Jefferson Lab Report

E.Chudakov

JLab

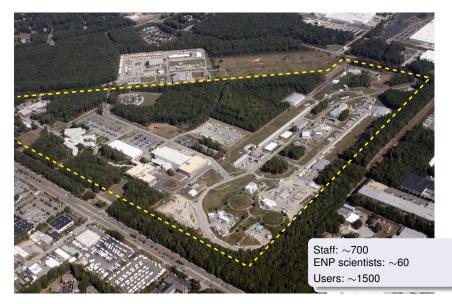
Presented at 11th International workshop on e^+e^- collisions from ϕ to ψ PhiPsi17, Mainz, 26-29 June 2017

v PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

E.Chudakov

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

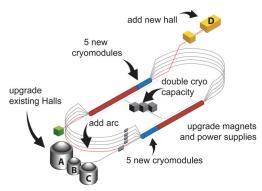


E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

E.Chudakov

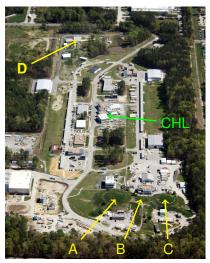
PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report



JLab at 12 GeV

- Accelerator
- Experimental halls
- Running
- 2 Main Physics Goals
- Selected topics and early results
 - Hall D early results
 - Parity violation
 - Heavy photon search
 - Proton radius

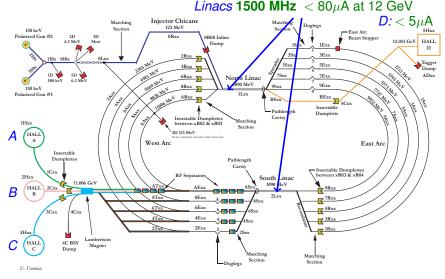
CEBAF Upgrade to 12 GeV


- Accelerator: 2.2 GeV/pass
- Halls A,B,C: e^- 1-5 passes \leq 11 GeV
- Hall D: e^- 5.5 passes 12 GeV $\Rightarrow \gamma$ -beam

Upgrade Status

- 12 GeV started in Feb 2016
- Halls A,D,B(CLAS12): running
- Halls B,C: 12 GeV KPP Spring 2017

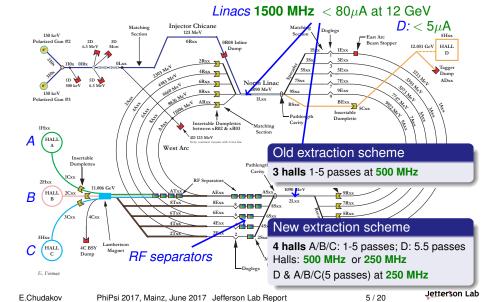
E.Chudakov


PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Remaining scope

- Hall B SC solenoid installation
- Upgrade completion: Sept 2017 Jefferson Lab

Beam extraction



E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Beam extraction

JLab Experimental Halls

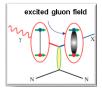
	Hall D	Hall B	Hall C	Hall A	
l beam	bard une of calorinet flight			Partice Contraction	
	Spectroscopy Search for: chybrid mesons	Nucleon Structure GPD, TMD	Nucleon Structure Valence quarks	Diverse program Formfactors, PDF SM tests (PV) Future installations	
he	ermeticity	large acceptance	high resolution	custom installations	
12	$2 \text{ GeV } e^- \Rightarrow \gamma$		<i>e</i> ⁻ 2.2–11 GeV		
γ	linear polariz.	e ⁻ longitudinal polarization			
Gli	ueX spectrometer	CLAS12	HMS, SHMS	HRS, SBS	
tar	get LH	LH, LD; ammon. \parallel, \perp	any, polar. 3 He \parallel,\perp	any, polar. ³ He \parallel, \perp	
<1	00 MHz/GeV	10 ³⁵ cm ⁻² s ⁻¹	$0^{35} \text{ cm}^{-2} \text{s}^{-1}$ $10^{38} \text{ cm}^{-2} \text{s}^{-1}$		
$\sigma($	$(p)/p\sim 1-3\%$	$\sigma({m p})/{m p}\sim 0.5\%$	$\sigma({m p})/{m p}\sim 0.1\%$	$\sigma({m ho})/{m ho}\sim 0.02\%$	
γ Glu tar <1	linear polariz. ueX spectrometer rget LH 00 MHz/GeV	e^{-} CLAS12 LH, LD; ammon. , \perp 10^{35} cm ⁻² s ⁻¹	longitudinal polariza HMS, SHMS any, polar. ³ He ∥, ⊥ 10 ³⁸ cr	tion HRS, SBS any, polar. ³ He ∥, ⊥ n ⁻² s ⁻¹	

