High Intensity Electron Positron Accelerator (HIEPA)

Wenbiao Yan

for Zhengguo Zhao

University of Science and Technology of China

Outline

- Introduction Why
- HIEPA What
- Proposal How

The Standard Model and Accelerators for Particle Physics

High Energy Physics in Post Higgs Era

- Origin of the electroweak spontaneous symmetry breaking
 - Higgs property (m_H, Γ , J^{PC}, couplings, σ , Br of all possible modes)
 - Higgs as a tool for discovery (structure, additional Higgs bosons..)
- New physics beyond the SM
 - New energy territory
 - Precision measurements of SM rare processes

Standard Model

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (compressed) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \tilde{\chi}_{1}^{1} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q W Z \tilde{\chi}_{1}^{1} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q W Z \tilde{\chi}_{1}^{1} \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ GFarvitino LSP \end{array} $	$\begin{array}{c} 0 - 3 \ e, \mu / 1 - 2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1 - 2 \ \tau + 0 - 1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet	 b Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 36.1 3.2 20.3 13.3 20.3 20.3	\$\vec{q}\$ \$\vec{q}\$ \$\vec{q}\$ \$\vec{608}\$ GeV \$\vec{q}\$ \$\vec{608}\$ GeV \$\vec{q}\$ \$\vec{608}\$ GeV \$\vec{k}\$ \$\vec{900}\$ GeV \$\vec{k}\$ \$\vec{900}\$ GeV \$\vec{k}\$ \$\vec{900}\$ GeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	<u>Ř</u> Ř Ř	1.92 TeV m($\tilde{\chi}_1^0$)<600 GeV 1.97 TeV m($\tilde{\chi}_1^0$)<200 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{x}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{x}_1^+ \\ \tilde{f}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{x}_1^+ \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{x}_1^+ \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{x}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{x}_1^0 \\ \tilde{t}_1 \tilde{t}_1 (natural GMSB) \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h \end{split} $	$\begin{matrix} 0\\2\ e,\mu\ (SS)\\0-2\ e,\mu\\0-2\ e,\mu\ (C)\\2\ e,\mu\ (Z)\\3\ e,\mu\ (Z)\\1-2\ e,\mu\end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	b1 950 GeV b1 275-700 GeV i1 117-170 GeV 200-720 GeV 200-720 GeV i1 90-198 GeV 205-950 GeV i1 90-323 GeV 150-600 GeV i2 290-790 GeV 290-790 GeV i2 320-880 GeV 320-880 GeV	$\begin{split} & m(\tilde{\mathcal{K}}_{1}^{0}) \! < \! 420 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! < \! 200 \mathrm{GeV}, m(\tilde{\mathcal{K}}_{1}^{1}) \! = \! m(\tilde{\mathcal{K}}_{1}^{0}) \! + \! 100 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{1}) \! = \! 2m(\tilde{\mathcal{K}}_{1}^{0}), m(\mathcal{K}_{1}^{0}) \! = \! 55 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! = \! 1 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! = \! 1 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! > \! 150 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! = \! 0 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! = \! 0 \mathrm{GeV} \\ & m(\tilde{\mathcal{K}}_{1}^{0}) \! = \! 0 \mathrm{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{t}_{L,R} \tilde{t}_{L,R}, \tilde{\ell} \rightarrow \mathcal{L} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} v(\ell \tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{r} v(\tau \tilde{r}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{r}), \ell \tilde{r} \tilde{\ell}_{L} \ell(\tilde{r}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \rightarrow \tilde{\chi}_{1}^{0} H \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} H \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{h} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0} \rightarrow \tilde{\chi}_{1}^{0} H \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{h} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{0} H \tilde{\chi}_{1}^{0} H \tilde{\chi}_{1}^{0}, h \rightarrow h \tilde{\chi}_{1}^{0} H \tilde{\chi}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \rightarrow \gamma \tilde{G} 1 \ e, \mu + \gamma \\ \vec{Q} 2 \ \gamma \end{array}$	0 0 	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3		$\label{eq:rescaled_rescale} \begin{array}{c} m(\tilde{\mathcal{K}}_1^0) = 0 \\ m(\tilde{\mathcal{K}}_1^0) = 0, \ m(\tilde{\mathcal{K}}, \tilde{\gamma}) = 0.5(m(\tilde{\mathcal{K}}_1^+) + m(\tilde{\mathcal{K}}_1^0)) \\ m(\tilde{\mathcal{K}}_1^0) = 0, \ m(\tilde{\tau}, \tilde{\gamma}) = 0.5(m(\tilde{\mathcal{K}}_1^+) + m(\tilde{\mathcal{K}}_1^0)) \\ m(\tilde{\mathcal{K}}_1^0) = m(\tilde{\mathcal{K}}_2^0), \ m(\tilde{\mathcal{K}}_1^0) = 0, \ m(\tilde{\mathcal{K}}, \tilde{\gamma}) = 0.5(m(\tilde{\mathcal{K}}_1^+) + m(\tilde{\mathcal{K}}_1^0)) \\ m(\tilde{\mathcal{K}}_1^-) = m(\tilde{\mathcal{K}}_2^0), \ m(\tilde{\mathcal{K}}_1^0) = 0, \ f(\tilde{\mathcal{K}}, \tilde{\gamma}) = 0.5(m(\tilde{\mathcal{K}}_2^0) + m(\tilde{\mathcal{K}}_1^0)) \\ cr < 1 \ mm \\ cr < 1 \ mm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{X}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm \\ \text{Direct} \tilde{X}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{Stable } \tilde{g} \text{ R-hadron} \\ \text{Metastable } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tau, \tilde{\chi}_1^0 \rightarrow \tau \tilde{c}, \tilde{\mu}) + \tau(e, \mu \\ \text{GMSB}, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^0 \\ \tilde{g} \tilde{g}, \tilde{\chi}_1^0 \rightarrow e e \nu/e \mu \nu / \mu \mu \nu \\ \text{GGM } \tilde{g} \tilde{g}, \tilde{\chi}_1^0 \rightarrow Z \tilde{G} \end{array}$	Disapp. trk dE/dx trk 0 trk dE/dx trk) $1-2\mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + jet	1 jet - 1-5 jets - - - - μ - is -	Yes Yes - - - Yes - Yes	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \mathfrak{m}(\tilde{\chi}_{1}^{+})-\mathfrak{m}(\tilde{\chi}_{1}^{0})\sim160\ \mathrm{MeV},\ \tau(\tilde{\chi}_{1}^{+})=0.2\ \mathrm{ns}\\ \mathfrak{m}(\tilde{\chi}_{1}^{+})-\mathfrak{m}(\tilde{\chi}_{1}^{0})\sim160\ \mathrm{MeV},\ \tau(\tilde{\chi}_{1}^{+})<15\ \mathrm{ns}\\ \mathfrak{m}(\tilde{\chi}_{1}^{0})=100\ \mathrm{GeV},\ 10\ \mu\mathrm{s}<\tau(\tilde{\chi})<1000\ \mathrm{s}\\ \hline \mathbf{1.57\ TeV}\\ \mathbf{1.57\ TeV}\\ \mathfrak{m}(\tilde{\chi}_{1}^{0})=100\ \mathrm{GeV},\ \tau>10\ \mathrm{ns}\\ 10<\mathrm{tan}/s<50\\ 1<\tau(\tilde{\chi}_{1}^{0})<3\ \mathrm{ns},\ \mathrm{SPS8\ model}\\ 7<\mathrm{cr}(\tilde{\chi}_{1}^{0})<480\ \mathrm{nm},\ \mathfrak{m}(\tilde{g})=1.1\ \mathrm{TeV}\\ 6<\mathrm{cr}(\tilde{\chi}_{1}^{0})<480\ \mathrm{nm},\ \mathfrak{m}(\tilde{g})=1.1\ \mathrm{TeV}\\ \end{array}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_\tau + X, \widetilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \widetilde{X}_1^{\dagger} \widetilde{X}_1^{-}, \widetilde{X}_1^{\dagger} \rightarrow W \widetilde{X}_1^{0}, \widetilde{X}_1^{0} \rightarrow eev, e\muv, \mu\mu\nu \\ \widetilde{X}_1^{\dagger} \widetilde{X}_1^{-}, \widetilde{X}_1^{\dagger} \rightarrow W \widetilde{X}_1^{0}, \widetilde{X}_1^{0} \rightarrow \tau\tau\nu_e, e\tau\nu_\tau \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow qqq \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow qq \widetilde{X}_1^{0}, \widetilde{X}_1^{0} \rightarrow qqq \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow d\widetilde{Y}_1^{0}, \widetilde{X}_1^{0} \rightarrow qqq \\ \widetilde{g} \widetilde{g}, \widetilde{g} \rightarrow \widetilde{f}_1 \widetilde{t}_1, \widetilde{X}_1^{0} \rightarrow bs \\ \widetilde{f}_1 \widetilde{f}_1, \widetilde{f}_1 \rightarrow bs \\ \widetilde{f}_1 \widetilde{f}_1, \widetilde{f}_1 \rightarrow b\ell \end{array} $	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, μ + τ 0 4 1 e, μ 8 1 e, μ 8 0 2 e, μ		Yes Yes Yes ets - ets - b - b - b - -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{v}_r\$ \$\vec{a}, \vec{b}\$ \$\vec{a}, \vec{b}\$ \$\vec{x}_1^+\$ \$\vec{4}, \vec{b}\$ \$\vec{b}\$ \$\vec{b}\$ <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other *Only	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ a selection of the available m	0 ass limits on i limits are ba	2 c new state sed on	Yes s or	20.3 1	[₹] 510 GeV 0 ^{−1}	m($\tilde{\chi}_1^0$)<200 GeV	1501.01325
simpl	lified models, c.f. refs. for the	assumptions	made.					

