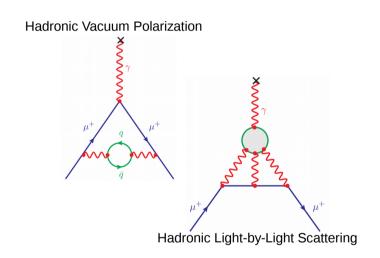


June 29, 2017 | Christoph Florian Redmer for the BESIII collaboration

11th International Workshop on e+e- Collisions from Phi to Psi Schloss Waldthausen

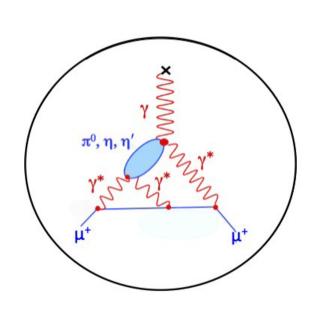

Motivation

EM transition form factors - Coupling of light and matter

Important for the anomalous magnetic moment of the muon a_{μ}

$$\mathsf{a}_{\mu} = rac{\mathsf{g}_{\mu} - 2}{2} = \mathsf{a}_{\mu}^\mathsf{QED} + \mathsf{a}_{\mu}^\mathsf{weak} + \mathsf{a}_{\mu}^\mathsf{hadr}$$

Contribution	Result in 10 ⁻¹⁰ units		lacksquare
QED(leptons) Weak Hadronic	11658471.895 15.4 694.1	± 0.008 ± 0.2 ± 5.8	μ^+ q μ^+ \bar{q}
Total (SM)	11659181.4	± 5.8	Hadro
BNL (E821)	11659208.9	± 6.3	
Difference	27.5	± 8.6	Test of Standard Model!


Prediction completely limited by hadronic contributions!

Use experimental input to improve theory!

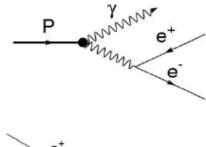
Hadronic Light-by-Light

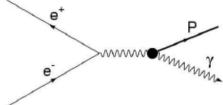
 a_{μ}^{hLBL} not directly related to measurable quantities

- Hadronic models
 - ChPT at lowest energies
 - pQCD at high energies
 - Intermediate region ?
- Data driven approaches
 - Based on dispersion relations
 - Reduce model dependency
 - Reliable error estimates

Jegerlehner/Nyffeler, Phys.Rept.477,1

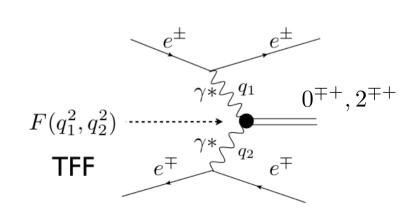
Glasgow Consensus, arXiv:0901.0306

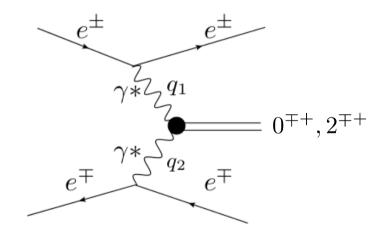

Collangelo, Hoferichter, et al. (Bern) Vanderhaeghen, Pauk, et al. (Mainz)


Transition form factors (TFF) as experimental input

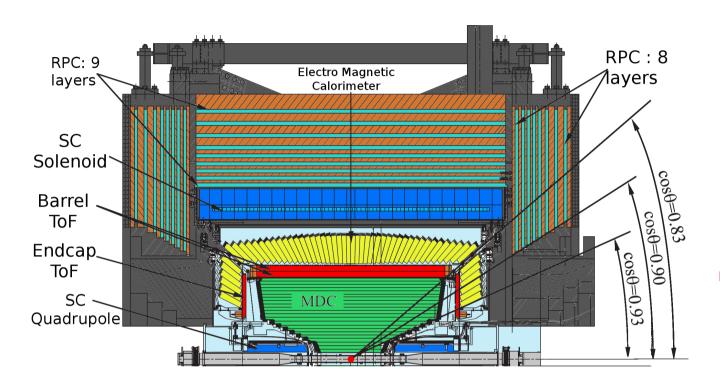
How to measure TFF

<u>Time – like Transition Form Factors:</u>


- Dalitz decays
 - $0 < q^2 < M^2$
- Annihilation process
 - $q^2 = s > M^2$


Space – like Transition Form Factors:

- Two-photon production of mesons
 - $\ \ \, {\rm F}({\rm Q}_1^2,{\rm Q}_2^2), \quad {\rm Q}^2 = -{\rm q}^2 \\$

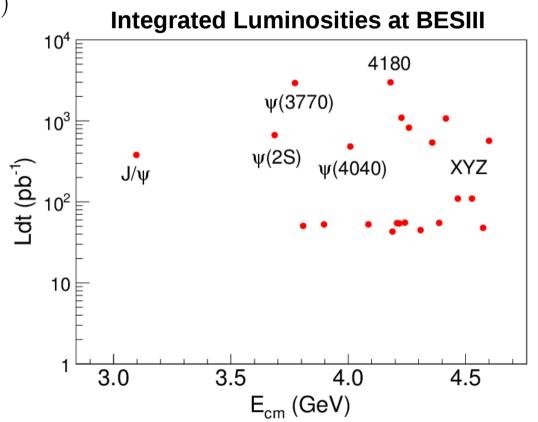


Two-Photon Collisions

- Exchange of two photons in e⁺e⁻ collisions
- Pseudoscalar, axial, and tensor states accessible
- M_X << √s</p>
- $\sigma \propto \alpha^2 \ln^2 E$
- ${\color{red} \bullet } \ \sigma \propto F^2(Q_1^2,Q_2^2)$, with $Q_i^2=-q_i^2$
- Forward peaked kinematic
 - Experimentally challenging
 - Special tagging detectors recommended

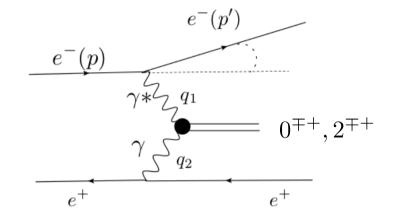
BESIII Detector

NIM A614 (2010) 345


- EMC
 - 6240 CsI(TI) crystals
 - $\sigma(E)/E = 2.5\%$
 - $\sigma_{7.0}(E) = 0.5 0.7 \text{ cm}$
- Muon Chambers
 - 8 9 layers of RPC
 - p>400 MeV/c
 - $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$
- Superconducting Magnet
 - 1 T magnetic field

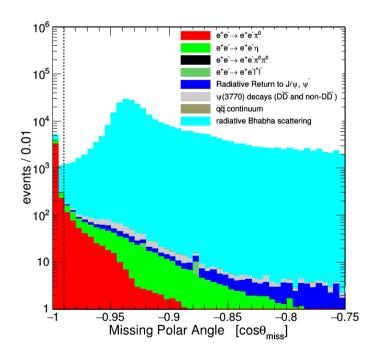
- Main Drift Chamber (MDC)
 - $\sigma(p)/p = 0.5\%$
 - $\sigma_{\text{dE/dx}} = 6.0\%$
- Time-of-flight system (TOF)
 - $\sigma(t) = 90ps$ (barrel)
 - $\sigma(t) = 110ps$ (endcap)