E.Chudakov

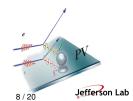
12 GeV runs

- Fall 2014 Spring 2015: 10 GeV, 5 GeV:
 - Hall A DVCS
 - Hall B (CLAS12) HPS heavy photon search
 - Hall D/GlueX commissioning
- Spring 2016 12 GeV
 - Hall A DVCS, Form Factors
 - Hall B (CLAS12) HPS (heavy photon search)
 - Hall D/GlueX engineering run
- Spring 2017 11.65 GeV
 - Hall A DVCS, GMP (G_M^p)
 - Hall B (CLAS12) HPS (heavy photon search); PRAD (proton radius)
 - Hall B CLAS12 KPP (Key Performance Parameters)
 - Hall C SHMS KPP
 - Hall D/GlueX 1-st physics run (~20% of GlueX-I)
- Fall 2017 11.65 GeV Planning
 - 4 halls to run

E.Chudakov PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report



JLab at 12 GeV: Scientific Questions

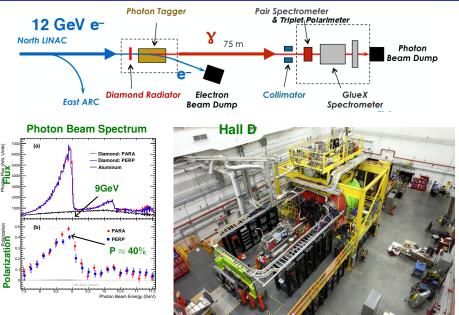

- What is the role of gluonic excitation in the spectroscopy of light mesons?
- Where is the missing spin in the nucleon? Is there a significant contribution from orbital angular momentum of valence quarks?
- Can we reveal a novel landscape of nucleon substructure through measurements of new multidimensional distribution functions?
- What is the relation between short-range N-N correlations, the partonic structure of nuclei, and the nature of the nuclear force?
- Can we discover evidence for physics beyond the standard model of particle physics?

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

12 GeV Approved Experiments by Physics Topic

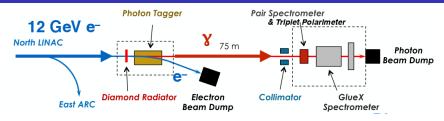
Торіс	Hall A	Hall B	Hall C	Hall D	Other	Total
Hadron spectra as probes of QCD	0	3	1	3	0	7
Transverse structure of the hadrons	5	4	3	1	0	13
Longitudinal structure of the hadrons	2	3	6	0	0	11
3D structure of the hadrons	5	9	7	0	0	21
Hadrons and cold nuclear matter	7	3	7	0	1	18
Low-energy tests of the Standard Model and Fundamental Symmetries	3	1	0	1	1	6
Total	22	23	24	5	2	76
Total Experiment Completed	2.5	1.1	0	0.4	0	4.0
Total Experiments Remaining	19.5	22	24	4.6	2	72.0


Remaining: 2400 days

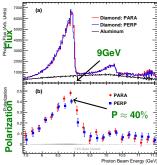
E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Hall D/GlueX Meson Spectroscopy In Photoproduction


