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The Standard Model and Accelerators for Particle Physics

Dark matter
SKEKB
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DAFNE BEPC



High Energy Physics in Post Higgs Era
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• Origin of  the electroweak spontaneous symmetry breaking
- Higgs property (mH, G, JPC, couplings, s, Br of all possible modes)
- Higgs as a tool for discovery (structure, additional Higgs bosons..)

• New physics beyond the SM  
- New energy territory 
- Precision measurements of SM rare processes 
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Standard Model 

4Consistent with SM ! 



5No indication of SUSY yet, but set lower limits!  



61 TeV 10 TeV

No indication of SUSY yet, but set lower limits!  
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BESIII 
detector

Beijing Electron Positron Collider

Storage ring
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Ecm:    2.0-4.6 GeV
sE:     5.16×10-4

L:        1×1033  cm-2s-1@3770



BESIII Detector and Collaboration 
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Muon counter
Resistive plate chamber  
Barrel: 9 layers
Endcaps: 8 layers
sspatial: 1.48 cm

Time-of-flight (TOF)
Plastic scintillator 
sT(barrel):   80 ps
sT(endcap): 90 ps

Drift chamber (MDC)Drift chamber (MDC)
Small cell, 43 layer
Gas He/C3H8=40/60
sxy=130 mm, dE/dx~6%
sp/p = 0.6% at 1 GeV

ECAL calorimeter 
CsI(Tl): L=28 cm (15X0)
Energy range: 0.02-2GeV
At 1 GeV sE (%) sl(mm)
Barrel:       2.5       6.1
Endcap:     5          9 

1 T Super conducting  magnet

Data acquisition 
Event rate: 4 kHz
Data size: 50 MB/s

Grid computing
CPU: 3200 core 
Storage: 2.2 pB

RO channels: 104

Cost:  200 M RMB

5.
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Features of the t-c Energy Region
• Rich of resonances, charmonium and  charmed mesons.
• Threshold characteristics (pairs of t, D, Ds, charmed baryons…).
• Transition between smooth and resonances, perturbative and 

non-perturbative QCD.
• Mass location of the exotic hadrons, gluonic matter and hybrid.

10
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t+t- DsDs LcLc



Physics at t-c Energy Region

_

• Precision DQED, am, charm quark mass extraction. 
• Hadron form factor(nucleon, L, p).

R scan 
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• Hadron form factors
• Y(2175) resonance
• Mutltiquark states

with s quark, Zs
• MLLA/LPHD and QCD 

sum rule predictions

• Hadron form factors
• Y(2175) resonance
• Mutltiquark states

with s quark, Zs
• MLLA/LPHD and QCD 

sum rule predictions

• Light hadron spectroscopy
• Gluonic and exotic states
• Process of LFV and CPV
• Rare and forbidden decays
• Physics with t lepton 

• Light hadron spectroscopy
• Gluonic and exotic states
• Process of LFV and CPV
• Rare and forbidden decays
• Physics with t lepton 

• XYZ particles
• Physics with D 

mesons
• fD and fDs
• D0-D0 mixing
• Charmed baryons 

• XYZ particles
• Physics with D 

mesons
• fD and fDs
• D0-D0 mixing
• Charmed baryons 
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Selected Highlights from BES
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t+t- DsDs LcLc

“without this result, we 
could have excluded 
the SM Higgs” 

Bolek Pietrzyk at 
ICHEP 2000



Selected Highlights 
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Most precise measurement 
for D leptonic decay

Zc(3900)

X(1835)

Abrupt structure

Large  Isospin Violation
(1405)f0(980)p0

First Lc  at BESIII
Precise measurement

Precise Measurement 
on Cross section 

e +e−p+p−



A Super Tau-charm Factory to Succeed BEPC
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BEPCII/BESIII will end its mission around 2024

High Intensity Electron Positron Accelerator (HIEPA)



What is HIEPA?
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 Electron Positron Collider for physics 
 Ecm = 2-7GeV 
 Luminosity > 0.5-11035 cm-2s-1 at 4 GeV
 Polarization available on one beam (phase II)

− Polarized electron beam source
− Siberian Snake curing depolarization

 Being a SRF (synchrotron radiation facility). 

 Reserving the potential for future FEL (free electron laser) 
study with the long LINAC.