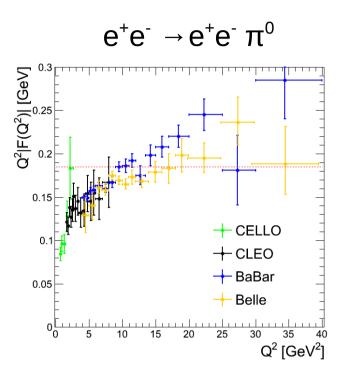
BESIII Data

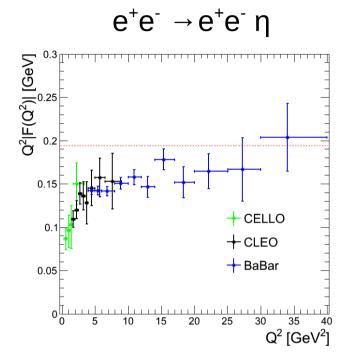

- Operated at BEPCII collider
 - $2.0 \le \sqrt{s} \; [GeV] \le 4.6$
 - Design luminosity achieved
 - $\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ at } \psi(3770)$
- Large data sets for
 - Charmonium spectroscopy
 - Charm physics
 - Light hadrons
 - τ and R-scan

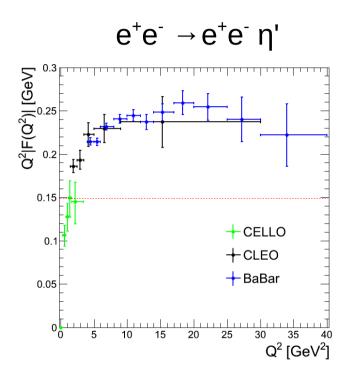
 $\gamma\gamma$ studies mainly on 2.9 fb-1 at $\psi({\rm 3770})$

Single-Tag Measurements


- Reconstruct
 - only one scattered lepton
 - Produced system
- Unmeasured lepton from momentum conservation
 - Require scattering angle to be small
 - Small virtuality
 - $F(q_1^2, q_2^2) \to F(q_1^2, 0) \to F(q^2)$


Example: π^0 transition form factor at BESIII


Monte Carlo, L_{int} : 2.93 fb⁻¹ @ Ψ(3770)


Tagged Lepton: e^+ Reconstructed decay: $\pi^0 \to \gamma \gamma$

Existing Data

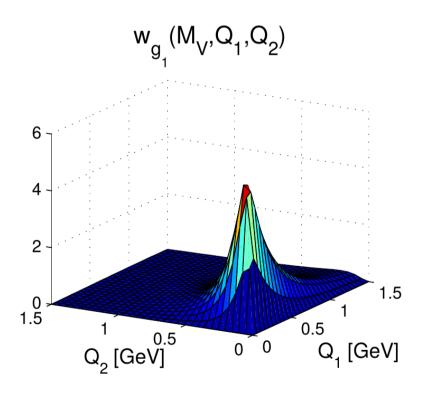
- Recent results from B-factories cover only large Q²
 - Discrepancy for π^0 between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for (g-2)μ

CELLO: Z.Phys.C49 (1991) 401

CLEO: Phys.Rev.D57 (1998) 33 BaBar: Phys.Rev.D80 (2009) 052002

Phys.Rev.D84 (2011) 052001

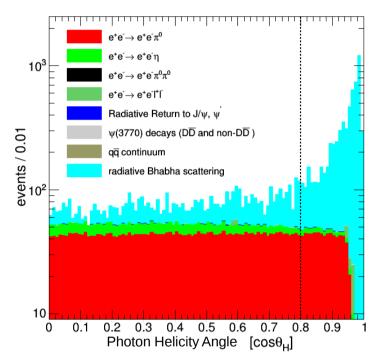
Belle: Phys.Rev.D86 (2012) 092007


 $(5 < Q^2 [GeV^2] < 40)$

Relevant Energy Range

2D integral representation for pion-pole contribution by Knecht, Nyffeler (2002):

$$a_{\mu}^{\mathrm{HLbL};\pi^{0}} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \sum_{i} w_{i}(Q_{1}, Q_{2}) f_{i}(Q_{1}, Q_{2})$$

