Intro HLbL tensor HLbL dispersive Numerics Conclusions

Hadronic light-by-light contribution to (g — 2),.:
a dispersive approach

Gilberto Colangelo

b

u

b
UNIVERSITAT
BERN

FFFFFFFFFFFFFFFFFF
FOR FUNDAMENTAL PHYSICS

PhiPsi 2017, Mainz, 29.6.2017



Intro  HLbL tensor HLbL dispersive Numerics Conclusions

Articles published week ending 9 June 2017

(sa8ed [2101 81T) L10OT 2unf 6 ‘10

JHEP09(14) 091, JHEPO0S9 (15) 074, JHEP04 (17)161, PRL(17)
in collab. with M. Hoferichter, M. Procura and P. Stoffer and
PLB738 (2014) 6 iieuiieeiiiieeeiiieieeeiieeeneesnaeeaneesneeanesennes +B. Kubis

23 Published by
American Physical Society Volume 118, Number 23
physics



Outline

Introduction: (g — 2),, and hadronic light-by-light (HLbL)
Setting up the stage:
Gauge invariance and crossing symmetry
Master Formula
A dispersion relation for HLbL
Numerics
- Pion box contribution

- Pion rescattering contribution

Outlook and Conclusions



Intro  HLbL tensor HLbL dispersive Numerics Conclusions

Status of (g — 2),, experiment vs SM
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Fermilab experiment’s goal: error reduction 1/4
to be matched by theory: “(g — 2),, Theory Initiative —» El-Khadra’s talk
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Status of (g — 2),,, experiment vs SM

a,[10-"]  Aa,[107"]

experiment 116592 089. 63.

QED O(a) 116140973.21 0.03

QED O(a?) 413217.63 0.01

QED O(a?) 30141.90 0.00

QED O(a#) 381.01 0.02

QED O(a®) 5.09 0.01

QED total 116584 718.95 0.04

electroweak, total 153.6 1.0

HVP (LO) [Hagiwara et al. 11] 6 949 43
HVP (NLO) [Hagiwara et al. 11] —98 1
HLbL [Jegerlehner-Nyffeler 09] 1 16 40
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 124 01
HLbL (N LO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3 2

theory 116591 855. 59.
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Hadronic light-by-light: irreducible uncertainty?
» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved
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Hadronic light-by-light: irreducible uncertainty?
» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved

W@w

v

basic principles: unitarity and analyticity

direct relation to experiment: o (e*e~ — * — hadrons)
dedicated ete~ program what this conference is all about...
(BaBar, Belle, BESIII, CMD3, KLOE2, SND)

alternative approach: lattice —» talks by Lehner & Wittig
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Intro

Hadronic light-by-light: irreducible uncertainty?

» Hadronic contributions responsible for most of the theory
uncertainty

» Hadronic vacuum polarization (HVP) can be systematically
improved

» Hadronic light-by-light (HLbL) is more problematic:

» 4-point fct. of em currents in QCD

» “it cannot be expressed in terms of
measurable quantities”

» up to now, only model calculations

» lattice QCD is making fast progress
RBC/UKQCD, Mainz, talks by Lehner & Wittig
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Analytic Approaches to Hadronic light-by-light

» Model calculations

>

vV vy vy VvV VY

ENJL Bijnens, Pallante, Prades (95-96)
NJL and hidden gauge Hayakawa, Kinoshita, Sanda (95-96)
nonlocal xQM Dorokhov, Broniowski (08)
AdS/CFT Cappiello, Cata, D’Ambrosio (10)
Dyson-Schwinger Goecke, Fischer, Williams (11)
constituent xQM Greynat, de Rafael (12)
resonances in the narrow-width limit Pauk, Vanderhaeghen (14)

» Impact of rigorously derived constraints

| 4

>

>

>

high-energy constraints taken into account in several models above

addressed specifically by Knecht, Nyffeler (01)

high-energy constraints related to the axial anomaly Melnikov, Vainshtein (04) and Nyffeler (09)

sum rules for v*~v — X Pascalutsa, Pauk, Vanderhaeghen (12)
see also: workshop MesonNet (13)

low-energy constraints—pion polarizabilities Engel, Ramsey-Musolf (13)

» Lattice talks by Lehner and Wittig
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Different evaluations of HLbL

