Conclusions

X(3915) as a tensor $D^*\bar{D}^*$ molecule

A.V. Nefediev

(MIPT, Moscow, Russia)

in collaboration with V. Baru & C. Hanhart based on JHEP **1706** (2017) 010

From Φ to Ψ 2017

1/10

3

X(3915): Where are we now?

Experimental background (Belle & BaBar)

- X(3915) in $B \to KX \to K(\omega J/\psi)$ and $\gamma \gamma \to X \to \omega J/\psi$
- X(3940) (believed to be 2^{++}) in $\gamma\gamma \to X \to D\bar{D}$

Quantum numbers and possible identification of X(3915)

- Belle: 0^{++} or 2^{++} ($\chi_{c0}(2P)$ or $\chi_{c2}(2P)$ charmonium?)
- BaBar: 2^{++} ruled out by angular analysis in $\omega J/\psi$ ($\chi_{c0}(2P)$?)

Identification $X(3915) = \chi_{c0}(2P)$ raises questions

- Where is $X(3915) \rightarrow D\bar{D}$ mode?
- If $X^*(3860) = \chi_{c0}(2P)$ (Belle'2017) what is X(3915)?
- . . .

The problem of the $X(3915)\ {\rm quantum\ numbers}$

- Alekseev'58;Krammer&Krasemann'78;Li,Close,&Barnes'91: In two-photon decays of 2⁺⁺ positronium and quarkonium helicity-0 amplitude gives a small relativistic correction
- BaBar'2012:

Under the assumption of helicity-2 dominance, angular distributions in the $\omega J/\psi$ final state are better described with J=0 than with J=2

• Zhou,Xiao&Zhou'2015:

Helicity-2 dominance is not proved for exotic states $\implies X(3915)/X(3940)$ might be helicity-0/2 realisations of an exotic 2^{++} tensor

• Baru, Hanhart, A.N'2017 (present talk):

Can X(3915) be explained as a tensor molecule?

Helicity decomposition of $\gamma\gamma \rightarrow X_2$ amplitude

Helicity-0 amplitude:

n=1

Notice! Due to properties of the X_2 polarisation tensor $\varepsilon_{\rho\sigma}$

- helicity-0 amplitude is entirely defined by $C_2\sqrt{2}-C_3$
- helicity-2 amplitude is defined by C₄

Angular distribution for $\gamma\gamma \rightarrow X_2 \rightarrow$ final state

For the reaction $\gamma\gamma\to X_2\to {\rm final}$ state

$$\frac{d\sigma}{d\cos\theta} = \sigma_0 \left[f_0(\cos\theta) + R f_2(\cos\theta) \right]$$

 $\sigma = \sigma_0(1+R)$

- f_0 and f_2 process-specific normalised to unity distributions
- σ_0 contribution of the helicity-0 amplitude
- the ratio R is

$$R = \frac{\sigma_2}{\sigma_0} \equiv \frac{2|A_{\pm 2}|^2}{|A_0|^2}$$

• helicity amplitudes are $A_0=C_2\sqrt{2}-C_3$ and $A_{\pm 2}=\sqrt{rac{3}{2}}C_4$

Note: for a genuine $\bar{c}c$ charmonium $R \gg 1$

・ロ ・ ・ 一部 ・ く 注 ト ・ 注 ・ う へ (*) 5 / 10

The molecular model

- Assumption: X(3915) is a tensor $D^*\bar{D}^*$ molecule
- X_2 is produced in $\gamma\gamma$ fusion via $D^{(*)}$ -meson loops

with electric and magnetic vertices $D^{(*)} \rightarrow D^{(*)} \gamma$

- Problem: Loops diverge \implies infinite coefficients $C_1..C_4$
- But! The combination $C_2\sqrt{2} C_3$ is finite!
- Therefore, one observable is sufficient to fix the model!

Two-photon width of the tensor $D^*\bar{D}^*$ molecule

For $M_{X_2} \to M(D^*\bar{D}^*)$ strong cancellations between different contributions to the helicity-0 amplitude take place

Conclusion: Near threshold

$$\Gamma_0 \to 0 \implies R \gg 1$$

that implies helicity-2 dominance

Calculation for the realistic X_2 mass

Problem: Coupling $g^2_{X_2D^*D^*} \propto \sqrt{E_B[X(3915)]}$, however $E_B[X(3915)] = 2m_{D^*} - M(X(3915)) \sim 100 \text{ MeV}$

 \implies finite-range corrections are out of control $(\sqrt{m_{D^*}E_B}/\beta \simeq 1)!$

Solution: Assume X_2 to be spin partner of $X(3872) = D\overline{D}^*$ \implies heavy quark symmetry relates $g_{X_2D^*D^*}$ and g_{XDD^*} with

 $E_B = M(D^0D^{*0}) - M(X(3872)) = 0.01 \pm 0.20 \text{ MeV}$

Then: The helicity-0 contribution to the $X_2 \rightarrow \gamma \gamma$ width is

 $\Gamma_0(X_2 o \gamma \gamma) pprox 0.033 \sqrt{E_B} \ {
m keV} \lesssim 0.015 \ {
m keV}$

Corrections are controlled by the parameter $\Lambda_{
m QCD}/m_c\simeq 1/5$

Two-photon width of the tensor X_2 **: The ratio** R

Theoretical value

 $\Gamma_{
m th}(X_2 o \gamma \gamma) \lesssim 0.015(1+R) \; {
m keV}$

Experimental value $(\mathcal{B}(\chi_{c2} \rightarrow D\bar{D}) \approx 1)$

$$\Gamma_{\exp}(X_2 \to \gamma \gamma) \approx \Gamma(\chi_{c2} \to \gamma \gamma) \mathcal{B}(\chi_{c2} \to D\bar{D})$$
$$= (0.18 \pm 0.05 \pm 0.03) \text{ keV}$$

To reconcile $\Gamma_{
m th}(X_2 o\gamma\gamma)$ with $\Gamma_{
m exp}(X_2 o\gamma\gamma)$ one needs $R\gtrsim 11\gg 1$

Conclusion

- Data currently available do not support sizeable contribution of helicity-0 amplitude in two-photon transitions through the tensor $D^*\bar{D}^*$ molecule
- Thus, exotic X(3915) cannot be explained as a
 - tensor $D^*\bar{D}^*$ molecule (no other tensor S-wave candidates) which is
 - a spin partner of the X(3872) (Occam's razor)
- Therefore, either tensor X(3915) has a different exotic nature or it has to be identified as a scalar (ordinary or exotic)