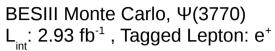

- Universal weight functions w_i
- Form factor dependence f_i

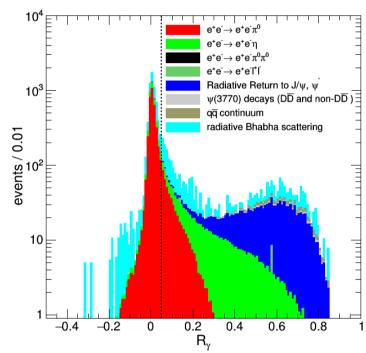
Relevant momentum region:

0.25 - 1.25 GeV

Space-like π⁰ Transition Form Factor

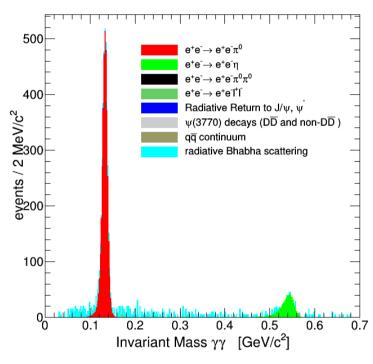
BESIII Monte Carlo, Ψ(3770) L_{int}: 2.93 fb⁻¹, Tagged Lepton: e⁺




• Angle between y in π^0 rest frame and π^0 in lab

- Exactly one lepton
- Two to four photons
- $\cos\theta_{\text{untagged}} < -0.99$
- $\cos\theta_{\text{Helicity}} < 0.8$

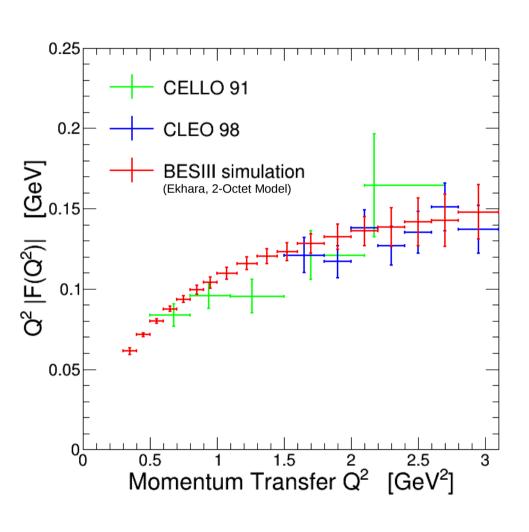
IG U Space-like π^0 Transition Form Factor


- Radiative effects result in wrong Q²
- Useful observable: $R_{\gamma} = \frac{\sqrt{s} E_{e^{\pm}\pi^{0}}^{CMS} p_{e^{\pm}\pi^{0}}^{CMS}}{\sqrt{s}}$
- Reject events with $R_{\gamma} > 0.05$


- Exactly one lepton
- Two to four photons
- $\cos\theta_{\text{untagged}} < -0.99$
- $\cos\theta_{\text{Helicity}} < 0.8$
- Reject hadronic background

JG U Space-like π⁰ Transition Form Factor

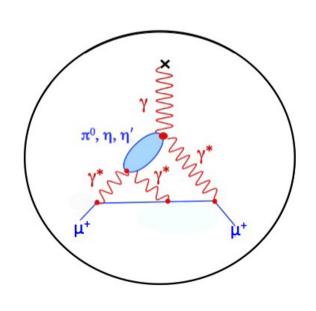
BESIII Monte Carlo, $\Psi(3770)$ L_{int}: 2.93 fb⁻¹ , Tagged Lepton: e⁺



- lacktriangle Analysis useful for π^0 and $\,\eta\,$
- Monte Carlo description of background incomplete
- Bkg subtr. by counting π⁰ yield per Q² bin
- Divide out point-like cross section for |F(Q²)|²

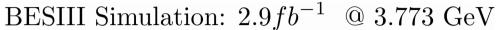
IG U Space-like π^0 Transition Form Factor