E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

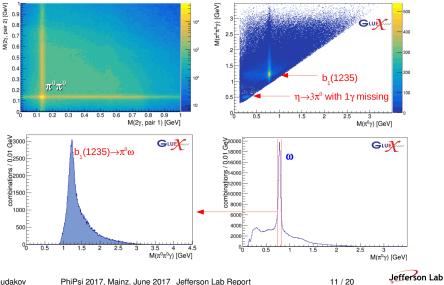

10 / 20

Jefferson Lab

Hall D/GlueX Meson Spectroscopy In Photoproduction

- Acceptance: 1° < θ < 120°</p>
- Resolutions:
 h[±]: σ_p/p ~ 1 − 3%
 γ: σ_E/E ~ 6%/√E + 2%
- Trigger takes all the photoproduction at *E_{BEAM}* > 8 GeV in 2017: 55 kHz
- Luminosity for *E_{BEAM}* > 8 GeV: 2016: ~ 5 pb⁻¹ of "physics quality" 2017: ~ 30 pb⁻¹ analysis in progress

E.Chudakov

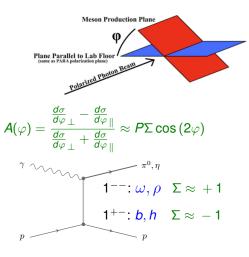

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

10 / 20

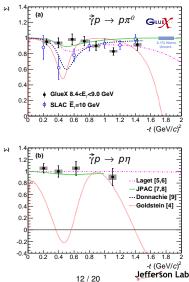
Jetterson Lab

GlueX: Event Reconstruction and Signals Observed

From 2016 data: $\gamma p \rightarrow 5\gamma p$



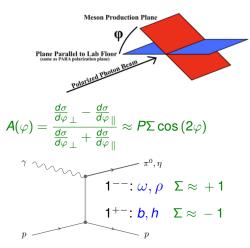
E.Chudakov


PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

GlueX: Beam Asymmetries of π^0, η

Properties of Photoproduction

Phys.Rev. C95, 042207(R), 2017

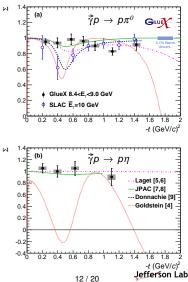


E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

GlueX: Beam Asymmetries of π^0, η

Properties of Photoproduction

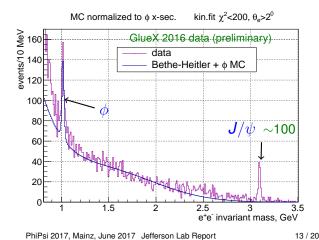


- Vector exchange dominates
- No observed dip at $-t = 0.5 (\text{GeV}/c)^2$

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

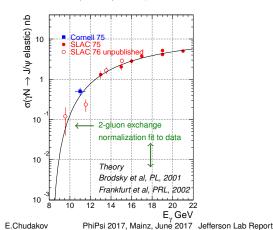
Phys.Rev. C95, 042207(R), 2017



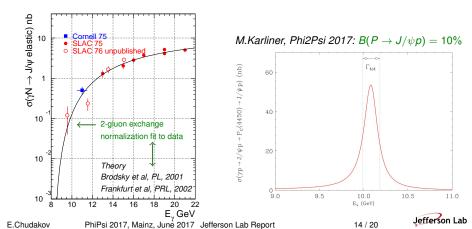
 $\gamma + \mathbf{p} \rightarrow \mathbf{J}/\psi + \mathbf{p}, \quad \mathbf{J}/\psi \rightarrow \mathbf{e}^+\mathbf{e}^-$

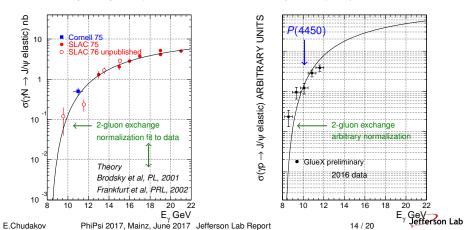
All 2016 data: exclusive events p + e⁺e⁻

E.Chudakov


- e⁺e⁻ PID using the electromagnetic calorimeters BCAL and FCAL
- · Kinematic fit with the beam energy from the tagger

Planned measurements, after adding the 2017 Spring data:


- σ(E) sensitive to gluons at high x
- t-slope
- Limits on the pentaquark yield (the mass resolution $\sim 6 \text{ MeV/c}^2$) $\gamma p \rightarrow P(4450) \rightarrow J/\psi p$ predictions $\propto B^2(P \rightarrow J/\psi p)$