What Is HIEPA ? 
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Circumference: 
~ 700m 



Data Samples / Year
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1035cm-2s-1  86400s  180days  90% = 1.4ab-1

CLEO-C BES-III/ year
1033cm-2s-1(10fb-1)

HIEPA/year
1035cm-2s-1 (1ab-1)

J/ - - 10109 101011

(2S) 54 pb-1 27106 3109 31011

(3770) 818 pb-1 5106  D-pair 4107 4109 

4.17 GeV 586 pb-1 7105  Ds-pair 1106 1108 

t+t- (4.25) 4106 3107 3109 

Luminosity Seconds/days Running time/year Efficiency 



Highlighted Physics Program

• Search for new forms of hadron and study their 
properties.

• The nucleon/hadron electromagnetic form factors 
(NEFFs) and QCD study in none perturbative region.  

• Search for new physics beyond the SM.

• ……

18



Key science question: is there any new forms of hadron exist ?

• Exotic hadrons are not predicted by the simple quark model. 

• Many candidates, such as X(3872), Y(4260) and Zc(3900), have 
been discovered, but some are not firmly established and their
property are poorly known.

• To reach conclusive evidence, an e+e- collider in the t-c sector, 
which is able to provide much higher statistical data and cover 
wide energy range is essential. 
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• Search for lower mass glueballs, 1-+ hybrid;
• Explore the nature of XYZ particles; 
• Search for Zcs states



Key science question: why do quarks forms colourless hadrons with 
only two stable configurations, proton and neutron? 

• NEFFs are among the most basic observables of the nucleon, 
and intimately related to its internal structure.

• Nucleons are the building blocks of almost all-ordinary 
matter in the universe. The challenge of understanding the 
nucleon's structure and dynamics has occupied a central 
place in particle physics.

• The fundamental understanding of the hadron form factor in 
terms of QCD is one of the outstanding problems in particle 
physics. 
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Key science question: 
are there any new physics beyond the SM?

• We believe physics beyond the SM exist: 
- Gravity is not take into account 
- No candidates for dark matter
- No explanation to asymmetry of matter and anti matter
- …..

• Search for new physics in precision frontier is complementary to 
that at high energy frontier. 
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• CP Violation in t decay
- t-KSp-
-T-odd rotationally invariant products,                    e.g. of t-p-p0t /k-p0t

• cLFV:  tmg



MDC

PXD/SSD

PID-barrel PID
-endcap

EMC

Superconducting magnet
(0.7-1 T) 

York/Muon
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190 cm

240 cm
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20

Detector

MDC

• sxy=130 mm

• dE/dx<7%, sp/p =0.5% at 1 
GeV

PXD

• Material budget ~0.15%X0 / 
layer 

• sxy=50 mm

PID

• p/K (and K/p) 3-4s
separation up to 2GeV/c

EMC 
Energy range: 0.02-2GeV
At 1 GeV sE (%)
Barrel(Cs(I):     2          
Endcap (Cs):     4

MUD

• m/p suppression power 
>10 22
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Activities

http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/
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Workshops for HIEPA

The Fifth Workshop will be held at UCAS in Beijing around Nov. or Dec. 



Institutions Shown Interest  
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• Stanford University, USA
• Wayne State University, USA
• Carnegie Mellon University, USA
• GSI Darmstadt and Goethe University Frankfurt, 

Germany
• Goethe University Frankfurt, Germany
• GSI Darmstadt, Germany
• Johannes Gutenberg University Mainz, Germany
• Helmholtz Institute Mainz, Germany
• LAL (IN2P3/CNRS and Paris-Sud University), 

Orsay, France
• Sezione di Ferrara, Italy
• L'Istituto di Fisica Nucleare di Torino, Italy
• L'Istituto di Fisica Nucleare di Firenze, Italy
• Scuola Normale Superiore, Pisa, Italy
• University of Silesia, Katowice, Poland
• Laboratori Nazionali di Frascati, Italy
• INFN, Padova, Italy
• University of Pavia, Pavia, Italy
• University of Parma, Italy

• University of Science and Technology of China
• Institute of High Energy Physics, CAS
• Institute of Theoretical Physics, CAS 
• Tsinghua University
• University of Chinese Academy of Sciences 
• Shangdong University 
• Shanghai Jiaotong University
• Peking University
• Zhejiang University
• Nanjing University 
• Nankai University
• Wuhan University 
• Central China Normal University Lanzhou 