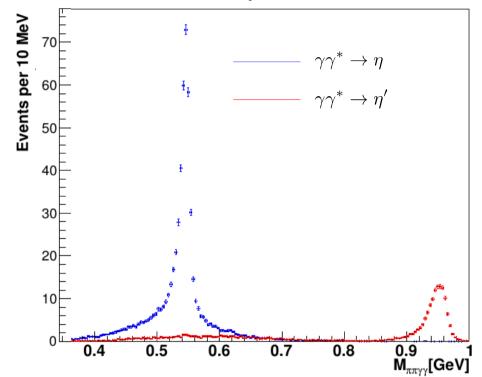
- 2.9 fb-1 at Ψ(3770) analyzed
- Covering $0.3 \le Q^2[\text{GeV}^2] \le 3.1$
- Unprecedented accuracy below 1.5 GeV²
 - Important for a_{μ}^{hLbL}
- Competitive accuracy up to 3.1 GeV²
- Soon to be published


JG|U

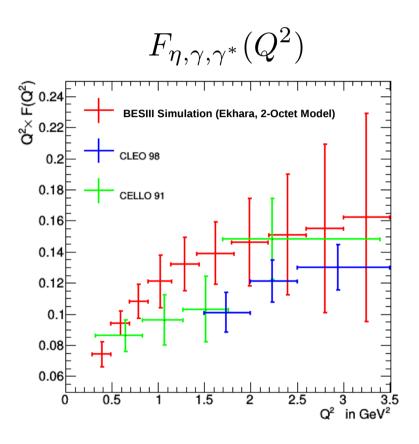
Contribution to a_µ

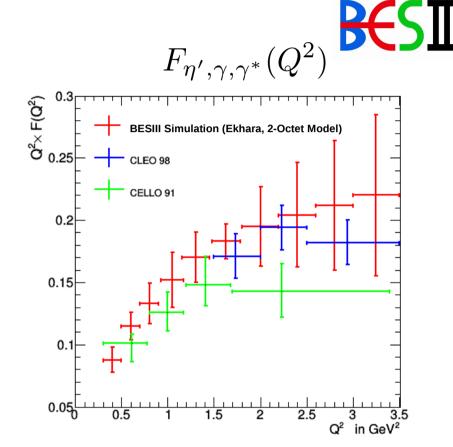
- Current accuracy of $a_{\mu}: \sim 6.3 \times 10^{-10}$
- Contribution of π^0 : $\sim 7 \times 10^{-10}$ Knecht, Nyffeler Phys. Rev. D65 (2002) 073034
- **E**xpected accuracy of new experiments at FNAL and J-PARC: $\sim 1.6 \times 10^{-10}$


■ Contributions of η and η' relevant!


$$\eta \sim 1.5 imes 10^{-10}$$
 Knecht,Nyffeler $\eta' \sim 1.5 imes 10^{-10}$ Phys.Rev.D65 (2002) 073034

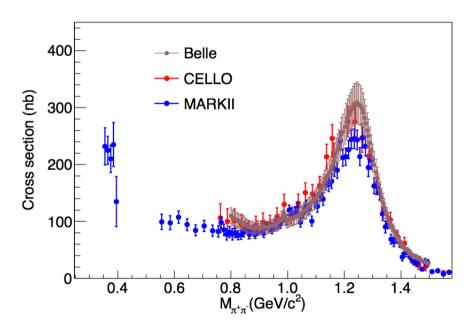
JG U Space-like η,η' Transition Form Factor





- $\eta' \to \pi^+ \pi^- \eta$
- Select:
 - one electron or positron
 - two oppositely charged pions
 - two photons
- $cos\theta_{untagged} > 0.99$
- Reject hadronic background
- Mass window cuts on $\gamma\gamma$ invariant mass
- Kinematic fit
- Relatively small background contamination

JG U Space-like η,η' Transition Form Factor


- Statistics compatible to previous measurements
 - only one decay channel of η and η' analyzed at BESIII
 - more data available (×3.5)
- Systematic studies to be done