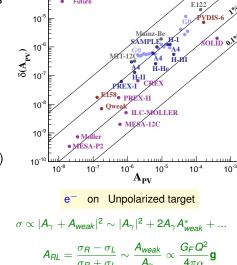

Planned measurements, after adding the 2017 Spring data:

- σ(E) sensitive to gluons at high x
- t-slope
- Limits on the pentaquark yield (the mass resolution $\sim 6 \text{ MeV/c}^2$) $\gamma p \rightarrow P(4450) \rightarrow J/\psi p$ predictions $\propto B^2(P \rightarrow J/\psi p)$

Planned measurements, after adding the 2017 Spring data:

- σ(E) sensitive to gluons at high x
- t-slope
- Limits on the pentaquark yield (the mass resolution $\sim 6 \text{ MeV/c}^2$) $\gamma p \rightarrow P(4450) \rightarrow J/\psi p$ predictions $\propto B^2(P \rightarrow J/\psi p)$

Parity Violation at JLab


- Nucleon Strangeness Formfactors complete
 - HAPPEX Hall A
 - G0 Hall C
- Neutron skin - PREX. CREX Hall A
- Precision tests of Standard Model
 - PVDIS Hall A published
 - Qweak Hall C to publish soon
 - MOLLER, SOLID (Hall A, future)

MOLLER

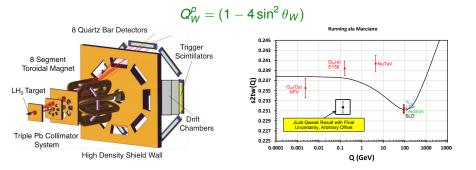
SoLID

Pioneering Nuclear Studies (1998-2010)

Future

S.M. Study (2003-2012)

10-4

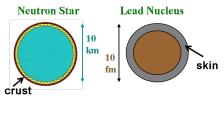

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

15 / 20

Jefferson Lab

Qweak: PV Elastic e⁻p Scattering

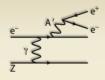


PREX/CREX Measuring the "Neutron skin" of Pb, Ca

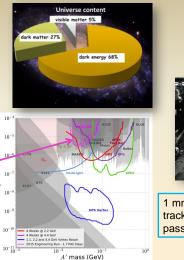
PV elastic scattering off nuclei: sensitive to the "neutron size"

 $Q_W^p = (1 - 4 \sin^2 \theta_W) < 0.1$ $Q_{W}^{n} = -1$ ²⁰⁸Pb 0.1 0.08 Density (fm⁻³) 0.06 0.04 E+M charge Weak charge 0.02 Proton Neutron 00 2 r (fm)

 PREX: ²⁰⁸Pb pilot experiment published


• CREX: ⁴⁸Ca

Applications: Nuclear Physics, Neutron Stars, Atomic Parity, Heavy Ion Collisions


Heavy Photon Search - First Results

NP-HEP Collaboration

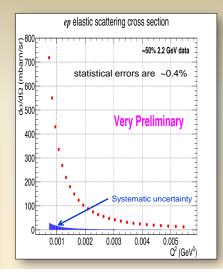
2015 Engineering Run 1.7 PAC days @ 1.05 GeV

2 GeV data taken in 2016, under analysis

1 mm gap between Si tracker detectors for passage of electron beam

Future program: more HPS, APEX, DarkLIGHT

E.Chudakov


PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Courtesy to B.McKeown 18 / 20 Jefferson Lab

PRAD - Proton Radius

- PRad: new experiment to address proton radius @ JLab
- NSF MRI: H₂ gas target
- DOE GEM tracking detectors
- Successful run in summer 2016

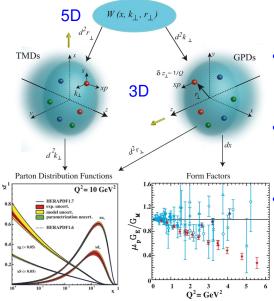
Final results expected by the end of 2018

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Courtesy to B.McKeown 19 / 20 Jefferson Lab