Jegerlehner-Nyffeler 2009

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV/(09) N/JN(09)
% n,n' 85+13 82.7+6.4 83+12 114£10 — 114+£13 99+16
7, K loops —19+13 —4.5+8.1 — - — —19+19 —19+13

"""+ subl. in Ng — — — 0+10 — - —
axial vectors 2.5+1.0 1.7+1.7 — 22+5 — 15+10 22+5
scalars —6.8+2.0 — — — — —7+7 —7+2
quark loops 21+ 3 9.7+11.1 — - - 2.3 21+3
total 83+32 89.61+15.4 80440 136+25 110440 105426 116439
Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita S=Sanda Kn=Knecht
N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael J=Jegerlehner

» large uncertainties (and differences among calculations) in
individual contributions

» pseudoscalar pole contributions most important

» second most important: pion loop, i.e. two-pion cuts
(K's are subdominant)

» heavier single-particle poles decreasingly important
(unless one models them to resum the high-energy tail)
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Our approach to hadronic light-by-light

We address the calculation of the hadronic light-by-light tensor

» model independent = rely on dispersion relations
» as data-driven as possible

» takes into account high-energy constraints
[OPE, perturbative QCD]
(work in progress, not discussed here)

Alternative dispersive approach for the u-FF ~ talk by Pauk
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Outline

Setting up the stage:
Gauge invariance and crossing symmetry
Master Formula



HLbL tensor Gauge inv. & crossing Master Formula

Hadronic vacuum polarization

M,0(@) =1 [ dxe™ 0| Ti,(01(0)/0) = (9,0, — 6.0%) ()

where j#(x) = 3", Qiqi(x)¥*qi(x), i = u, d, s is the em current

Lorentz invariance: 2 structures
gauge invariance: reduction to 1 structure

Lorentz-tensor defined in such a way that the function
MN(g?) does not have kinematic singularities or zeros

N(g?) := N(g?) — N(0) satisfies

2 [e%e) M
= 2\ i Imﬂ(t)
) =7 AMg Mt~ @)

v

v
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HLbL tensor Gauge inv. & crossing Master Formula

Hadronic vacuum polarization

M,0(@) =1 [ dxe™ 0| Ti,(01(0)/0) = (9,0, — 6.0%) ()

where j#(x) = 3", Qiqi(x)¥*qi(x), i = u, d, s is the em current

Lorentz invariance: 2 structures
gauge invariance: reduction to 1 structure

Lorentz-tensor defined in such a way that the function
MN(g?) does not have kinematic singularities or zeros

N(g?) := N(g?) — N(0) satisfies

2 [e%e) M
= 2\ i Imﬂ(t)
) =7 AMg Mt~ @)

v

v

v

v

Easy!



HLbL tensor Gauge inv. & crossing Master Formula

The HLbL tensor (much less easy...)
HLbL tensor:

Ao — i3/dx/dy/dz e~ /atyetza) (0| T{j*(x)j" (y)j*(2)/°(0) }|0)

B=K=q1+q@+q Kk =0
with Mandelstam variables

S=(q+q)? t=(q1 +B)? u=(g+q)



HLbL tensor Gauge inv. & crossing Master Formula

The HLbL tensor (much less easy...)
HLbL tensor:

Ao — i3/dx/dy/dz e~ /atyetza) (0| T{j*(x)j" (y)j*(2)/°(0) }|0)

B=k=qi+q+qs Kk*=0

General Lorentz-invariant decomposition:

N7 = g g 7N+ g"g " MP4+-g"7 g M+ >~ GF'qf g af M+ - -
ij,k,!

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are linearly independent Eichmann et al. (14)



HLbL tensor Gauge inv. & crossing Master Formula

The HLbL tensor (much less easy...)
HLbL tensor:

Ao — i3/dx/dy/dz e~ /atyetza) (0| T{j*(x)j" (y)j*(2)/°(0) }|0)

B=k=qi+q+qs Kk*=0

General Lorentz-invariant decomposition:

N7 = g g 7N+ g"g " MP4+-g"7 g M+ >~ GF'qf g af M+ - -
ij,k,!