JG U Space-like $\pi^+\pi^-$ Transition Form Factor

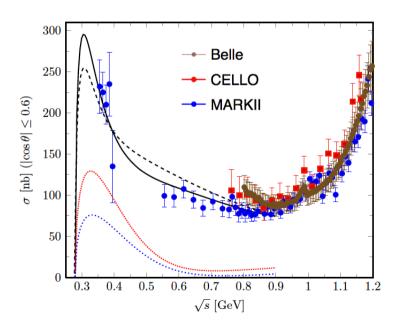
- Additional motivations:
 - Resonance parameters
 - Pion polarizabilities, pion structure
 - Essential for dispersive frameworks
 - Rescattering effects in low mass region

Collangelo, Hoferichter, Procura, Stoffer JHEP 1409,091; JHEP1509,074

Until recently only untagged measurements:

MarkII, Phys. Rev. D42 (1990) 5 CELLO, Z. Phys. C56 (1992) 381 Belle, Phys. Rev D75 (2007) 051101

■ First single-tagged result on $\pi^0\pi^0$ by Belle


Phys. Rev. D93 (2016) 032003

JG \cup Space-like $\pi^+\pi^-$ Transition Form Factor

- Additional motivations:
 - Resonance parameters
 - Pion polarizabilities, pion structure
 - Essential for dispersive frameworks
 - Rescattering effects in low mass region

Collangelo, Hoferichter, Procura, Stoffer JHEP 1409,091; JHEP1509,074

Until recently only untagged measurements:

Calculations by Assmussen, Masjuan, and Vanderhaeghen:

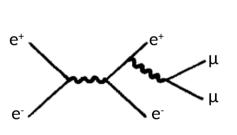
Untagged

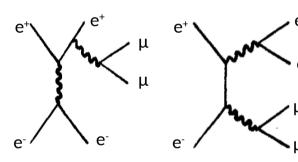
Single-Tag
$$(Q_1^2=0.5\,GeV^2)$$

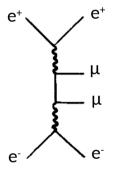
Double-Tag
$$(Q_1^2 = Q_2^2 = 0.5 \, GeV^2)$$

■ First single-tagged result on $\pi^0\pi^0$ by Belle

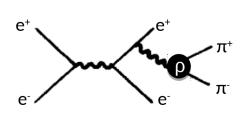
Phys. Rev. D93 (2016) 032003

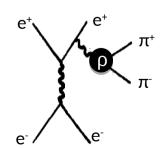

G U Space-like $\pi^+\pi^-$ Transition Form Factor



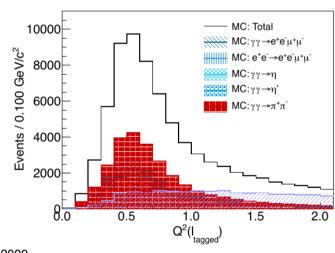

- At BESIII: Single-Tag measurement
 - Event selection analogous to single pseudoscalar analysis
 - Major Backgrounds:

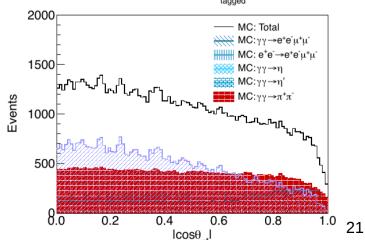
$$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$$


- Includes two-photon production of muon pairs
- Precise MC generators available from LEP era (BdkRC + Diag36ABC)

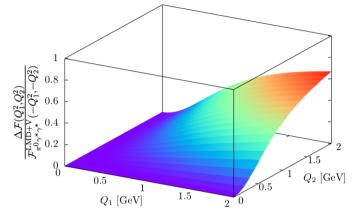


- $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
 - Radiative Bhabha scattering coupling to ρ (s + t channel)
 - MC generators being developed