University
• Nanhua University 
• Beijing University of Aeronautics and Astronautics
• Institute for Basic Science, Daejeon, Korea
• Dubna, Russia
• Budker Institute and Novosibirsk University, Russia
• T. Shevchenko National University of Kyiv, Kyiv, 

Ukraine
• University Ljubljana and Jozef Stefan Institute 

Ljubljana, Slovenia
• Jozef Stefan Institute Ljubljana, Slovenia



Pre-CDR
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1036

BEPC

SuperKEKB

HIEPA

1033
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Summary
• STCF could be one of the crucial precision frontier - rich of 

physics program, unique for physics with c quark and t
leptons, important playground for study of QCD, exotic 
hadrons and search for new physics. 

• HIEPA has a ring of ~700 m in circumference and can provides:  
- e+e- collision with Ecm=2-6 GeV, L=5x1034

- SRF for beam of 1-3.5 GeV
- Potential for future FEL with long LINAC line

• A draft of pre-CDR exist, effort to move to CDR, TDR. 

• International collaboration is badly need for promoting the 
project. 

28



Extra Slides
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Zc(3900) Observed at BESIIII and Belle
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• M = 3894.56.64.5 MeV

• G = 632426 MeV

• 159  49 events

• >5.2s

• M = 3899.03.64.9 MeV

• G = 461020 MeV

• 307  48 events

• >8s

BESIII at 4.260 GeV: PRL110, 252001
0.525 fb-1 in one month running time 

Belle with ISR: PRL110, 252002
967 fb-1 in 10 years running time



tmg
• The process e+e-t+t-g, dominant background source at (4S), 

does not contribute below 2E  4mt/3  4.1 GeV.

• The favorable kinematical condition and the use of polarization can 
allow an UL(STCF in 1-2  years) ≤ UL(SuperBelle@Y in 12-15 yrs).

Eg

10.6 GeV

Eg

4.0 GeV

31



Questions to be addressed  

• What are the key science questions that needs a 
STCF to answer?

• Do we need a STCF at the SBF era?  

• What are the key technologies and challenges to 
HIEPA?

• What kind of detector we should build to fit the 
physics reaches, and what are the challenges? 

32



Babar: 469 fb-1 10-24% precision
BESIII: 0.4 fb-1 ~10% precision (expected)

first time extraction without any
assumption.

δ|REM|/|REM| ~ 9% - 35%

δ|GM|/|GM| ~ 3% - 9%

δ|GE|/|GE| ~ 9% - 35%

33

Measurement of Proton FFs with BESIII
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Cosmology: 
• Unable to explain matter anti-matter asymmetry;
• Not account for the accelerating expansion of the universe 

(dark energy), no prediction power for dark matter candidates.

Force and unification: 
• Does not incorporate the full theory of gravity; 
• No answer to the origin of electroweak symmetry breaking; 
• No solution to hierarchy problem.

Particle properties:
• Does not incorporate neutrino oscillation and their masses;
• Does not explain electric charge quantization.

Big Questions to the Standard Model

Expect new physics beyond SM



Cristina Morales

Space-like:
FF real

Time-like:
FF complex

, Λ Λ

35

Nucleon Electromagnetic Form Factors(NEFFs) 

JLab

Only 2 measurements, but 
results are contradict 

time-like

10-24% precision from 
B factory



CP Violation in t Decay
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 CP violation is observed in B, D and K systems to date

 No CPV has been observed in the lepton sector

 The discovery of CPV in the tau sector would be a clean 
signature of NP

 One of  the most promising CPV channels is t-KSp-
- SM CP asymmetry from KS-KL mixing is expected to be : 

[Bigi & Sanda, PLB 625, 2005,  Grossman &Nir JHEP 1204 (2012)  002]

- BaBar measurement [PRD 85, 031102] 

- Belle measurement [PRL 107, 131801]

Acp = (1.82.1 1.4) 10-3  @ W  [0.89-1.11] GeV

Charge Higgs, new Scalar, 

WL-WR Mixings, LeptonQuarks



t CPV in Angle Distribution
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Need new measurement on the angular CPV asymmetry

Use T-odd rotationally invariant products : e.g.