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are linearly independent Eichmann et al. (14)

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))

= Apply the Bardeen-Tung (68) method+Tarrach (75) addition
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)
> 43 baSiS '[enSOI’S (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) to guarantee basis completeness everywhere

» of these 54 only 7 are distinct structures

54
n;wka — Z -,-i,uu)\ol—li
i=1



HLbL tensor Gauge inv. & crossing Master Formula

Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)

A P
TR = B Aoy 109239~ %5>

T = (abal — a1 g™ ) (0305 — a5 - 2g™7 ),
T = (g — a1 09" ) (o1 - (0705 — a1 - 98977 ) + @20 aT a1 - a5 — 477 G - 0a)
T = (ol —ar- 20" ) (@ a (005 — a1 w07 ) + a5 ar - a5 — a1 a5 %5 - @),
T = (gfay —ar - 00" ) (a2 a1 -G — a7 a2 - as) (a5 a1 - q — a7 a2 - ),
T4 = (afar - as —afar - as) (59208 — Ay B oS + 9™ (a5 - o5 — a5 a2 - 0u)
+9" (B0~ G- a)+9" (k- a) ),

i = a5 (a1 %% - aadf' a™ — @ - o - i 9™ + df o (a7 95 — a2 a1 - Gs)

+ a1 %04 B — % B + - e (59N —ah g )

—a (q1 G4G2 - 305977 — d - quar - 939597 + gy (a7 - qu — 93 Gt - Qa)
+ar - G50f' 95 a5 — G2 - a0 o A + a1 - dae - a5 (959" — 0 9"7))

+as - as( (0o —ar - aag™) (GF o5 — - 9"7) — (@05 — % - ag™) (a7 — a1 - 99" )-
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Gauge-invariant hadronic light-by-light tensor
Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)
> 43 baSiS '[enSOI’S (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) to guarantee basis completeness everywhere

» of these 54 only 7 are distinct structures

» all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

54
n;wka — Z -,-i,Lw)\UI—Ii
i=1
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GG, Hoferichter, Procura, Stoffer (2015)
» 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) to guarantee basis completeness everywhere
» of these 54 only 7 are distinct structures

v

all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes
54
H#VAU _ Z TIHV}\UHI,
i=1

v
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M***? one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)
» 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) to guarantee basis completeness everywhere
» of these 54 only 7 are distinct structures

v

all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes
54
n#w\a _ Z TIHV}\UHI,
i=1

v

The 54 scalar functions I1; are free of kinematic singularities
and zeros and as such are amenable to a dispersive treatment



HLbL tensor Gauge inv. & crossing Master Formula

HLbL contribution to a,

From gauge invariance:

B
Muvao (91, Qe kK — Q1 — Q2) = —kpa?ﬂmp(qu% k—aq1—q).

Contribution to a,,: m:=m,

a

= 2o T (P + M2 71 (p+ m)TE ()}

o es/d4CI1 /d4Q2 1 Y (p+gi+m)y (p—ge+m)y” y
e (2m)* ) (2m)* G235 (a1 + 92)? ((p+q1)2—m?) ((p—qe)2—m?)

)
X %HW,\U(QM% k—aqi—q) .

BTT basis (no kin. singularities!) = limit kK, — 0 unproblematic
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Master Formula

aHLbL:—e6 / d4Q1 d4CI2 2,131 7\—/(CI1 ,Q2, p)ﬁ,(q1 ,Q2, —Q1 — qz)
" (2m)* (2m)* q22 (a1 + @)2l(P + 1) — m2][(p — q2)2 — M2]

» Ti: known kernel functions
» [1;: linear combinations of the I,

» 5 integrals can be performed with Gegenbauer polynomial
techniques

GC, Hoferichter, Procura, Stoffer (2015)
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Master Formula

After performing the 5 integrations:

a,I;ILbL_ /dQ4 /dQ4 /dTmZT (Qr, Qz,7)1i(Q1, Q2,7)

18

where Q/ are the Wick-rotated four-momenta and  the
four-dimensional angle between Euclidean momenta:

Q- Qo = |Qi]|Q|T

The integration variables Q; := |Q], Qo := | Q|-

GC, Hoferichter, Procura, Stoffer (2015)



HLbL dispersive

Outline

A dispersion relation for HLbL



HLbL dispersive

Setting up the dispersive calculation

For HVP the unitarity relation is simple and looks the same for
all possible intermediate states

ImM(g?) o o(e*e~ — hadrons)



HLbL dispersive

Setting up the dispersive calculation

For HVP the unitarity relation is simple and looks the same for
all possible intermediate states

