Δα_{had}(t) (t=q²<o)
- It enhances the contribution from low q² region (below 0.11 GeV²)
- Its precision is determined by the uncertainty on $\Delta \alpha_{had}$ (t) in this region

FUTURE: a_{μ}^{HLO} from $\Delta \alpha$ (t) in the space-like region

Conclusions

- The running of the e.m. coupling constant α has been measured in the ISR process $e^+e^- \rightarrow \mu^+\mu^-\gamma$ in the o.6 o.98 GeV $M_{\mu\mu}$ invariant mass range with 1.7 fb⁻¹.
- The μμγ cross section has been measured at <1% accuracy and shows excellent agreement with NLO Phokhara MC generator.
- Clear contribution of the $\rho-\omega$ interference to the photon propagator with 6σ statistical significance.
- Imaginary and Real part of $\Delta a(s)$ extracted.
- By a fit of the real part of $\Delta a(s)$ and assuming lepton universality the branching ratio of $\omega \rightarrow \mu^+ \mu^-$ has been extracted.
- New proposal to measure $\Delta a(t)$ at high precision in the space-like region for a_u^{HLO} (see L. Trentadue's presentation).

SPARES

Outlook: measurement of $\Delta \alpha(q^2)$ in the space-like region for a_{μ}^{HLO}

Measuring the leading hadronic contribution to the muon g-2 via μe scattering

G. Abbiendi^{1,a}, C. M. Carloni Calame^{2,b}, U. Marconi^{3,c}, C. Matteuzzi^{4,d}, G. Montagna^{2,5,c}, O. Nicrosini^{2,f}, M. Passera^{6,g}, F. Piccinini^{2,h}, R. Tenchini^{7,i}, L. Trentadue^{8,4,j}, G. Venanzoni^{9,k}

- ¹ INFN Bologna, Viale Carlo Berti-Pichat 6/2, 40127 Bologna, Italy
- ² INFN Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy
- ³ INFN Bologna, Via Irnerio 46, 40126 Bologna, Italy
- ⁴ INFN Milano Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
- ⁵ Dipartimento di Fisica, Università di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
- ⁶ INFN Padova, Via Francesco Marzolo 8, 35131 Padua, Italy
- ⁷ INFN Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
- ⁸ Dipartimento di Fisica e Scienze della Terra "M. Melloni", Parco Area delle Scienze 7/A, 43124 Parma, Italy
- ⁹ INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, RM, Italy

Eur. Phys. J C 77 (2017) 139

THE EUROPEAN

PHYSICAL JOURNAL C

CrossMark

G. Venanzoni, Seminar at CERN, 28 March 2017

60'-70'(PRE)History of ISR (Apologize for missing articles)

- Photon emission in muon pair production in electron-positron collisions (e+ e- $\rightarrow \mu$ + μ - γ , otot, ISR, FSR, interference)V. N. Baier, V. A. Khoze, ZhETF 48 (1965) 946, Yad. Fiz. 2 (1965) 287
- Radiation accompanying two particle annihilation of an electron positron pair (scalar final states e+ e- → π+ π- γ, σtot, ISR, FSR, interference, formfactors) V. N. Baier, V. A. Khoze, Sov. Phys. JETP 21 (1965) 629, 1145 [Zh. Eksp. Theor. Fiz. 48 (1965) 946]
- Infra-red radiative corrections for resonant processes (ϱ, ω, φ intermediate states) G. Pancheri, Nuovo Cim. A 60 (1969) 321
- Radiative Corrections for Colliding Beam Resonances (application to $\psi(3.1), \psi'(3.7)$ intermediate states) M. Greco, G. Pancheri, Y. N. Srivastava, Nucl. Phys. B 101 (1975) 234
- Secondary Reactions in electron positron (electron) Collisions (pion form factor) M. S. Chen, P. M. Zerwas, Phys. Rev. D 11 (1975) 58

End of the 1990s: ISR at DAFNE and KLOE

- Hadronic Cross Sections in Electron-Positron Annihilation with Tagged Photon A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, L. Trentadue, JHEP 9812:009, 1998
- The hadronic contribution to the muon g-2 from hadronic production in ISR events at e+e- collider DAFNE, S. Spagnolo, Eur. Phys. J. C6 (1999) 637
- Measuring σ (e+ e- → hadrons) using tagged photon S. Binner, H. Kühn, K. Melnikov, Phys. Lett. B 459 (1999) 279
- Measurement of σ (e+ e- $\rightarrow \pi^+\pi^-$) from ISR with KLOE (first realistic study) G. Cataldi, A. Denig, W. K., G. Venanzoni, KLOE memo #195, August 1999,
- Bottomonium Υ(ns) spectroscopy at B- Factories via hard photon emission M. Benayoun, S. I. Eidelman, V. N. Ivanchenko, Z. K. Silagadze Mod. Phys. Lett. A 14 (1999) 2605

Years 2000s : ISR at the per mill precision: PHOKHARA enters the game (selected entries)

- NLO QED corrections to ISR in e+ e- annihilation and the measurement of sigma(e+ e- → hadrons) using tagged photons, G. Rodrigo, A. Gehrmann-De Ridder, M. Guilleaume and J. H. Kühn, Eur. Phys. J. C 22 (2001) 81
- The radiative return at small angles: Virtual corrections, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 25 (2002) 215
- Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, G. Rodrigo, H. Czyż, , J. H. Kühn and M. Szopa, Eur. Phys. J. C 24 (2002) 71
- The radiative return at Phi- and B-factories: Small-angle photon emission at next to leading order, H. Czyż, A. Grzelińska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 27 (2003) 563
- The radiative return at Phi and B-factories: FSR at next-to-leading order, H. Czyż, A. Grzelińska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 33 (2004) 333
- The radiative return at Phi- and B-factories: FSR for muon % pair production at next-to-leading order, H. Czyż, A. Grzelińska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 39 (2005) 411
- Complete QED NLO contributions to the reaction e+e-→μ⁺μ⁻γ and their implementation in the event generator PHOKHARA, F. Campanario, H. Czyż, J. Gluza, M. Gunia, T. Riemann, G. Rodrigo and V. Yundin, JHEP 1402 (2014) 114