Outlook

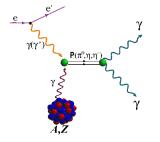

- The 12 GeV operations of JLab have begun
 - Hall A: running
 - Hall B: CLAS12 started commissioning; other experiments have run
 - Hall C: started commissioning
 - Hall D: running, 1-st paper published
- Next large projects planned:
 - MOLLER: SM test in PV
 - SoLID: broad program: PV; nucleon imaging
- At least a decade of excellent opportunities for discovery
 - New QCD vistas
 - Growing program Beyond the Standard Model
- Beyond 12 GeV: EIC is moving forward

Imaging the Nucleon

• TMD

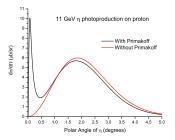
Transverse Momentum Dist. Confined motion in a nucleon (semi-inclusive DIS: SIDIS)

GPD


Generalized Parton Dist. Spatial Imaging (exclusive DIS: for ex. DVCS)

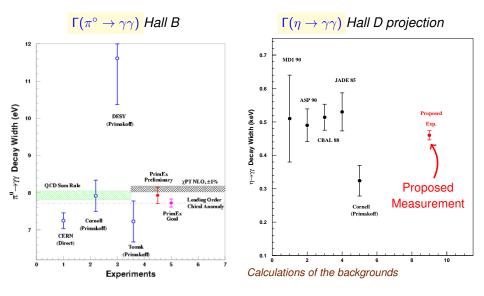
- Requires
 - High luminosity.
- Polarized beams & targets
- Sophisticated detectors

$\pi^\circ, \eta, \eta^, \to \gamma\gamma$ coupling in Primakoff reaction


$$\frac{d\sigma}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 \beta^3 E^4}{m^3 Q^4} \left| F_{e.m.}(Q) \right|^2 \cdot \sin^2 \theta$$

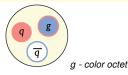
- Primakoff $\theta < 0.5^{\circ}$
- Primakoff-Nuclear interference $\Rightarrow \theta < 5^{\circ}$
- Fit to $\frac{d\sigma}{d\Omega}(\theta)$

• $\Gamma(\pi^{\circ} \rightarrow \gamma \gamma)$


test of Chiral symmetry/anomalies 6 GeV E-02-103 in Hall B

• $\Gamma(\eta \rightarrow \gamma \gamma)$ light quark mass ratio, $\eta - \eta^{,}$ mixing angle 12 GeV PR12-10-011 in Hall D

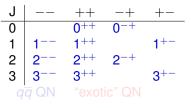
PRIMEX Projected Results


E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

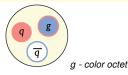
Meson spectroscopy

Gluonic excitations \Rightarrow hybrid mesons ?


- Predicted by models, LQCD
- "Constituent gluon": LQCD: 1⁺⁻, 1-1.5 GeV
- Exotic QN: excellent signature of a new degree of freedom no mixing with the regular $\overline{q}q$ states

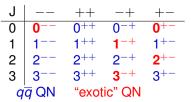
Constituent quark model

- No gluonic degrees of freedom
- Restrictions on the quantum numbers: *J^{PC}*:


$$P = (-1)^{L+1}, C = (-1)^{L+S}$$

Meson spectroscopy

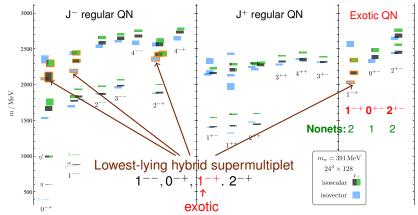
Gluonic excitations \Rightarrow hybrid mesons ?


- Predicted by models, LQCD
- Constituent gluon": LQCD: 1⁺⁻, 1-1.5 GeV
- Exotic QN: excellent signature of a new degree of freedom no mixing with the regular \overline{qq} states

Constituent quark model

- No gluonic degrees of freedom
- Restrictions on the quantum numbers: J^{PC} :

$$P = (-1)^{L+1}, C = (-1)^{L+S}$$



PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

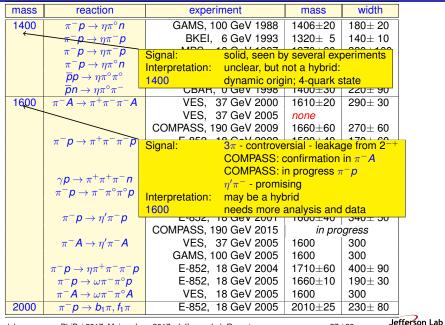
Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 MeV$ Orange frames - lightest hybrids