No indication of SUSY yet, but set lower limits!

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

5

ATLAS Exotics Searches* - 95% CL Exclusion Status: August 2016

ATLAS	Preliminary
-------	-------------

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	<i>l</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit	·		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow WW \rightarrow qq\ell v$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow HH$	$ \begin{array}{c} -\\ 2 e, \mu\\ 1 e, \mu\\ -\\ \geq 1 e, \mu\\ -\\ 2 e, \mu\\ 2 \gamma\\ 1 e, \mu\\ -\\ 1 e, \mu\\ -\\ 1 e, \mu\\ 1 e, \mu\\ \end{array} $	$\geq 1 j$ $-$ $1 j$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1 J/$	Yes Yes Yes 2j Yes	3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3	Mp Ms Mth Mth Mth GKK mass GKK mass GKK mass BKK mass KKK mass	1.24 Te 360-860 GeV	6.58 TeV 4.7 TeV 5.2 TeV 8.7 TeV 8.7 TeV 8.2 TeV 9.55 TeV 2.68 TeV 3.2 TeV 9.55 TeV		1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-069 1505.07018 TLAS-CONF-2010-013
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \rightarrow \ell \\ \text{SSM } Z' \rightarrow \tau \tau \\ \text{Leptophobic } Z' \rightarrow bb \\ \text{SSM } W' \rightarrow \ell \nu \\ \text{HVT } W' \rightarrow WZ \rightarrow qq \eta \nu \text{ model } A \\ \text{HVT } W' \rightarrow WZ \rightarrow qq q q \text{ model } B \\ \text{HVT } V' \rightarrow WH/ZH \text{ model } B \\ \text{LRSM } W'_R \rightarrow tb \\ \text{LRSM } W'_R \rightarrow tb \end{array}$	2τ $-$ $1 e, \mu$ $0 e, \mu$ $-$ nulti-channet $1 e, \mu$ $0 e, \mu$	- 2 b - 1 J 2 J 8I 2 b, 0-1 j ≥ 1 b, 1 J	– Yes Yes – Yes	.3. 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass Z' mass W' mass W' mass W' mass V' mass W' mass W' mass	r yet,	2.02 TeV 5 TeV 4.74 TeV 2.4 TeV 3.0 TeV 2.31 TeV 1.92 TeV 1.76 TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ALAS-CONS-2010-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
C	Cl qqqq Cl llqq Cl uutt 24	_ 2 e, μ (SS)/≥3 e,μ	2 j _ u ≥1 b, ≥1 j	- Yes	15.7 3.2 20.3	Λ Λ Λ	1.0 ToV	4.9 TeV	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$ q = 0.25 $q = 1.0$ $m(x) < 250$ GeV	ATLAS-CONF-2016-069 1607.03669 1504.04605
MD	Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ, 1 γ 0 e, μ	2 1 j 1 j 1 J, ≤ 1 j	Yes	3.2 3.2 3.2	m _A M _*	710 GeV 550 GeV		$g_{q}=0.25, g_{\chi}=1.0, m(\chi) < 250 \text{ GeV}$ $g_{q}=0.25, g_{\chi}=1.0, m(\chi) < 150 \text{ GeV}$ $m(\chi) < 150 \text{ GeV}$	1604.01773 1604.01306 ATLAS-CONF-2015-080
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV		$ \begin{split} \beta &= 1 \\ \beta &= 1 \\ \beta &= 0 \end{split} $	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	1 <i>e</i> , μ 1 <i>e</i> , μ 1 <i>e</i> , μ 2/≥3 <i>e</i> , μ 1 <i>e</i> , μ (SS)/≥3 <i>e</i> ,μ		Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 3.2	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 990 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton γ^*	1 γ - - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j – –	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass q* mass b* mass c* mass /* mass /* mass	1	4.4 TeV 5.6 TeV 2.3 TeV 5 TeV 3.0 TeV .6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell_T$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ - -	- 2 j - 1 b - -	Yes Yes -	20.3 20.3 13.9 20.3 20.3 20.3 7.0	aT mass N ⁰ mass H ^{±±} mass H ^{±±} mass 400 spin-1 invisible particle mass multi-charged particle mass monopole mass	960 GeV 570 GeV 9 GeV 657 GeV 785 GeV 1.34	2.0 TeV	$\begin{split} m(W_R) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, } \text{BR}(H_L^{\pm\pm} \to ee) = 1 \\ \text{DY production, } \text{BR}(H_L^{++} \to \ell_1) = 1 \\ a_{\text{non-res}} &= 0.2 \\ \text{DY production, } q &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059
*Onl	\sqrt{s} = v a selection of the available r	= 8 TeV mass lim	vs = 13	TeV states	s or phei	10⁻¹ nomena is shown. Lower b	ounds are 1 T		Mass scale [TeV]	

†Small-radius (large-radius) jets are denoted by the letter j (J).