in t+ and t- decays to >=2 hadrons such as : 
t-p-p0t /k-p0t ,  t-p-p+p-t /K-p+p-t , 

tau-charm

B factory

“Figure Of Merits”  -- Y.  S. TSAI

Y. S. Tsai, PRD 51.3172

BESIII @ 4.25 (1033cm-2s-1)    FOM=1

HIEPA @ 4.25 (1035cm-2s-1)     FOM=100

Super B @ (1036cm-2s-1 )           FOM=65 

Need
polarized beam



Lepton Flavour Violating (LFV)
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CLFV processes sensitive to New Physics (NP) 

through lepton-lepton coupling

m, t anomalous decays m  e
conversion

Anomalous 
magnetic 
moment

PSI Mu2e



Charged Lepton Flavor Violation (cLFV)
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W. Altmannshofer et al.  arXiv : 0909.1333

m/t anomalous decays

m  e 
conversion

Anomalous 
magnetic  moment

In tau-charm factory,  tmg decay is 
a golden mode to search for NP 

In SM, cLFV is negligibly even taking into account neutrino mass



cLFV Decay tmg @ B Factory
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Super-B  75 ab-1

71010 t-pairs

From A. Bondar, Charm2010  Current limit : ~ 410-8 (5108 t-pairs)
− BABAR : 516fb-1 [PRL, 104, 021802]

− BELLE : 545fb-1

 At (4S) : 
− ISR background e+e-t+t-g
− Upper Limit  1/L

− Expected  limit : 3x10-9@75ab-1  (71010 t-pairs)

Does not contribute below 
s  4mt/3  4.1 GeV.

Background e+e-t+t-g



Expected tmg Br upper limit
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E(GeV) s(nb) L(ab-1) Ntt(1010)

3.686 5.0 1.5 0.75

3.77 2.9 3.5 1.03

4.17 3.6 2.0 0.71

Total 7.0 2.49

sE/E=1.5% sE/E=2.5%

Signal (Br=10-9) 17 15

Muon background 7 11 

Pion background 83 271

Expected 90% CL upper limit for Br 1.1×10-9 3.0×10-9

Expected 90% CL upper limit for Br with 
pion suppression by a factor of 30

3.3×10-10 5.1×10-10

Supper-B Expected  limit : 3x10-9@75ab-1  (71010 t-pairs)

 t decays, direct (t+p+p0t)  and combinatorial 

 QED processes: e+e-  m+m-gg, e+e-  e+e- m+m-g
 Continuum hadron production  e+e-  qq

 (2S) and D-meson decays

Dominant background



Competition from Belle II?
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Integrated luminosity

 0.4ab-1 from Belle II 2024

 1.0ab-1 from HIEPA/year

@ 4.26 GeV for p+p-J/
BESIII = 46%, Belle   = 10%

Have incomparable superiority to explore Charmonium(like) states 

>5.2s

>8s

BESIII at 4.260 GeV: PRL110, 252001
0.525 fb-1 in one month running time 

Belle with ISR: PRL110, 252002
967 fb-1 in 10 years running time



Production Mechanism @ t-c Factory
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 /Y/Hybrid(ccg) (1--) produced directly in 

the e+e- collision
− To determine the resonance parameters for the 

excited  or Y state

− Precisely measure the x-sec of inclusive/exclusive 

final states at different Ecms

 Charge parity c=+1 states produced via 

radiative transition from vector /Y
− The decay rate (nS/nD)gX(3872), X(3940)… 

− cJ(2P)、cJ(3P)、c(3S)、 c(4S)、 …

B((3S)g’cJ) = (7, 3, 1) x 10-4 for J=2,1,0

 Search for new states from hadronic transition
− To search for Zc, Zcs, hc(2P) …. 

PLB 660, 315 (2008)

PRL 112, 092001 (2014)

s(Y(4260) gX(3872))6pb 

Complementary 

to B factory



Search for 1−− hybrid

44

 B(Hccggc) ~ 2x(B(Hccggc0) ~ 4x10-4

[in H,cc in spin-singlet! LQCD by Dudek’09]

 s(e+e-Hccg) ~  O(10-100) pb [???]