ImM(g?) « o(e* e~ — hadrons)

For HLbL things are more complicated



HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

7%-pole mbox | &
I_IMV)\U = rlul/)\o + nul/)\cf + I_IIW)\U + o

Pion pole: imaginary parts = §-functions

Projection on the BTT basis: easy v’

Our master formula=explicit expressions in the literature v/

Input: pion transition form factor  Hoferichter, kubis, Leupold, Niecknig, Schneider (14)
— talk by Kubis

First results of direct lattice calculations cerardin-Mayer-Nyfreler (16), talk by Witiig



HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

_ 7C-pole m-box =
Mo = nuuAa +Mae + Mung + -+

m-box with the BTT set:

— we have constructed a Mandelstam representation for the
contribution of the 2-pion cut with LHC due to a pion pole

— we have explicitly checked that this is identical to sQED
multiplied by FJ;(s) (FSQED)



HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

70-pole mbox |
n;w)\a = nwj}\g + H/W}\q + n,uzl)\a +

CI1 FV %)FV Q3

DK




HLbL dispersive

Setting up the dispersive calculation

We split the HLbL tensor as follows:

9-pole T-box =
I_IMV)\U = nm/)\a + nul/)\cf + I_I/W/\U + o

- -

4 N\

N\
~

4

7
~ o -

The “rest” with 27 intermediate states has cuts only in one
channel and will be
calculated dispersively after partial-wave expansion
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

9-pole -box =
I_IFW)‘O' = rlﬂu)?a + I_IZV)\U + rll“’)\o' +

Contributions of cuts with anything else other than one and two
pions in intermediate states will not be discussed here
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Partial wave expansion for 27 contributions

To complete the program of writing down a dispersion relation
for two-pion contributions is not easy:

>

>

unitarity relations are diagonal in a helicity amplitude basis;
the helicity basis relevant for (g — 2),, is the one with one
on-shell photon, which has 27 elements;

in the limit g2, g — 0 of the HLbL tensor the number of
independent elements of the BTT set drops from 41 to 27;
there is freedom in the choice of this subset
(singly-on-shell basis);

the arbitrariness in the choice of the 27 elements of the
singly-on-shell basis does not influence the final result
because of sum rules

these sum rules follow from the assumption that the HLbL
tensor has a uniform behaviour at short distances
Pascalutsa, Pauk, Vanderhaeghen (12) forward-kinematics
sum-rules are a special case of our general sum rules
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S-wave 27 contributions

1 -2
aS / / 0 / / 2\ o 2 0 ’
Ny =— ds’ —————————— (45 Imh s')— (s +q7 — s' —qf + ImA, s’
= S /\12(5’)(5’—q§)2( i (8) = (8 + 0 — BN — df + )y, (5))
1 00 -2
aS ’ / 0 ’ ’ 2 2\(4! 2 2 0 /
Mg =— dt' —————— (4t Imh ) —(t" +q7 — t—qy + Imh, t
577 Jae @ Nt — @2 ( L () = (0 + 0 — a3)(t — gy +a3) Imhgg 1 ( ))
1 —2
aS ’ / 0 ’ ’ 2 2 ’ 2 2 0 ’
Mg =— du' ———— — (4u Imh u)—(u + — u - + Imh, u
= Jam2 )‘23(U')(U’—‘712)2< o) = 4 = — g+ I, ()

S 1 ’ 4

Y, =— ' ———— (2mh uy— (' - — ) ImAS, u
=7 e Azs(u’)(u’—tﬁ)z( o (U) = ( @ — a8)Imhgy 4 ( ))

1 o 4

~S ’ (0] ’ ’ 2 2 0 ’

n16:7/ dt' ——————— (21Imh;, (") — (t' — g7 — g3) Imh, (t")
M3t — qg)g ( +,++ 3 00, +- )

w Jam2
T
1 foo 4
aS ’ 0 / / 2 2 0 ’
ny; =— ds’ ——— 5 — (2Imh,_ (s") — (s" — qf — g5) Imh, s
7= a2 Ma(s)(s' — l7§)2 ( +,4++ 1 2 00,4+ ( ))

Analogous expressions for the D, G and all higher waves have
been derived but are too long to be shown



Numerics m-box m-resc.