Beijing Electron Positron Collider

BESIII Detector and Collaboration

Time-of-flight (TOF) Plastic scintillator σ_{T} (barrel): 80 ps σ_{T} (endcap): 90 ps

ECAL calorimeterCsI(TI): L=28 cm (15X_0)Energy range: 0.02-2GeVAt 1 GeV σ_E (%) σ_I (mm)Barrel: 2.5 6.1Endcap: 5 9

BESIII Experiment

11 countries, 52 institutions, 351 authros

Features of the τ -c Energy Region

- Rich of resonances, charmonium and charmed mesons.
- Threshold characteristics (pairs of τ , D, D_s, charmed baryons...).
- Transition between smooth and resonances, perturbative and non-perturbative QCD.
- Mass location of the exotic hadrons, gluonic matter and hybrid.

Physics at τ -c Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- $f_D and f_{Ds}$
- D₀-D₀ mixing
- Charmed baryons

11

R scan

- Precision $\Delta \alpha_{\text{QED}}$, a_{μ} , charm quark mass extraction.
- Hadron form factor(nucleon, Λ , π).

Selected Highlights from BES

Selected Highlights

A Super Tau-charm Factory to Succeed BEPC

BEPCII/BESIII will end its mission around 2024

High Intensity Electron Positron Accelerator (HIEPA)

What is **HIEPA**?

D Electron Positron Collider for physics

- E_{cm} = 2-7GeV
- Luminosity > 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Polarization available on one beam (phase II)
 - Polarized electron beam source
 - Siberian Snake curing depolarization

D Being a **SRF** (synchrotron radiation facility).

Reserving the potential for future FEL (free electron laser) study with the long LINAC.

What Is HIEPA ?

Data Samples / Year

Luminosit	y Seco	nds/days R	unning time/year	Efficiency							
10^{35} cm ⁻² s ⁻¹ × 86400s × 180 days × 90% = 1.4ab ⁻¹											
	CL	-EO-C	BES-III/ year 10 ³³ cm ⁻² s ⁻¹ (10fb ⁻¹)	HIEPA/year 10 ³⁵ cm ⁻² s ⁻¹ (1ab ⁻¹)							
J/ψ	—	—	10×10 ⁹	10×10 ¹¹							
ψ(2S)	54 pb ⁻¹	27×10 ⁶	3×10 ⁹	3×10 ¹¹							
ψ(3770)	818 pb ⁻¹	5×10 ⁶ D-pair	4×10 ⁷	4×10 ⁹							
4.17 GeV	586 pb ⁻¹	$7 \times 10^5 \text{ D}_{s}$ -pair	1×10 ⁶	1×10 ⁸							
τ ⁺ τ ⁻ (4.25)		4×10 ⁶	3×10 ⁷	3×10 ⁹							

Highlighted Physics Program

- Search for new forms of hadron and study their properties.
- The nucleon/hadron electromagnetic form factors (NEFFs) and QCD study in none perturbative region.
- Search for new physics beyond the SM.
- •

Key science question: is there any new forms of hadron exist?

- Exotic hadrons are not predicted by the simple quark model.
- Many candidates, such as X(3872), Y(4260) and Zc(3900), have been discovered, but some are not firmly established and their property are poorly known.
- To reach conclusive evidence, an e⁺e⁻ collider in the τ-c sector, which is able to provide much higher statistical data and cover wide energy range is essential.
 - Search for lower mass glueballs, 1⁻⁺ hybrid;
 - Explore the nature of XYZ particles;
 - Search for Zcs states

Key science question: why do quarks forms colourless hadrons with only two stable configurations, proton and neutron?

- NEFFs are among the most basic observables of the nucleon, and intimately related to its internal structure.
- Nucleons are the building blocks of almost all-ordinary matter in the universe. The challenge of understanding the nucleon's structure and dynamics has occupied a central place in particle physics.
- The fundamental understanding of the hadron form factor in terms of QCD is one of the outstanding problems in particle physics.

Key science question:

are there any new physics beyond the SM?

- We believe physics beyond the SM exist:
 - Gravity is not take into account
 - No candidates for dark matter
 - No explanation to asymmetry of matter and anti matter

-

- Search for new physics in precision frontier is complementary to that at high energy frontier.
 - CP Violation in τ decay

 $-\tau^- \rightarrow K_s \pi^- \nu$

-T-odd rotationally invariant produ $P_2^{\tau} \cdot (\vec{P}_{\pi^+} \times \vec{P}_{\pi^0})$ e.g. of $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} / k^- \pi^0 \nu_{\tau}$

• cLFV: $\tau \rightarrow \mu \gamma$

Detector

Activities

http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/

High Luminosity Tau Charm Physics

Indico for High Luminorcity Tau Charm Physics R&D

Coordinator Meeting	2 events 🔘 🕪
Mini Workshop	1 event
Monthly Meeting	3 events 🔘 👐
Physics Weekly Meeting	3 events 👐
Workshop	3 events 👐

Workshops for HIEPA

Institutions Shown Interest

- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Theoretical Physics, CAS
- **Tsinghua University** ٠
- University of Chinese Academy of Sciences
- Shangdong University ٠
- Shanghai Jiaotong University
- Peking University
- Zhejiang University
- Nanjing University ٠
- Nankai University
- Wuhan University
- Central China Normal University Lanzhou University
- Nanhua University ٠
- **Beijing University of Aeronautics and Astronautics** ٠
- Institute for Basic Science, Daejeon, Korea ٠
- Dubna, Russia ٠
- Budker Institute and Novosibirsk University, Russia
- T. Shevchenko National University of Kyiv, Kyiv, ٠ Ukraine
- University Ljubljana and Jozef Stefan Institute Ljubljana, Slovenia

- Stanford University, USA Wayne State University, USA
 - Carnegie Mellon University, USA
 - GSI Darmstadt and Goethe University Frankfurt, Germany
 - Goethe University Frankfurt, Germany
 - GSI Darmstadt, Germany
 - Johannes Gutenberg University Mainz, Germany
 - Helmholtz Institute Mainz, Germany
 - LAL (IN2P3/CNRS and Paris-Sud University), **Orsay, France**
 - Sezione di Ferrara, Italy
 - L'Istituto di Fisica Nucleare di Torino, Italy
 - L'Istituto di Fisica Nucleare di Firenze, Italy
 - Scuola Normale Superiore, Pisa, Italy •
 - University of Silesia, Katowice, Poland
 - Laboratori Nazionali di Frascati, Italy
 - INFN, Padova, Italy
 - University of Pavia, Pavia, Italy
 - University of Parma, Italy