 Scan e+e-gc and gc0 for exotic structures

B ~ 10% for gc and gc0g+hadrons

 Lpeak=1035/cm2/s, 1 year running = 106pb-1=1 ab-1

 At 100 energy points aboveDD threshold

− Nobs(gc)=O(4~40)/point/year at peak

− Nobs(gc0)=O(2~20)/point/year at peak



Exclusive Line Shape Measurement
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 L peak=1035/cm2/s, 1 year running = 106pb-1 = 1 ab-1

 At 100 energy points aboveDD threshold

 Precisely measure the x-sec for exclusive final states



Explore the Nature of Zc
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 s(e+e-pp(p)+charmonium) ~  O(10) pb

 Look for states in p+charmonium

- B ~ 2.7% for pphcppgc

- B ~ 5.0% for ppJ/

- B ~ 2.0% for ppcppgJ/

- B ~ 1.0% for ppppppJ/

 L peak=1035/cm2/s, 1 year running = 106 pb-1=1 ab-1

 Nobs=O(105)/year; sufficient for PWA or Argand plot analysis



Search for Zcs
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search for Excited Zc and Zcs particle@ Ecms>4.5 GeV



Search for c2(11D2)
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B(hc(2P) gc2)  310-4  [E1 trans., Barnes 05]

B(c2ghc)  (44-54)%    [E1 trans., Fan 09]

B(hcgc)  54%              [E1 trans., BESIII10]

s(e+e-p+p-hc(2P))  20 pb @ Ecm = ?? GeV

 B(chadrons)  1.5% at BESIII

Nobs=210-5L (L is int. lumi. in pb-1)

L peak = 1035cm-1s-1, 1 year running = 106pb-1 = 1ab-1

- Nobs=20 events /year, 

Background is expected to be low for narrow hc and c



t Lepton Physics
 X sec grows from 0.1nb near threshold to 3.5nb at 4.25GeV 

- 108 tau pairs per year at threshold (x-sec = 0.1nb)
- 3.5109 tau pairs/year at 4.25GeV (x-sec = 3.5nb)
- 1010 tau pairs per year for Belle II  (x-sec = 1nb)

 Physics Highlighted Physics program
- Precision measurements of  s, ms, Vus

- Lepton universality : mt, tp+t and tK+t

- Lorentz structure of the amplitude for tℓℓt

- Search for LFV processes : tℓg, ℓℓℓ, ℓh
- Search for CPV
- V-A Structure of the weak current in leptonic decays
- Rare hadronic decays

 Competition to Belle II
- Threshold effect is important for controlling and understanding background
- Longitudinal polarization of the initial beams will significantly increase sensitivity 

in searches for CPV in  lepton decays.

49



Charm Physics
 4109 pairs of D,0 and 107108Ds pairs per year

- 1010 charm from Belle II/year

 Competition to Belle II
- The multiplicity of final state is lower by a factor of 2

- Threshold effect,  clean, double tagging

- QM coherent state, JPC=1-- for DD,JPC=0++ for gDD

 Highlighted Physics programs
- Precise measurement of leptonic, semi-leptonic decay (fD, fDs, 

CKM matrix…)

- D0-D0 bar mixing, CPV

- Rear Decay (FCNC, LFV, LNV….)

- Excite Charm meson  DJ, DsJ (mass, width, JPC, decay modes) 

- Charmed Baryons (JPC, Decay modes, Br)

 Some sensitivities @ 1 ab-1 data at threshold
- Direct CPV in Dhh sensitivity : 10-310-4

- Probe y : D(yCP)0.1%

- RM=(x2+y2)/210-5 in Kp and Ke channels

- D(cosKp)0.007; D(Kp)  1

50

0.5fb-1  80Events
1.0ab-1 160000 Events

3.0  fb-1 4000Events
60.0fb-1 80000 Events

DJ2



R and QCD Physics
 Detailed study of exclusive processes e+ e-(2-10)h, h=p,K,, p…. , 

Scan between 2-7GeV and ISR  s2GeV
- Meson Spectroscopy

- Intermediate dynamics

- Search for exotic states (tetraquarks, hybrids, glueballs)

- Form factors

 High precision determination of R=s(e+ e-hadrons)s(e+ e-m+m-) 
at low energies and fundamental quantities

- (gm-2)/2, 92% from  2GeV, 7% from 2-5GeV

- (Mz), 19.0% from  2GeV, 18.1% from 2-5GeV

- QCD parameters (charm quark masses)

 Inclusive cross  section e+ e-h + X
- QCD parameters (s, quark and gluon condensates)

- Fragmentation functions

- Spin alignment of vector

- MLLA/LPHP prediction

51



Proton FF : Space-Like
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 Many measurements of the proton form factors in the space-like region.