Outline

Numerics
- Pion box contribution
- Pion rescattering contribution
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Pion box contribution

O-pole FSQED |,
I_IMVAU = I_IZV)’\DG' + 1 Y + n;u/)\a + -

12X




Numerics m-box m-resc.

Pion box contribution

The only ingredient needed for the pion-box contribution is the
vector form factor

_ 8xy(1 —2x)(1 —2y)

hix.y) Aq23A03

and analogous expressions for /4 717,39 54 and

Dizz = M2 — xygz — x(1 —x — y)g5 — y(1 — x — y) 45,

Doz = M2 — x(1 — X)gg — y(1 - y)q5



Numerics m-box m-resc.

Pion box contribution

. NA7 °
- JLab 1 5
I 1 2
[ | 10
I -
!
08 -0.6 04 02 0
s [GeV?]

Uncertainties are negligibly small:

a;®P = —15.9(2) - 107"

04 0%
5 [GeV?]

0.8




Numerics m-box m-resc.

Pion box contribution

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV/(09) N/JN(09)
0 n,n' 85+13 82.7+6.4 83+12 114110 — 114+13 99+16
7, K loops —19£13 —4.548.1 — - - —19+19 —19+13

"""+ subl. in Ng — - - 0+10 - - -
axial vectors 2.5+1.0 1.7+1.7 — 22+5 — 15+10 22+5
scalars —6.8+2.0 - — — — —7+7 —7+2
quark loops 21+ 3 9.7+11.1 - — - 2.3 21+3
total 83+32 89.6+15.4 80+40 136125 110140 105126 116139

Uncertainties are negligibly small:

a;®P = —15.9(2) - 107"
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Pion-box saturation with photon virtualities

100

90

80

70
60 /

50 /

40
30 /

Pion-box saturation in %

wl o/

10

0 0.2 0.4 0.6 0.8 1 1.2 14
cutoff on the virtualities in GeV



Numerics m-box m-resc.

Check of the partial-wave formalism

Comparison partial-wave expansion of the pion-box vs. full result

Jmax ‘ 5Jmax AJmax

0 [292% 554%
2 10.4% 20.9%
4 43% 11.0%
6 24% 6.2%
8 1.5% 3.7%
10 1.0% 2.4%
12

14

0.7% 1.6%
06% 1.1%

where
m-box, PW ‘IT‘BOX PW arbox
— v _ w L HyJImax H
6Jmax T 1 aZ-bOX AJmax T aZ‘b°X|

Convergence for real helicity amplitudes should be much better
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First evaluation of S- wave 2r7-rescattering

Omnés solution for v*+* — 77 provides the following:

P = X X

recursive  PWE, no LHC



Numerics m-box m-resc.

First evaluation of S- wave 2r7-rescattering
Based on:
» taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour
» 7 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f,(500) + unique and well defined extrapolation to o]

» numerical solution of the v*+* — & dispersion relation

S-wave contributions: a::’f,’:g’o'e LHC — _8(1) x 10~
il in 10~ 1" units
cutoff ‘ 1GeV 1.5GeV 2GeV 00
I=0]| -9.2 -95 —-93 -88
/=2 2.0 1.3 1.1 0.9

sum —7.3 -83 -83 -79




Numerics m-box m-resc.

First evaluation of S- wave 2r7-rescattering
Based on:
» taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour
» 7 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f,(500) + unique and well defined extrapolation to o]

» numerical solution of the v*+* — & dispersion relation

S-wave contributions: a::’f,’:g’o'e LHC — _8(1) x 10~
il in 10~ 1" units
cutoff ‘ 1GeV 1.5GeV 2GeV 00
I=0]| -9.2 -95 —-93 -88
/=2 2.0 1.3 1.1 0.9
sum -7.3 -83 -88 -79

Recall m-Box: & " = -15.9(2)- 10"



Numerics 7

box m-resc.