Jozef Stefan Institute Ljubljana, Slovenia

Pre-CDR

Contents

						45	
9	1	Phy	sics Pro	ogram at HIEPAF	4	46	
10		1.1	Introd	uction	4	47	
11		1.2	Charn	nonium- and XYZ-State Physics	5	48	
12			1.2.1	Charmonium States	6	49	
13			1.2.2	XYZ states	9	50	
14		1.3	Physi	cs of Charmed Hadrons	12	51	
15			1.3.1	V _{cd} and V _{cs}	12	52	
16			1.3.2	D ⁰ -D ⁰ mixing	13	53	
17			1.3.3	CP violation	13	54	
18			1.3.4	Rare and forbidden decays	14	55	
19		1.4	τ-Phy	sics	16	55	
20		1.5	Produ	ction of Light Hadrons in Non-Resonance Regions	18	57	
21		1.6	Search	n for Possible New Physics	20	58	2.5
22		1.7	Rema	cks and Notes	24	64	
23		1.8	OCD	Study in the Low Energy Region (Sections of 1.1-1.7 are provided by Ma Jianping, Section		ः •	
24			1.8 is	provided by Wenbiao. Some contents in section 1.5 and 1.8 may be combined later !!)	25		
25			1.8.1	Introduction	25		
26			1.8.2	R value and strong coupling constant $\alpha_{-}(M_{-})$	25		
27			1.8.3	Charm quark mass	26	63	
28			184	Inclusive hadron production	27	*	
- 38				F		60	
29	2	Con	iceptual	Design of the Detector	33	66	
30		2.1	Overv	iew	33	67	
81			2.1.1	Introduction	33	68	
32			2.1.2	Physics Requirements (assigned to Peng Haiping)	33	69	
33			2.1.3	General Considerations	33	70	2.6
84			2.1.4	Expected Performances	34	71	
85		2.2	The L	mer Silicon Detector (ISD)	35	72	
36			2.2.1	Introduction	35	73	
87			2.2.2	Options for vertex detector	35	74	
38				(1) STAR Heavy Flavor Tracker	35	75	
39				(2) Belle-II Vertex Detectors	38	76	2.7
40			2.2.3	Conceptual Design for ISD	39	π	
41			9393271	(1) Performance of ISD	41	78	
42			2.2.4	Summary	43	79	
42		23	Main	Tracing Detectors (MTD) (assigned to Lin Jranbei)	44	80	
		24	Partic	le Identification (PID)	44	81	2.8
-		2.7	1 44 140		- T	82	2.9

	2.4.1	Introduction	44
	2.4.2	Detector Options	45
		(1) TOF (Some formulae and words are missing in the doc file provided by Li Cheng.	
		Colored in blue!!!)	45
		(2) Cherenkov detector	45
	2.4.3	Barrel	47
		(1) TOF + Threshold Cherenkov Detector	47
		(2) TOP	49
	2.4.4	Endcap	49
		(1) RICH	49
		(2) TOF+ACC	50
	2.4.5	Conceptual Design and Expected Performance	50
	2.4.6	Summary	51
2.5	Electr	omagnetic Calorimeter (EMC)	51
	2.5.1	General Consideration	51
	2.5.2	Crystal Options	52
		(1) CsI Crystal	52
		(2) LYSO Crystal	52
		(3) PbWO ₄ Crystal	53
		(4) BSO Crystal	53
	2.5.3	Readout Methods	53
		(1) Silicon Photodiodes	56
		(2) Avalanche Photodiodes	56
	2.5.4	Barrel and Forward Calorimeters (Design)	56
	2.5.5	Summary	58
2.6	Muon	Counter	58
	2.6.1	General Considerations	58
	2.6.2	Possible Technical Choices	59
	2.6.3	R&D of Timing RPC	61
	2.6.4	Conceptual Design	61
	2.6.5	Summary	64
2.7	Super	conducting Solenoid	64
	2.7.1	Main Requirements	64
	2.7.2	Design of the Solenoid	64
	2.7.3	Cryogenics	66
	2.7.4	Power Supply and Quench Protection	66
2.8	Front	End Read Out Electronics (Qi An, Ge Jin)	66
2.9	Trigge	er System (Zhengan Liu, Shubin Liu)	66
1226	00		1993

83		2.10 Data Acquisition System	66
84		2.11 Software (Huaimin, Yanwen, SDU??)	68
85		2.11.1 Detector Simulation	68
86		2.11.2 Data Reconstruction and Calibration	68
87		2.12 Summary (???)	68
	1		(0)
88	3	Conceptual Design of the Accelerator (Qin Qing, Wang Lin)	09
89		3.1 Introduction for the General Consideration C an interdisciplinary Mode	69
90		5.1.1 Layout of the Accelerator	60
91		3.1.2 Injection Region	60
92		214 Internetice Design	60
53		3.1.4 Interaction Region	60
34		2.2 Nummer Scotter	60
95		2.4 Tatting	60
95 		25 Deem Deem Differt	60
3/		2.6 Life Tune of the Deser	60
36		27 Collection Effort	60
32		2.9. Longitudinal Delegization	60
100		30 Faathark Sustem	60
100		3.10 Trighting Statem	60
102		311 Summary	60
100			
104	4	Beam Injection System of the Accelerator (assigned to ???)	70
105		4.1 The Linarc	70
106		4.1.1 RF System of the Linac	70
107		4.1.2 The Beam Focusing System	70
108		4.2 Beam Injection	70
109		4.3 Polarized Electron Source	70
110	5	Cost Estimation	71
111		5.1 Accelerator (Qin Qing, Wang Lin)	71
112		5.2 Detector (Li Cheng, Jianbei)	71
118		5.3 Civil Engineering (???)	71
114	6	Consideration of Site Selection (Zhao Zhengguo)	72
115	7	Summary (Shen Xiaoyan, Zhao Zhengguo and Zhao Guangda)	73
116	8	ACKNOWLEDGMENTS	73

Summary

- STCF could be one of the crucial precision frontier rich of physics program, unique for physics with c quark and τ leptons, important playground for study of QCD, exotic hadrons and search for new physics.
- HIEPA has a ring of ~700 m in circumference and can provides:
 - e^+e^- collision with E_{cm} =2-6 GeV, L=5x10³⁴
 - SRF for beam of 1-3.5 GeV
 - Potential for future FEL with long LINAC line
- A draft of pre-CDR exist, effort to move to CDR, TDR.
- International collaboration is badly need for promoting the project.

Extra Slides

Z_c(3900) Observed at BESIIII and Belle

Belle with ISR: PRL110, 252002 967 fb⁻¹ in 10 years running time BESIII at 4.260 GeV: PRL110, 252001 0.525 fb⁻¹ in one month running time

$$\tau \rightarrow \mu \gamma$$

- The process $e^+e^- \rightarrow \tau^+\tau^-\gamma$, dominant background source at Y(4S), does not contribute below 2E $\approx 4m_{\tau}/\sqrt{3} \approx 4.1$ GeV.
- The favorable kinematical condition and the use of polarization can allow an UL(STCF in 1-2 years) ≤ UL(SuperBelle@Y in 12-15 yrs).

Questions to be addressed

- What are the key science questions that needs a STCF to answer?
- Do we need a STCF at the SBF era?
- What are the key technologies and challenges to HIEPA?
- What kind of detector we should build to fit the physics reaches, and what are the challenges?

Measurement of Proton FFs with BESIII

Babar: 469 fb⁻¹ 10-24% precision BESIII: 0.4 fb⁻¹ \sim 10% precision (expected)

Big Questions to the Standard Model

Cosmology:

- Unable to explain matter anti-matter asymmetry;
- Not account for the accelerating expansion of the universe (dark energy), no prediction power for dark matter candidates.

Force and unification:

- Does not incorporate the full theory of gravity;
- No answer to the origin of electroweak symmetry breaking;
- No solution to hierarchy problem.

Particle properties:

- Does not incorporate neutrino oscillation and their masses;
- Does not explain electric charge quantization.