 At Jlab, the proton factor ratio was measured precisely with an uncertainty of ~1%, 

based on which the proton electronic and magnetic radii could be extracted.

JLab

JLab



Proton FF : Time-Like
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QCD 
predict

Only 2 measurements, 
but results are contradict 

10-24% precision from B factory

Assume GM=GE

BES3 0.4fb-1, 10% Precision

δ|REM|/|REM|  9% - 35%

δ|GM|/|GM|  3% - 9%

δ|GE|/|GE|  9% - 35%
first time extraction without 

any assumption.



Proton FF @ HIEPA
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s=2.23 GeV

HIEPA reach 2HIEPA reach 1

1 day
2 days

Using two days data,  proton FF can reach 1% precisions at super t-charm factory !



General Consideration of Detector
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 Efficient event triggering, exclusive state reconstruction and tagging 

- high efficiency and resolutions for charged and neutral particles 

- Low noise and High rate

 Much larger radiation does hardening, especially at IP and forward regions

− The detector and electronics should withstand the expected does

 The Systematic error will be dominant in many physics studies

- Detector acceptance : geometrical acceptance or detector response

- Mis-Measurement : mis-tracking, fake photon, particle mis-id, noise

- Luminosity measurement

 Reasonable cost



General Consideration
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 Vertex performance and low-momenta tracking eff.

 Tracking :  multiple scattering effect is important

- P T resolution : 0.50.7%@ 1 GeV/c, and dE/dx resolution: 6%  

- low material budge.

 PID : p/K and K/p separation up to 2GeV/c 

- modest material budget (<0.5X0)

- Cherenkov detector is necessary

 EMC : fast response to match the high luminosity

− stochastic term<2%/E and constant term < 0.75%, 

- angular resolution?

 MUC : large-area fast sensors (RPC/MPRC etc) 

− mp suppression power>10/30, down to p=0.5GeV/c

 Large solid angle detector Nearly 4p



MDC (Low mass )

• sxy=130 mm

• dE/dx<7%, sp/p =0.5% at 1 GeV

Detector
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MDC

PXD/SS
D

PID-barrel PID
-endcap

EMC

Superconducting magnet
(0.7-1 T) 

York/Muon

York/M
uon

IP
3~6 
cm

10 cm
15 cm

85 cm

105 
cm

135 
cm

185 
cm

245 
cm

120 
cm 140 
cm 190 
cm 240 
cm 300 
cm

20

PXD 

• Material budget ~0.15%X0/layer 

• sxy=50 mm

PID

• p/K (and K/p) 3-4s separation up 
to 2GeV/c

EMC 
• Energy range: 0.02-2.5 GeV
• At 1 GeV sE (%)

- Barrel(Cs(I):     2          
- Endcap (Cs):     4

MUD
• m/p suppression power >10/30



Tracking Detector
 Must balance momentum resolution and curling of low momentum tracks :

− Low B field (1T), need re-optimized
 Multiple  coulomb scattering is critical :

– low mass helium-based gas, wires
– Small cells are needed for speed – more wires in tension with low mass
– Carbon fiber support structure to minimize effect on PID, EMC etc
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BESIII Drift Chamber

Starting point



Tracking Detector
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R in = 15 cm
Rout = 85 cm
L = 2.4 m
B = 1 T
He/C2H6 (60/40)
# of layers = 48
Cell size =1.0cm(inner),1.5cm(outer)
Sense wire: 20 um W
Field wire: 110 um Al
0.5%X0 carbon fiber inner wall
Expected spatial resolution: 130 um
Expected dE/dx resolution: 7%
Layer configuration: 8A-5S-5A-5S-

5A-5S-5A-5S-5A

Low mass

Simulation : = 900



Vertex Detector

 Provide precise hit close to collision vertex.

− Secondary vertices reconstruction. 

− Help on tracking, improve momentum resolution.

− Help on vertex finding, improve the position resolution 
(impact parameter d0).

 Challenge and risk

− Develop pixel technology in China.

− Material control (low mass must be required).

− Man power and cost.