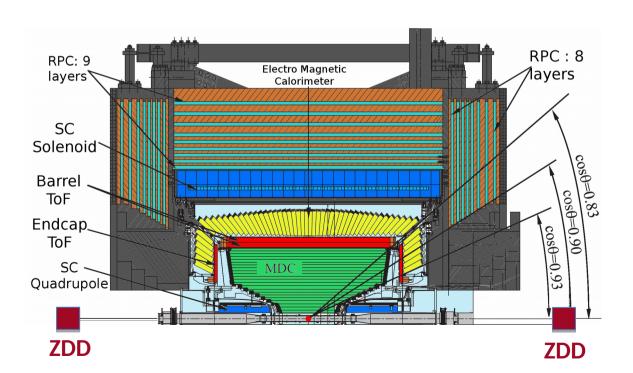
G U Space-like π⁺π⁻ Transition Form Factor

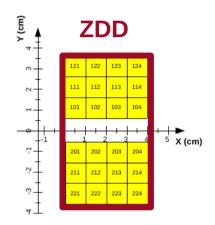

- Training multivariate methods to suppress muon background
 - To be replaced with multivariate method trained for muon suppression
- Subtract ρ contribution
 - Fit peak in data using shape from theory
- Study $\pi^+\pi^-$ invariant mass in bins of Q² and cos θ^*
- First single-tag measurement of $\pi^+\pi^-$!
 - Access to:
 - low momentum transfers 0.2 < Q² [GeV²] < 2.0
 - low invariant masses $m_{\pi+\pi}$ < M [GeV] < 2.0
 - full coverage of cosθ*

JG U Outlook: Double-Tagged Measurements

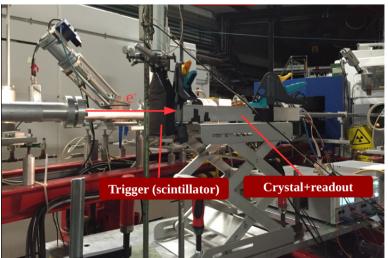
- Measurement of $F_{\gamma^*\gamma^*\pi^0}(Q_1^2,Q_2^2)$ never done before!
 - BESIII collected > 10 fb⁻¹ at $3.77 < \sqrt{s}$ [GeV] < 4.6
 - Double-tag measurement possible
 - 1st Step: Test TFF models
 - e.g. VMD vs. LMD+V

Calculations: A. Nyffeler Phys.Rev. D94, 2016, 053006


- Test polarization effects in $\gamma\gamma$ production
 - General two-photon cross section:


$$d\sigma = F \left\{ v_{TT} \, \sigma_{TT} + v'_{TT} \cos(2\tilde{\phi}) \, \left(\sigma_{\parallel} - \sigma_{\perp} \right) + h_1 h_2 v''_{TT} \, \frac{1}{2} \left(\sigma_0 - \sigma_2 \right) \right. \\ \left. + v_{LL} \, \sigma_{LL} + v_{TL} \, \sigma_{TL} + v_{LT} \, \sigma_{LT} + v'_{TL} \cos(\tilde{\phi}) \, \tau_{TL} + h_1 h_2 v''_{TL} \cos(\tilde{\phi}) \, \tau_{TL}^a \right\}.$$

- \bullet $\tilde{\phi}$: azimuthal angle between lepton planes in $\gamma^*\gamma^*$ rest frame
 - Allows to disentangle form factor contributions of multi-meson and tensor states
 - Requires precise measurement of angles and high statistics


JG U Outlook: Zero Degree Detector

- Tagging of photons and electrons at small angles
 - Polar angle range: 1 10 mrad
- Current design: Pb-SciFi, one sided
- Upgrade: Two arrays of 12 LYSO crystals on each side

In-beam tests at MAMI (Mainz)

Summary

- Two-photon physics program established at BESIII
 - Single-tag measurements of π^0 , η , and η' transition form factors
 - Unprecedented accuracy for Q² < 1.5 GeV²
 - Single-tag measurement of $\pi^+\pi^-$
 - First measurement
 - low Q², masses from threshold, full helicity angle coverage
 - To be extended to neutral final states
 - First double-tagged measurement $\gamma^*\gamma^* \to \pi^0$ started
 - New prospects from tagging detectors
 - Untagged measurements for light hadron spectroscopy