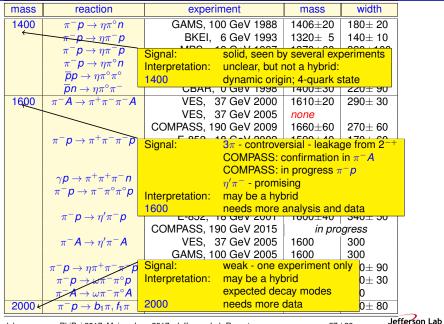
E.Chudakov

mass	reaction	experiment	mass	width	
1400	$\pi^- p \rightarrow \eta \pi^\circ n$	GAMS, 100 GeV 1988	1406±20	180 ± 20	
	$\pi^- p \rightarrow \eta \pi^- p$	BKEI, 6 GeV 1993	1320 ± 5	140 ± 10	
	$\pi^- \rho ightarrow \eta \pi^- ho$	MPS, 18 GeV 1997	1370±60	380±100	
	$\pi^- p ightarrow \eta \pi^\circ n$	E-852, 18 GeV 2007	1260±40	350 ± 60	
	$\overline{\rho} ho o \eta \pi^\circ \pi^\circ$	CBAR, 0 GeV 1999	1360±25	360 ± 80	
	$\overline{p}n ightarrow \eta \pi^{\circ} \pi^{-}$	CBAR, 0 GeV 1998	1400±30	$220{\pm}~90$	
1600	$\pi^- A \rightarrow \pi^+ \pi^- \pi^- A$	VES, 37 GeV 2000	1610±20	290 ± 30	
		VES, 37 GeV 2005	none		
		COMPASS, 190 GeV 2009	1660±60	270 ± 60	
	$\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$	E-852, 18 GeV 2002	1590±40	170 ± 60	
		E-852, 18 GeV 2006	none		
		COMPASS, 190 GeV 2015	in pro	gress	
	$\gamma p ightarrow \pi^+ \pi^+ \pi^- n$	CLAS, 5. GeV 2008	none		
	$\pi^- \rho ightarrow \pi^- \pi^\circ \pi^\circ \rho$	E-852, 18 GeV 2006	none		
		COMPASS, 190 GeV 2015	in pro	ogress	
	$\pi^- {m ho} o \eta^\prime \pi^- {m ho}$	E-852, 18 GeV 2001	1600±40	$340{\pm}50$	
		COMPASS, 190 GeV 2015	in pro	ogress	
	$\pi^- A ightarrow \eta' \pi^- A$	VES, 37 GeV 2005	1600	300	
		GAMS, 100 GeV 2005	1600	300	
	$\pi^- p \rightarrow \eta \pi^+ \pi^- \pi^- p$	E-852, 18 GeV 2004	1710±60	$400{\pm}~90$	
	$\pi^- p ightarrow \omega \pi^- \pi^\circ p$	E-852, 18 GeV 2005	1660±10	190 ± 30	
	$\pi^- A ightarrow \omega \pi^- \pi^\circ A$	VES, 18 GeV 2005	1600	300	
2000	$\pi^- p \rightarrow b_1 \pi, f_1 \pi$	E-852, 18 GeV 2005	2010±25	$230{\pm}~80$	
udakov PhiPsi 2017. Mainz. June 2017 Jefferson Lab Report 27 / 20 Jefferson La				fferson Lab	