− …

60



Vertex Options
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SSD
IST
PXL

HFT

 STAR-HFT  Belle II PXD

− In the active pixel matrix 
region: thickness ~ 75 mm.

 PIXEL

− double layers, 20.7x20.7 um pixel pitch, 2 
cm x 20 cm each ladder, 10 ladders, 
delivering ultimate pointing resolution. 

− new active pixel technology



Others option
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• GEM

• MicroMegas
• 在HIEPA上应用

的技术难点
– 圆柱型
– 像素读出



Performances
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Detector radius (cm) material (%X0) resolutio
n (mm)

MDC Outer 9-48 23.5-82 0.0045 /layer 130

MDC Inner 1-8 15-22 0.0051 /layer 130

SSD 10 1.5 250

PXD 2 layers 3/6 0.37 /layer 30

Beam pipe 2 0.15 −

Option I : MDC + STAR HFT

Detector radius 
(cm)

material 
(%X0)

resolutio
n (mm)

MDC Outer 9-48 23.5-82 0.0045 /layer 130

MDC Inner 1-8 15-22 0.0051 /layer 130

PXD 3rd layer 10 0.15 50

PXD 2 layers 3/6 0.15 /layer 50

Beam pipe 2 0.15 −

Option II: MDC + Belle-II PXD

Geometry not optimized

Similar in terms of performance

Improvement at low pT is 
small, significant at High pT
and the position resolution



PID Detector
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Key  Features 
 Enable p/K (and K/p) 3-4s separation up 

to 2GeV/c (30ps for TOF, impossible)

 For high luminosity run – fast detector

 Radiation hard, especially in the endcap 

 Compact – reduce costs of outer detectors

 Modest material budget - <0.5X0

Low Momentum 
 Specific energy loss (dE/dx) in MDC 

 Better dE/dx resolution for longer track

 BESIII MDC (~6%, track length ~0.7m) 

- clean p/K/p ID for p<0.8/1.1 GeV/c

High Momentum 
 Cherenkov detector is necessary

 Two catalogs

- Threshold Cherenkov – simple to build

- Imaging Cherenkov: RICH (large 

momentum range)/ DIRC / TOP (most 

compact) 

BELLE-II iTOP

BELLE-II ARICHBELLE TOF+ACC

ALICE HMPID



PID Detector
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Baseline Design
• PID by RICH at 0.8<p<2GeV/c, no TOF

• Proximity RICH, similar to ALICE 

HMPID design, but with PHENIX HBD 

(CsI coated GEM) readout

• n~1.3 (liquid C6F14), UV detection

• Already proven

• Immune to B field  same structure at 

both the endcap and the barrel

ALICE HMPID PHENIX HBD

Alternative Design
• No TOF, PID by RICH only

• Similar to BELLE-II ARICH design, 
Aerogel + Position Sensitive Photon 
Detector

• n~1.13 (Below threshold for proton at 
p<2GeV/c)

• Already proven at the BELLE-II endcap, 
how about the barrel part?

• Need R&D



Electromagnetic Calorimeter
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EMC Requirements
• Good energy resolution 

• Good position/angular resolution

• Good timing resolution if possible

Challenging
• Radiation damage

– Decrease light yield
– A function of run time

• High photon background rate
– Produce pile-up
– Degrade energy and angular resolution

0.75 krad

1.2 krad

Babar, NIM A479 (2002) 1
Behavior of the light 
emitted by a crystal
due the radiative
Bhabha photons



Crystal Comparison
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Barrel EMC
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 CsI calorimeters (BABAR, BES-III, CLEO-c) are a reasonable first-

order, match to a 1035 collider in the 4 GeV region

 Similar to that of SuperB

– Adjusts electronics time constants, the barrel calorimeter is adequate

– Such as pure CsI, which were considered for  the endcap at SuperB , 

could be re-evaluated. Need for a fast, efficient readout device that 

works in a magnetic field.



EndCap : LYSO
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SuperB Forward EMC options

A detector faster, with finer granularity and higher radiation hardness

Best performance: Full LYSO  (too expensive, crystal cost 3x pure CsI/BGO, 7x PWO)



EndCap : PWO
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 PWO is dense and fast

 Increase light yield:

– improved PWO II

– operation at -25°C

 Challenges:

– temperature stable to 0.1C

– control radiation damage

– low noise electronics

 Delivery of crystals started

Forward Endcap

• 4000 PWO crystals

• High occupancy in center

• LAAPD readout

Barrel Calorimeter

• 11000 PWO Crystals

• LAAPD readout, 2 x 1cm2

• σ(E)/E1.5%/√E + const.