Expect new physics beyond SM

Nucleon Electromagnetic Form Factors(NEFFs)

CP Violation in τ Decay

- CP violation is observed in B, D and K systems to date
- No CPV has been observed in the lepton sector
- The discovery of CPV in the tau sector would be a clean signature of NP
- □ One of the most promising CPV channels is $\tau^- \rightarrow K_S \pi^- \nu$
 - SM CP asymmetry from K_S - K_L mixing is expected to be :

[Bigi & Sanda, PLB 625, 2005, Grossman &Nir JHEP 1204 (2012) 002]

$$|K_S\rangle = p|K^0\rangle + q|\overline{K}^0\rangle |K_L\rangle = p|K^0\rangle - q|\overline{K}^0\rangle$$

$$\frac{\Gamma(K_L \to \pi^- l^+ \nu) - \Gamma(K_L \to \pi^+ l^- \overline{\nu})}{\Gamma(K_L \to \pi^- l^+ \nu) + \Gamma(K_L \to \pi^+ l^- \overline{\nu})} = |p|^2 - |q|^2 \simeq (3.27 \pm 0.12) \times 10^{-3}$$

- BaBar measurement [PRD 85, 031102]

$$\begin{split} A_{\tau} &\equiv \frac{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})} \\ &= (-4.5 \pm 2.4 \pm 1.1) \times 10^{-3}. \end{split}$$

- Belle measurement [PRL 107, 131801]

$$|\text{Im}(\eta_S)| < 0.026 \text{ or better}$$

 $A_{cp} = (1.8 \pm 2.1 \pm 1.4) \times 10^{-3} @ W \sim [0.89-1.11] \text{ GeV}$

Charge Higgs, new Scalar, W_L-W_R Mixings, LeptonQuarks
τ CPV in Angle Distribution

Need new measurement on the angular CPV asymmetry

Use T-odd rotationally invariant products : e.g.

 $P_2^{\tau} \cdot (\vec{P}_{\pi^+} \times \vec{P}_{\pi^0})$

in τ^+ and τ^- decays to >=2 hadrons such as : $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau} / k^- \pi^0 \nu_{\tau}, \quad \tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau} / K^- \pi^+ \pi^- \nu_{\tau},$ Need polarized beam

"Figure Of Merits" -- Y. S. TSAI

 $\begin{array}{ll} \mathrm{merit} &= \mathrm{luminosity} \times \bar{w}_Z \times \ \mathrm{total\ cross\ section} \\ &\propto \mathrm{luminosity} \times (w_1 + w_2) \\ &\qquad \times \sqrt{1 - a^2} a^2 (1 + 2a) \ , \end{array}$

BESIII @ $4.25 (10^{33} \text{ cm}^{-2} \text{s}^{-1})$ FOM=1 HIEPA @ $4.25 (10^{35} \text{ cm}^{-2} \text{s}^{-1})$ FOM=100 Super B @ $(10^{36} \text{ cm}^{-2} \text{s}^{-1})$ FOM=65 Y. S. Tsai, PRD 51.3172

Lepton Flavour Violating (LFV)

CLFV processes sensitive to New Physics (NP)

through lepton-lepton coupling $y_{ij}\bar{\ell}_i F^{\mu\nu}\ell_j\sigma_{\mu\nu}$

Charged Lepton Flavor Violation (cLFV)

In SM, cLFV is negligibly even taking into account neutrino mass

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^{0} - \overline{D}^{0}$	***	*	*	*	*	***	?
¢ _K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
S _{oKs}	***	**	*	***	***	*	?
$A_{CP}(B \to X_s \gamma)$	*	*	*	***	***	*	2
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	2
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow c + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
de	***	***	**	*	***	*	***
$(g - 2)_{\mu}$	***	***	**	***	***	*	2

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star\star\star$ signals large effects, $\star\star$ visible but small effects and \star implies that twiveArltmannshio fertecterain that there is 0909.1333

cLFV Decay $\tau \rightarrow \mu \gamma$ @ B Factory

Current limit : ~ 4×10^{-8} (5×10⁸ τ -pairs)

- BABAR : 516fb⁻¹ [PRL, 104, 021802]
- BELLE : 545fb⁻¹

At (4S):

- ISR background e+e- $\rightarrow \tau^+ \tau^- \gamma$
- Upper Limit $\propto 1/\sqrt{L}$
 - Expected limit : $3x10^{-9}$ (75ab⁻¹ (7×10¹⁰ τ-pairs)

Background $e^+e^- \rightarrow \tau^+ \tau^- \gamma$

Expected $\tau \rightarrow \mu \gamma$ Br upper limit

E(GeV)	σ(nb)	$L(ab^{-1})$	$N_{\tau\tau}(10^{10})$
3.686	5.0	1.5	0.75
3.77	2.9	3.5	1.03
4.17	3.6	2.0	0.71
Total		7.0	2.49

Dominant background

	τ decays,	direct	$(\tau^+ \rightarrow \pi^-)$	$^{+}\pi^{0}\nu_{\tau}$	and	combinatorial
--	-----------	--------	------------------------------	-------------------------	-----	---------------

- $\square \text{ QED processes: } e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma, e^+e^- \rightarrow e^+e^- \mu^+\mu^-\gamma$
- □ Continuum hadron production $e^+e^- \rightarrow qq$
- \Box $\psi(2S)$ and D-meson decays

	$\sigma_{E}/E=1.5\%$	$\sigma_{E}/E=2.5\%$
Signal (Br=10-9)	17	15
Muon background	7	11
Pion background	83	271
Expected 90% CL upper limit for Br	1.1×10-9	3.0×10-9
Expected 90% CL upper limit for Br with pion suppression by a factor of 30	3.3×10 ⁻¹⁰	5.1×10 ⁻¹⁰

Supper-B Expected limit : $3x10^{-9}$ @75ab⁻¹ (7×10¹⁰ τ -pairs)

Competition from Belle II?

Have incomparable superiority to explore Charmonium(like) states

Production Mechanism @ τ -c Factory

- ψ/Y/Hybrid(ccg) (1⁻⁻) produced directly in the e⁺e⁻ collision
 - To determine the resonance parameters for the excited ψ or Y state
 - Precisely measure the x-sec of inclusive/exclusive final states at different Ecms
- □ Charge parity c=+1 states produced via radiative transition from vector ψ/Y
 - The decay rate $\psi(nS/nD) \rightarrow \gamma X(3872), X(3940) \cdots$
 - $\chi_{cJ}(2P)$, $\chi_{cJ}(3P)$, $\eta_c(3S)$, $\eta_c(4S)$, ... B(ψ(3S)→γχ'_{cJ}) = (7, 3, 1) x 10⁻⁴ for J=2,1,0
- Search for new states from hadronic transition
 - To search for Zc, Zcs, $hc(2P) \cdots$.

Search for 1⁻⁻ hybrid

 $\square B(H_{ccg} \rightarrow \gamma \eta_c) \sim 2x(B(H_{ccg} \rightarrow \gamma \chi_{c0}) \sim 4x10^{-4})$

[in H, cc in spin-singlet! LQCD by Dudek'09]

 $\Box \sigma(e^+e^- \rightarrow H_{ccg}) \sim O(10\text{-}100) \text{ pb } [???]$

□ Scan e+e⁻ $\rightarrow \gamma \eta_c$ and $\gamma \chi_{c0}$ for exotic structures

 $\epsilon B \sim 10\%$ for $\gamma \eta_c$ and $\gamma \chi_{c0} \rightarrow \gamma + hadrons$

 \Box L_{peak}=10³⁵/cm²/s, 1 year running = 10⁶pb⁻¹=1 ab⁻¹

- □ At 100 energy points above DD threshold
 - $N^{obs}(\gamma \eta_c) = O(4 \sim 40)/point/year$ at peak
 - N^{obs}($\gamma \chi_{c0}$)=O(2~20)/point/year at peak