First evaluation of S- wave 2r7-rescattering

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PARV(09)  N/N(09)
0 n,n’ 85+£13 82.7+6.4 83+12 114110 — 114+13 99+16
7, K loops —19£13 —4.548.1 — - - —19+19 —19+13

"4+ subl. in N - - - 0410 - - —
axial vectors 2.5+1.0 1.7£1.7 - 22+5 - 15+10 22+5
scalars —6.8+2.0 - - - - —7+7 —7+2
quark loops 21£3 9.7+11.1 — — — 2.3 21+3
total 83+32 89.6+15.4 80+40 136125 110140 105126 116139

S-wave contributions: aZ’fj’:g’O'e LHC — _8(1) x 10—
aPin 101" units
cutoff | 1GeV 1.5GeV 2GeV oo

I=0| —-9.2 -95 -93 -88

=2 2.0 1.3 1.1 0.9

sum | —7.3 -883 -83 -79

Recall m-Box: & ™ = -15.9(2)- 10"



Numerics m-box m-resc.

Ouir first numerical result

Two-pion contributions to HLbL:

pion box rescattering contribution



Numerics m-box m-resc.

Ouir first numerical result

Two-pion contributions to HLbL:

pion box rescattering contribution

az—box + aZTD,i‘(g)de LHC _ 724(1) . 10—11
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Outline

Outlook and Conclusions



Conclusions

Conclusions

» The HLbL contribution to (g — 2),, can be expressed in
terms of measurable quantities in a dispersive approach

» master formula: HLbL contribution to a, as triple-integral
over scalar functions which satisfy dispersion relations

» the relevant measurable quantity entering the dispersion
relation depends on the intermediate state:

» single-pion contribution: pion transition form factor
» pion-box contribution: pion vector form factor
» 2-pion rescattering: v*v*) — 77 helicity amplitudes

» | have presented results for the pion-box and the S-wave
pion-rescattering contributions:
model independence = much reduced uncertainties



Conclusions

Outlook

» More work is needed to complete the evaluation of
contributions of 27 intermediate states

» take into account experimental constraints on y(*)y — 77

» estimate the dependence on the g of the second photon
(theoretically, there are no data on v*y* — #m — Lattice?)

» = solve the dispersion relation for the helicity amplitudes of
~*v* — 7, including a full treatment of the LHC

» same formulae apply to heavier n < 2 intermediate states
(n") or KK); for n > 2 the formalism must be extended:;

» short-distance constraints need to be derived and imposed



Intro  HLbL tensor HLbL dispersive Numerics Conclusions

Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arxiv:1408.2517 (PLB'14)

T — T

(w, ¢ — 7r7r’y)<—(e+e_ — 7r7r'y)
/

Partial waves for Y Y
Ty = T ete” —evte

(pion polarizabilities)(—(’Y’T - w)

Pion transition form factor
Froyeys (q%, qg)

Pion vector
form factor Fy}

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among (lattice) theorists and experimentalists
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Detour: the subprocess v*v* —

Consider v*(q1, M1)7* (G2, A2) = 7@(p1)7°(p2):
Wi (Pr.Pas 1) = 1 [ d¥xe @ (x2(p1)nb(pa) T it () (0)}10)
General tensor decomposition (g;, i = 1,...,3, g3 = p2 — p1):

W = g Wi+ gl g W
i

gives ten independent scalar functions.
Gauge invariance requires:

G Wiy = W =0



Gauge invariance: Bardeen-Tung-Tarrach approach

Consider the projector Bardeen, Tung (68)

po — g B9
gi- Q2

which satisfies
I}L)\ W)\V = W,u,)\/)\u = Wy, q-lﬁl;w = qE/W =0

and contract it twice with W,,,,, leaving it invariant:

5
_ v
Wl“/ - /NN/ /V/V wH - Z Z /11/
i=1

The A; are free of kinematic_ singularities, but have zeros. To_
remove the zeros from the A; = remove the poles from the T



Gauge invariance: Bardeen-Tung-Tarrach approach

T = a1 - q0" — a4 97,

TV = a0 + G1 - al a5 — dFab a5 — ;4 Y,

T3 =i G2 Gs9"" + G1 - G20}/ 05 — G705 G5 — G2 - 09} Y

T, = G5G1 - Gs9"" + G1 - Q04 05 — G305 QY — G1 - O30 G5

TS = Gi - GaGe - 060" + 1 - QG5 G5 — G - GaQ4 05 — o - GBI G,

This is a basis of gauge-invariant tensors, but for q; - g0 = 0 it
becomes degenerate: need one more structure: Tarrach (75)



Inverse-amplitude method’s input

6 . .
— Bern
5 — Madrid
— IAM

J [rad]

04 06 08 1 12 14 16 18 2

Vs [GeV]
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