Marco Maggiora, Workshop on Tau-Charm at High Luminosity, 

La Biodola , Isola d’Elba, May 27 – 31, 2013



EndCap BSO
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Pros:
 Relative fast
 Radiation hard
 Emission spectrum compatible to 

different photosensors (PMT, Si)
 Small X0 (60% CsI)   more compact
 Small Moliere Radius (60% CsI)  finer 

segmentation
 Low raw material cost (~PWO and 50% 

BGO, mush less than LYSO)
Cons:
 LY smaller than CsI(Tl) and LYSO 

(however, ~ PWOII at -25 0C)
 Dose rate dependent LY, fast recovery 

time  LY Calibration system needed
 Not mature (large size available, mass 

production not proven)

9 crystals from SICCAS, 2x2x20 cm3



Muon Identification
 Expected m/p suppression power >10 (30)

 Typically used large area RPCs, scintillator strips with wavelength shifting  fiber 

and pixelated APD or SiPM readout.

 A new Muon ID method-Star MTD at STAR
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 based on the Long-strip MRPC technology 
− good timing performance 
− moderate  spatial resolution
− Cost-effective

 using the iron bars as absorber

 Requirement on the MRPC
 Time resolution: < 100 ps
 Spatial resolution: ~ 1 cm
 High efficiency

Performance :

− Time resolution : 108ps

− Spatial resolution : 

2.6cm(z), 1.9 cm( )



Extending pm separation range
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• The time-of-flight for punch through pion and muon coming 
out from ECal shows some difference at low momentum.



Activities
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http://wcm.ustc.edu.cn/pub/CICPI2011/futureplans/



Workshops for HIEPA
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2015 Internal Workshop 
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来自中，美，英，德，法，意，日等国 约150名科学家

76

Caltech
Stanford



香山会议
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九位院士， 十余位千人，杰青，长江教授

1/11/2015 77



Data Sample at Resonances for 1 ab-1
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BESIII 109 108 107 106 106 106



Requirement To The Detector
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Efficient event triggering, exclusive state reconstruction 
and tagging – high efficiency and resolutions for charged 
and neutral particles 

• Best possible solid angle coverage
• High resolution for charged particles:   [0.05, 1.6] GeV
• Good PID: [0.05, 2] GeV
• Good e, g detection eff. and energy resolution: [0.02,2.5] 

GeV
• Good vertex detection: 50 mm
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• Fundamental properties of the nucleon
– Connected to charge, magnetization distribution
– Crucial testing ground for models of the nucleon 

internal structure
– Necessary input for experiments probing nuclear 

structure, or trying to understand modification of 
nucleon structure in nuclear medium

• Driving renewed activity on theory side
– Models trying to explain all four electromagnetic 

form factors
– Trying to explain data at both low and high Q2

– Progress in QCD based calculations

Nucleon Form Factors
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Diptimoy Ghosh
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Diptimoy Ghosh



Search for CPV, LFV Processes

One of physical effects BSM is the existence of the non-
zero electric dipole moment (EDM) of quarks or leptons 
leading to CPV

• J/g c quark EDM at 10-15 e-cm level

• J/LL set limit ~10-19 e-cm for EDM of L 

(two order of magnitude more stringent)

Lepton flavor violation
• J/ll’  (l,l’=e, m, t)           10-9
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Physics with t Leptons
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• e+e-t+t- near threshold -- low and controlled background
• Precision measurements of  s, ms, Vus

• Lepton universality: mt, tp+t and tK+t

• Lorentz structure of the amplitude for tllt

• Search for LFV processes: tlg, lll’, lh – sensitive to new physics
 (10-7-10-8 from BF)
• Search for CPV: ACP = (G(tf+) - G(tf-)) / (G(tf+) + G(tf-))

Most promising processes  tKp0t, rpt, wpt, a1pt
Observation of CP asymmetry would be an explicit indication of 
physics BSM.

• Competition from SBF, but threshold effect is important for 
controlling and understanding background

• Longitudinal polarization of the initial beams will significantly 
increase sensitivity in searches for CPV in  lepton decays.