Exclusive Line Shape Measurement

Explore the Nature of Z_c

- $\Box \sigma(e+e^- \rightarrow \pi \pi(\pi) + charmonium) \sim O(10) \text{ pb}$
- \square Look for states in π +charmonium
 - $\epsilon B \sim 2.7\%$ for $\pi \pi h_c \rightarrow \pi \pi \gamma \eta_c$
 - $-~\epsilon B \sim 5.0\%$ for $\pi \pi J/\psi$
 - $\epsilon B \sim 2.0\%$ for $\pi \pi \chi_c \rightarrow \pi \pi \gamma J/\psi$
 - $\epsilon B \sim 1.0\%$ for $\pi \pi \psi' \rightarrow \pi \pi \pi \pi J/\psi$
- \Box L _{peak}=10³⁵/cm²/s, 1 year running = 10⁶ pb⁻¹=1 ab⁻¹
- \square N^{obs}=O(10⁵)/year; sufficient for PWA or Argand plot analysis

Search for Zcs

search for Excited Z_c and Z_{cs} particle@ Ecms>4.5 GeV

Search for $\eta_{c2}(1^1D_2)$

- □ B(h_c(2P) →γη_{c2}) ~ 3×10⁻⁴ [E1 trans., Barnes' 05] □ B(η_{c2}→γh_c) ~ (44–54)% [E1 trans., Fan' 09] □ B(h_c→γη_c) ~ 54% [E1 trans., BESIII'10] □ $\sigma(e^+e^- \rightarrow \pi^+\pi^-h_c(2P)) \sim 20 \text{ pb}$ @ Ecm = ?? GeV □ $\varepsilon B(\eta_c \rightarrow \text{hadrons}) \sim 1.5\%$ at BESIII □ N^{obs}=2×10⁻⁵×L (L is int. lumi. in pb⁻¹) □ L_{peak} = 10³⁵cm⁻¹s⁻¹, 1 year running = 10⁶pb⁻¹ = 1ab⁻¹
 - N^{obs}=20 events /year,

 \blacksquare Background is expected to be low for narrow h_c and η_c

τ Lepton Physics

- □ X sec grows from 0.1nb near threshold to 3.5nb at 4.25GeV
- -10^8 tau pairs per year at threshold (x-sec = 0.1nb)
- -3.5×10^9 tau pairs/year at 4.25GeV (x-sec = 3.5nb)
- -10^{10} tau pairs per year for Belle II (x-sec = 1nb)
- Physics Highlighted Physics program
 - Precision measurements of α_s , m_s , V_{us}
 - Lepton universality : m_{τ} , $\tau \rightarrow \pi^+ \nu_{\tau}$ and $\tau \rightarrow K^+ \nu_{\tau}$
 - Lorentz structure of the amplitude for $\tau{\rightarrow}\ell\nu_\ell\nu_\tau$
 - Search for LFV processes : $\tau \rightarrow \ell \gamma$, $\ell \ell \ell$, ℓh
 - Search for CPV
 - V-A Structure of the weak current in leptonic decays
 - Rare hadronic decays
- **Competition to Belle II**
 - Threshold effect is important for controlling and understanding background
 - Longitudinal polarization of the initial beams will significantly increase sensitivity in searches for CPV in lepton decays.

Charm Physics

- 4×10^9 pairs of $D^{\pm,0}$ and $10^7 \sim 10^8 D_s$ pairs per year
 - -10^{10} charm from Belle II/year

Competition to Belle II

- The multiplicity of final state is lower by a factor of 2
- Threshold effect, clean, double tagging
- QM coherent state, $J^{PC}=1^{-1}$ for DD, $J^{PC}=0^{++}$ for γDD

Highlighted Physics programs

- Precise measurement of leptonic, semi-leptonic decay (f_D , f_{Ds} , CKM matrix…)
- D⁰-D⁰ bar mixing, CPV
- Rear Decay (FCNC, LFV, LNV····.)
- Excite Charm meson D_{J} , D_{sJ} (mass, width, J^{PC} , decay modes)
- Charmed Baryons (J^{PC}, Decay modes, Br)

□ Some sensitivities @ 1 ab⁻¹ data at threshold

- Direct CPV in D \rightarrow hh sensitivity : $10^{-3} \sim 10^{-4}$
- Probe y : $\Delta(y_{CP}) \sim 0.1\%$
- RM=(x²+y²)/2~10⁻⁵ in K π and Kev channels
- $\Delta(\cos\delta_{K\pi}) \sim 0.007; \Delta(\delta_{K\pi}) \sim 1^{\circ}$

R and **QCD** Physics

- □ Detailed study of exclusive processes $e^+ e^- \rightarrow (2-10)h$, $h=\pi,K,\eta,p\cdots$, Scan between 2-7GeV and ISR $\sqrt{s} < 2GeV$
 - Meson Spectroscopy
 - Intermediate dynamics
 - Search for exotic states (tetraquarks, hybrids, glueballs)
 - Form factors
- High precision determination of $R=\sigma(e^+e^-\rightarrow hadrons)/\sigma(e^+e^-\rightarrow \mu^+\mu^-)$ at low energies and fundamental quantities
 - $(g_{\mu}-2)/2$, 92% from < 2GeV, 7% from 2-5GeV
 - $\alpha(M_z)$, 19.0% from < 2GeV, 18.1% from 2-5GeV
 - QCD parameters (charm quark masses)
- $\Box \text{ Inclusive cross section } e^+ e^- \rightarrow h + X$
 - QCD parameters (α_s , quark and gluon condensates)
 - Fragmentation functions
 - Spin alignment of vector
 - MLLA/LPHP prediction

Proton FF : Space-Like

Many measurements of the proton form factors in the space-like region.
 At Jlab, the proton factor ratio was measured precisely with an uncertainty of ~1%, based on which the proton electronic and magnetic radii could be extracted.

Proton FF : Time-Like

Proton FF @ HIEPA

$\sqrt{s}=2.23 \text{ GeV}$

Nsig	$\delta R_{EM}/R_{EM}$	δ σ/ σ	Luminosity (pb ⁻¹)	comment	
614±24	24%	3.9%	2.631	BESIII test run	
3881±62	9.5%	1.6%	16.630	BESIII expected	
156253 ± 395	1.5%	0.25%	669.533	HIEPAF reach 1	1 day
389898 ± 624	0.96%	0.16%	1670.69	HIEPA reach 2	2 days

Using two days data, proton FF can reach 1% precisions at super τ -charm factory!

General Consideration of Detector

- Efficient event triggering, exclusive state reconstruction and tagging
 - high efficiency and resolutions for charged and neutral particles
 - Low noise and High rate
- Much larger radiation does hardening, especially at IP and forward regions
 - The detector and electronics should withstand the expected does
- □ The Systematic error will be dominant in many physics studies
 - Detector acceptance : geometrical acceptance or detector response
 - Mis-Measurement : mis-tracking, fake photon, particle mis-id, noise
 - Luminosity measurement
- Reasonable cost

General Consideration

□ Vertex performance and low-momenta tracking eff.

Tracking: multiple scattering effect is important

– P T resolution : 0.5~0.7%@ 1 GeV/c, and dE/dx resolution: 6%

- low material budge.

PID : π/K and K/p separation up to 2GeV/c

- modest material budget ($<0.5X_0$)

- Cherenkov detector is necessary

EMC : fast response to match the high luminosity

- stochastic term $< 2\%/\sqrt{E}$ and constant term < 0.75%,

- angular resolution?