E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

mass	reaction	experiment	mass	width
1400	$\pi^- p \rightarrow \eta \pi^\circ n$	GAMS, 100 GeV 1988	1406±20	180 ± 20
←	$\pi^- \rho \rightarrow \eta \pi^- \rho$	BKEI, 6 GeV 1993	$1320\pm$ 5	$140{\pm}~10$
		Signal: solid, seen by	y several ex	periments
	$\pi^- p \rightarrow \eta \pi^\circ n$	Interpretation: unclear, but not a hybrid:		
	$\overline{\rho}\rho o \eta \pi^{\circ}\pi^{\circ}$	1400 dynamic origin; 4-quark state		
	$\overline{p}n \rightarrow \eta \pi^{\circ} \pi^{-}$	CBAR, UGEV 1998	1400±30	220 ± 90^{-1}
1600	$\pi^- A \rightarrow \pi^+ \pi^- \pi^- A$	VES, 37 GeV 2000	1610±20	290 ± 30
		VES, 37 GeV 2005	none	
		COMPASS, 190 GeV 2009	$1660{\pm}60$	270 ± 60
	$\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$	E-852, 18 GeV 2002	1590±40	170 ± 60
		E-852, 18 GeV 2006	none	
		COMPASS, 190 GeV 2015	in pro	ogress
	$\gamma \mathbf{p} \rightarrow \pi^+ \pi^+ \pi^- \mathbf{n}$	CLAS, 5. GeV 2008	none	Ŭ
	$\pi^- p \rightarrow \pi^- \pi^\circ \pi^\circ p$	E-852, 18 GeV 2006	none	
		COMPASS, 190 GeV 2015	in pro	ogress
	$\pi^- \rho ightarrow \eta' \pi^- ho$	E-852, 18 GeV 2001	1600±40	340 ± 50
		COMPASS, 190 GeV 2015	in pro	ogress
	$\pi^- A ightarrow \eta' \pi^- A$	VES, 37 GeV 2005	1600	300
		GAMS, 100 GeV 2005	1600	300
	$\pi^- p \rightarrow \eta \pi^+ \pi^- \pi^- p$	E-852, 18 GeV 2004	1710±60	400 ± 90
	$\pi^- p \rightarrow \omega \pi^- \pi^\circ p$	E-852, 18 GeV 2005	1660±10	190 ± 30
	$\pi^- A \rightarrow \omega \pi^- \pi^\circ A$	VES, 18 GeV 2005	1600	300
2000	$\pi^- p \rightarrow b_1 \pi, f_1 \pi$	E-852, 18 GeV 2005	2010±25	$230{\pm}~80$
nudakov PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report 27 / 20 Jeffer				


E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

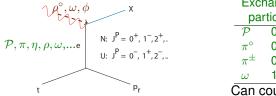
E.Chudakov

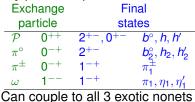
PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Hybrids: expected features and ways to detect


LQCD: Masses

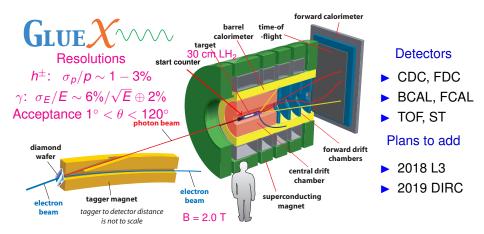

Models: Decays

- $1^{-+} \pi_1, \eta_1... \sim 2.0 2.4 \text{ GeV/c}^2$ $0^{+-} b_0, h_0... \sim 2.3 - 2.5 \text{ GeV/c}^2$ $2^{+-} b_2, h_2... \sim 2.4 - 2.6 \text{ GeV/c}^2$
- $\Gamma_{tot} \sim 0.1 0.5 \text{ GeV/c}^2$
- Final states: multiple π^{\pm} and γ

No calculations for the decay widths, couplings or cross sections so far.

Photoproduction by linearly polarized photons

How to detect the hybrids?


- Detect the final states (exclusive reactions)
- Identify the QN using the Partial Wave Analysis (PWA) Photon linear polarization - a filter on *naturality* - helps

E.Chudakov

PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

Hall D/GlueX Spectrometer and DAQ

Photoproduction γp 15 kHz for a 100 MHz beam Beam 10 MHz/GeV: inclusive trigger 20 kHz \Rightarrow DAQ \Rightarrow tape Beam 50 MHz/GeV: inclusive trigger 100 kHz \Rightarrow DAQ \Rightarrow L3 farm \Rightarrow tape

E.Chudakov PhiPsi 2017, Mainz, June 2017 Jefferson Lab Report