□ MUC : large-area fast sensors (RPC/MPRC etc)

 $-\mu/\pi$ suppression power>10/30, down to p=0.5GeV/c

 \square Large solid angle detector ~Nearly 4π

Detector

Tracking Detector

■ Must balance momentum resolution and curling of low momentum tracks :

- Low B field (~1T), need re-optimized
- Multiple coulomb scattering is critical :
 - low mass helium-based gas, wires
 - Small cells are needed for speed more wires in tension with low mass
 - Carbon fiber support structure to minimize effect on PID, EMC etc

$$\sigma_{x} \sim 130 \ \mu m$$

$$\frac{\sigma_{P}}{P} \sim 0.5\% @1 \text{GeV/C}$$

$$\frac{\sigma_{\frac{dE}{dx}}}{\frac{dE}{dx}} \sim 6\%$$

BESIII Drift Chamber Starting point

Tracking Detector

Vertex Detector

□ Provide precise hit close to collision vertex.

- Secondary vertices reconstruction.
- Help on tracking, improve momentum resolution.
- Help on vertex finding, improve the position resolution (impact parameter d₀).
- □ Challenge and risk
 - Develop pixel technology in China.
 - Material control (low mass must be required).
 - Man power and cost.

Vertex Options

D PIXEL

- double layers, 20.7x20.7 um pixel pitch, 2
 cm x 20 cm each ladder, 10 ladders,
 delivering ultimate pointing resolution.
- new active pixel technology

Belle II PXD

In the active pixel matrix region: thickness ~ 75 mm.

Others option

• MicroMegas

 在HIEPA上应用 的技术难点
 - 圆柱型
 - 像素读出

Performances

Option I : MDC + STAR HFT

Detector	radius (cm)	material (%X ₀)	resolutio n (mm)
MDC Outer 9-48	23.5-82	0.0045 /layer	130
MDC Inner 1-8	15-22	0.0051 /layer	130
SSD	10	1.5	250
PXD 2 layers	3/6	0.37 /layer	30
Beam pipe	2	0.15	_

Option II: MDC + Belle-II PXD

Detector	radius (cm)	material (%X ₀)	resolutio n (μm)
MDC Outer 9-48	23.5-82	0.0045 /layer	130
MDC Inner 1-8	15-22	0.0051 /layer	130
PXD 3 rd layer	10	0.15	50
PXD 2 layers	3/6	0.15 /layer	50
Beam pipe	2	0.15	-

Similar in terms of performance

PID Detector

Low Momentum

- **\Box** Specific energy loss (dE/dx) in MDC
- Better dE/dx resolution for longer track
- **D** BESIII MDC (~6%, track length ~0.7m)
 - clean $\pi/K/p$ ID for p<0.8/1.1 GeV/c

High Momentum

- □ Cherenkov detector is necessary
- □ Two catalogs
 - Threshold Cherenkov simple to build
 - Imaging Cherenkov: RICH (large momentum range) / DIRC / TOP (most compact)

PID Detector

Baseline Design

- PID by RICH at 0.8<p<2GeV/c, no TOF
- Proximity RICH, similar to ALICE HMPID design, but with PHENIX HBD (CsI coated GEM) readout
- $n \sim 1.3$ (liquid $C_6 F_{14}$), UV detection
- Already proven
- Immune to B field → same structure at both the endcap and the barrel

Alternative Design

- No TOF, PID by RICH only
- Similar to BELLE-II ARICH design, Aerogel + Position Sensitive Photon Detector
- n~1.13 (Below threshold for proton at p<2GeV/c)
- Already proven at the BELLE-II endcap, how about the barrel part?
- Need R&D

Electromagnetic Calorimeter

EMC Requirements

- Good energy resolution
- Good position/angular resolution
- Good timing resolution if possible

Challenging

- Radiation damage
 - Decrease light yield
 - A function of run time
- High photon background rate
 - Produce pile-up
 - Degrade energy and angular resolution

Crystal Comparison

Crystal	CsI(TI)	CsI	BSO	PbWO4	LYSO(Ce)
Density (g/cm³)	4.51	4.51	6.8	8.3	7.40
Melting Point (°C)	621	621	1030	1123	2050
Radiation Length (cm)	1.86	1.86	1.15	0.89	1.14
Molière Radius (cm)	3.57	3.57	2.2	2.0	2.07
Interaction Len. (cm)	39.3	39.3	23.1	20.7	20.9
Hygroscopicity	Slight	Slight	No	No	No
Peak Luminescence (nm)	550	310	480	425/420	420
Decay Time ^b (ns)	1220	30 6	100 26,2.4	30 10	40
Light Yield ^{b,c} (%)	165	3.6 1.1	3.4 0.5/0.25	0.30 0.077	85
LY in 100 ns	13	4.6	2.9	0.37 (2-3x1)	78
LY in 30 ns	4	3.3	1.5	0.26 (2-3× †)	45
d(LY)/dT b (%/ °C)	0.4	- <mark>1</mark> .4	-2.0	-2.5	-0.2
Radiation hardness (rad)	10 ³	104-5	106-7	106-7	108
Dose rate dependent	no	no	yes	yes	
Experiment	CLEO <i>,B.ABAR,</i> Belle, BES III	KTeV,E787 Belle2 1 st SuperB 2 nd	Belle2 3rd	CMS, ALICE PANDA Belle2 2 nd	SuperB 1 st (Hybrid)

Barrel EMC

- □ CsI calorimeters (BABAR, BES-III, CLEO-c) are a reasonable firstorder, match to a 10³⁵ collider in the 4 GeV region
- □ Similar to that of SuperB
 - Adjusts electronics time constants, the barrel calorimeter is adequate
 - Such as pure CsI, which were considered for the endcap at SuperB, could be re-evaluated. Need for a fast, efficient readout device that works in a magnetic field.

Parameter	BESIII	CLEO-c	BaBar	Belle
$\Delta \Omega/4\pi$ (%)	93	93	90	91
Active media	CsI(Tl)	CsI(Tl)	CsI(Tl)	CsI(Tl)
Depth (X ₀)	15	16	16-17.5	16.2
σ_E at 1 GeV (MeV)	~25	~20	~28	~17
σ_E at 100 MeV (MeV)	3.3	4	4.5	4
Position resolution at 1 GeV/c (mm)	6	4	4	6

EndCap: LYSO

SuperB Forward EMC options

A detector faster, with finer granularity and higher radiation hardness

Option	Number	New crystal	Crystal	Crystal	Photo-	Calibration	Total	Total
	of new	volume	$\cos(cm^3)$	\mathbf{cost}	detectors	system	structure	Cost
	$\operatorname{crystals}$	(cm^3)	(k€)	(M€)	(M€)	(M€)	(M€)	(M€)
Baseline - Hybrid								
3 CsI(Tl) + 6 LYSO	2160	245	19.23	4.76	0.38	-	0.19	5.33
LYSO new structure	4500	402	19.23	7.72	0.44	77	1.75	9.91
LYSO old structure	3600	402	19.23	7.72	0.44	-	0.19	8.35
Reduced Hybrid								
$4 \operatorname{CsI}(\operatorname{Tl}) + 5 \operatorname{LYSO}$	1760	198	19.23	3.81	0.31	-	0.19	4.31
5 CsI(Tl) + 4 LYSO	136 <mark>0</mark>	154	19.23	2.93	0.24	-	0.19	3.38
Alternative crystals								
Pure CsI	900	692	3.92	2.71	0.43		0.19	3.33
BGO	4500	392	6.92	2.72	0.44	0.92 - 2.31	1.75	5.82-7.21
$PbWO_4$	4500	306	2.96	1.18	0.44	0.92 - 2.31	1.75	4.28 - 5.67

Best performance: Full LYSO (too expensive, crystal cost 3x pure CsI/BGO, 7x PWO)

EndCap: PWO

- PWO is dense and fast
- □ Increase light yield:
 - improved PWO II
 - operation at -25° C
- **Challenges:**
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- **D**elivery of crystals started

Barrel Calorimeter

- 11000 PWO Crystals
- LAAPD readout, $2 \times 1 \text{cm}^2$ High occupancy in center
- $\sigma(E)/E \sim 1.5\%/\sqrt{E} + \text{const.}$ LAAPD readout

Forward Endcap

• 4000 PWO crystals

Marco Maggiora, Workshop on Tau-Charm at High Luminosity, La Biodola , Isola d'Elba, May 27 – 31, 2013

EndCap BSO

Pros:

- **Relative fast**
- Radiation hard
- Emission spectrum compatible to different photosensors (PMT, Si)
- □ Small X0 (60% CsI) \rightarrow more compact
- □ Small Moliere Radius (60% CsI) → finer segmentation
- Low raw material cost (~PWO and 50%
 BGO, mush less than LYSO)

Cons:

- □ LY smaller than CsI(Tl) and LYSO (however, ~ PWOII at -25 °C)
- □ Dose rate dependent LY, fast recovery time → LY Calibration system needed
- Not mature (large size available, mass production not proven)

9 crystals from SICCAS, 2x2x20 cm³

Muon Identification

- **\square** Expected μ/π suppression power >10 (30)
- Typically used large area RPCs, scintillator strips with wavelength shifting fiber and pixelated APD or SiPM readout.
- A new Muon ID method-Star MTD at STAR
- ✓ based on the Long-strip MRPC technology
 - good timing performance
 - moderate spatial resolution
 - Cost-effective
- \checkmark using the iron bars as absorber

Requirement on the MRPC

- Time resolution: < 100 ps
- Spatial resolution: ~ 1 cm
- High efficiency

Performance :

- Time resolution : 108ps
- Spatial resolution :
 - 2.6cm(z), 1.9 cm(φ)

Extending π/μ separation range

• The time-of-flight for punch through pion and muon coming out from ECal shows some difference at low momentum.

Activities

http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/

High Luminosity Tau Charm Physics

Indico for High Luminorcity Tau Charm Physics R&D

Coordinator Meeting	2 events 💿 🕪
Mini Workshop	1 event
Monthly Meeting	3 events 🔘 🕪
Physics Weekly Meeting	3 events
Workshop	3 events

Workshops for HIEPA

2015 Internal Workshop

香山会议

Data Sample at Resonances for 1 ab⁻¹

49	J/ψ	$\psi(2S)$	$\psi(3770)$	$\psi(4040)$	$\psi(4160)$	$\psi(4415)$
M, GeV	3.097	3.686	3.773	4.039	4.153	4.421
Γ , MeV	0.093	0.304	27	80	103	62
σ , nb	~ 3400	~ 640	~ 6	~ 10	~ 6	~ 4
$L, \text{ fb}^{-1}$	300	150	350	10	20	25
N	10^{12}	1011	2×10^9	10^{8}	10^{8}	10^{8}
BESIII	10 ⁹	10 ⁸	107	10 ⁶	10 ⁶	10 ⁶

Requirement To The Detector

Efficient event triggering, exclusive state reconstruction and tagging – high efficiency and resolutions for charged and neutral particles

- Best possible solid angle coverage
- High resolution for charged particles: [0.05, 1.6] GeV
- Good PID: [0.05, 2] GeV
- Good e, γ detection eff. and energy resolution: [0.02,2.5]
 GeV
- Good vertex detection: 50 μm

Nucleon Form Factors

- Fundamental properties of the nucleon
 - Connected to charge, magnetization distribution
 - Crucial testing ground for models of the nucleon internal structure
 - Necessary input for experiments probing nuclear structure, or trying to understand modification of nucleon structure in nuclear medium
- Driving renewed activity on theory side
 - Models trying to explain all four electromagnetic form factors
 - Trying to explain data at both low and high Q²
 - Progress in QCD based calculations

Model	$ au ightarrow \ell \gamma$	$ au ightarrow \ell\ell\ell$	Ref.
SM + lepton mixing	10^{-40}	10^{-14}	hep-ph/9810484
SM + left-h. heavy Dirac neutrino	$< 10^{-18}$	$< 10^{-18}$	SJNP25(1977)340
SM + right-h. heavy Majorana neutrino	$< 10^{-9}$	$< 10^{-10}$	PRD66(2002)034008
SM + left and right-h. neutral singlets	$< 10^{-8}$	$< 10^{-9}$	PRD66(2002)034008
mSUGRA + seesaw	$< 10^{-7}$	$< 10^{-9}$	hep-ph/0206110, hep-ph/9911459
SUSY $SU(5)$	$< 10^{-4}$		hep-ph/0303071
SUSY flipped $SU(5)$	$< 10^{-7}$		hep-ph/0304130
SUSY $SO(10)$	$< 10^{-8}$	$< 10^{-10}$	hep-ph/0209303, hep-ph/0304190
SUSY anomalous $U(1)$	$< 10^{-7}$		hep-ph/0308093
neutral SUSY Higgs	$< 10^{-10}$	$< 10^{-7}$	hep-ph/0304081
charged SUSY Higgs triplet		$< 10^{-7}$	hep-ph/0209170
MSSM+nonuniversal soft SUSY breaking	$< 10^{-10}$	$< 10^{-6}$	hep-ph/0305290
Non universal Z' (technicolor)	$< 10^{-9}$	$< 10^{-8}$	PLB547(2002)252
two Higgs doublet III	$< 10^{-15}$	$< 10^{-17}$	hep-ph/0208117
extra dimensions	$< 10^{-11}$		hep-ph/0210021

Upper limits on tau LFV branching fractions

One of physical effects BSM is the existence of the nonzero electric dipole moment (EDM) of quarks or leptons leading to CPV

- $J/\psi \rightarrow \gamma \phi \phi$ c quark EDM at 10⁻¹⁵ e-cm level
- $J/\psi \rightarrow \Lambda \overline{\Lambda}$ set limit ~10⁻¹⁹ e-cm for EDM of Λ (two order of magnitude more stringent)

Lepton flavor violation

• $J/\psi \rightarrow II'$ (I,I'=e, μ , τ) < 10⁻⁹

Physics with τ Leptons

- $e^+e^- \rightarrow \tau^+\tau^-$ near threshold -- low and controlled background
- Precision measurements of α_s , m_s , V_{us}
- Lepton universality: m_{τ} , $\tau \rightarrow \pi^+ \nu_{\tau}$ and $\tau \rightarrow K^+ \nu_{\tau}$
- Lorentz structure of the amplitude for $\tau \rightarrow |v_1v_{\tau}|$
- Search for LFV processes: $\tau \rightarrow I\gamma$, III', Ih sensitive to new physics ($10^{-7}-10^{-8}$ from BF)
- Search for CPV: $A_{CP} = (\Gamma(\tau \rightarrow f+) \Gamma(\tau \rightarrow f-)) / (\Gamma(\tau \rightarrow f+) + \Gamma(\tau \rightarrow f-))$ Most promising processes $\tau \rightarrow K\pi^0 v_{\tau}$, $\rho \pi v_{\tau}$, $\omega \pi v_{\tau}$, $a_1 \pi v_{\tau}$ Observation of CP asymmetry would be an explicit indication of physics BSM.
- Competition from SBF, but threshold effect is important for controlling and understanding background
- Longitudinal polarization of the initial beams will significantly increase sensitivity in searches for CPV in lepton decays.