

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Recent Results on Meson Decays from A2

Patrik Adlarson on behalf of the A2 collaboration at MAMI PhiPsi17 Mainz, June 29, 2017

Exp setup CB-TAPS

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

ίGlι

DSFB₹

Typical LH₂ target length 5 or 10 cm

CB – TAPS - 4π detector

Central Part

- CB 672 Nal(TI) crystals
- PID 24 plastic scintillators

Forward Part

TAPS - 366 BaF₂, 72 PbWO₄ crystals

Veto - 384 plastic scintillators

$\Delta E / E = 2 \% / (E[GeV])^{0.36}$ $\Delta E / E = 1.8 \% + 0.8\% / (E[GeV])^{0.5}$

(CB) (TAPS)

Off-shell P form factors not accessible experimentally...but any aspiring theory/model should be able to correctly describe also the on-shell scenario

TFF used as experimental input

 $P = \pi, \eta, \eta'$

[G|L

Observable: slope parameter a_{π} FF = (1 - $a_{\pi}x$)⁻¹ ~ 1 + $a_{\pi}x$ for small a_{π}

Theory VMD +0.031 ChPT 2 -loop +0.029(5) Kampf, Knecht, Novotný, EPJ C46 (2006) 191	Experiment time-like SINDRUM-I Coll. +0.025(14) _{stat} (26) _{syst} 54k Drees <i>et al</i> Phys.Rev.D 45 (1992) 1439
"we think that a precise measurement of a_{π} which would not rely on any kind of extrapolation remains an interesting	NA62 +0.0368(48) _{stat} (18) _{syst} 1110k PLB 768 (2017) 38
issue."	Extrapolation space-like region
Dispersive approach +0.0307(6) Hoferichter, <i>et al.</i> EPJ C74, 3180 (2014)	CELLO +0.0326(26)stat(26)syst Behrend et al (CELLO) Z. Phys.C 49 (1991) 401 CLEO +0.0303(8)stat(9)syst(12)
Padé approximants +0.0324(22) P. Masjuan, Phys. Rev. D 86, 094021 (2012).	Gronberg <i>et al</i> (CLEO) Phys.Rev.D 57 (1998) 33 BESIII forthcoming
PhiPsi17 M	lainz, June 26-29 2017 8

A2 result based on 4.0 x 10^5 Dalitz decays from 15-120 MeV in m(e⁺e⁻) from two different beam times

Low background content, normalization to $\pi^0 \rightarrow 2\gamma$

QED with radiative corrections taken into account T. Husek, K. Kampf, and J. Novotny , Phys. Rev. D 92, 054027 (2015).

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

ίGlι

a_π= 0.030(10)_{tot}

Dispersive approach +0.0307(6) Hoferichter, et al. EPJ C74, 3180 (2014)

Padé approximants +0.0324(22) P. Masjuan, Phys. Rev. D 86, 094021 (2012).

In agreement with current theoretical estimates

18 data points with total uncertainties provided

Phys.Rev. C 95 no. 2 (2017) 025202

Future plan to further reduce errors

In red- fit parametrization of NA62 onto A2 data (left) and NA62 data (right)

$\omega \pi^0$ TFF and VMD

●SFB콜

IGIL

$ω \rightarrow \pi^0 \mu^+ \mu^-$ with NA60

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

[G|L

NA60 PLB 757 (2016) 437

D SFB ₹

No theoretical approach which reproduce TFF data for η , and other mesons, can describe TFF data based on the $\omega \rightarrow \pi^0 \mu + \mu^-$ decay at large m($\mu^+\mu^-$).

$$\Lambda_{\omega\pi^0}^{-2} = 2.223(26)_{stat}(37)_{syst} \, GeV^{-2}$$

NA60 discrepancy...independent results needed

S. P. Schneider, B. Kubis, and F. Niecknig, Phys. Rev. D 86, 054013 (2012).

I. Caprini, Phys. Rev. D 92, 014014 (2015).

Slightly lower compared to NA60 but more experimental data needed

Figure from EPJ C 62 (2009) 511

From study of cusp effect one can extract S-wave $\pi\pi$ scattering lengths NREFT prediction from Kubis, Schneider cusp is 6% < m_{$\pi+\pi$}- threshold

Figure from arXiv:1705.04339, Isken, Kubis, Schneider, Stoffer

Dispersive representation uses Dalitz plot as input. Three or four subtraction constants determined from experimental data. Cusp effect incorporated into effective phase shifts.

Here: BESIII data used for subtraction constants predicting $\eta' \rightarrow \eta \pi^0 \pi^0$

ChPT is low energy effective field theory of QCD – π , K, η η ' not included as external d.o.f due to axial anomaly. Works well below the resonance region m_{σ}

large N_C ChPT: axial anomaly absent U(3)_L x U(3)_R with π , K, η , η ' included. Does not include resonances as external states, but in LEC [R. Kaiser and H. Leutwyler, Eur. Phys. J. C 17, 623 (2000)]

Resonance ChPT: takes resonances into account explicitly - $\rho,\,\sigma,\,a_1$ included

G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B 223 (1989) 425

Tests ChPT extensions by Escribano, Masjuan, Sanz-Cillero [JHEP 1105 (2011) 094] with $\eta' \Rightarrow \eta \pi \pi$ as probe

Dalitz plot $\eta' \rightarrow \eta \pi^0 \pi^0$

Gll

FR 3

Dalitz plot to compare theory and exp

$$X = \frac{\sqrt{3}(T_{\pi 1} - T_{\pi 2})}{Q} \quad Y = \frac{(m_{\eta} + 2m_{\pi})}{m_{\pi}} \frac{T_{\eta}}{Q} - 1$$
$$Q = T_{\pi 1} + T_{\pi 2} + T_{\eta} = m_{\eta'} - m_{\eta} - 2m_{\pi}$$

 $|A(X,Y)|^2 = |N|^2 [1 + aY + bY^2 + cX + dX^2]$ Dalitz plot parameters **a**, **b**, **c**, **d**, ...

In isospin-limit neutral and charged decay should give same result

Charged decay BESIII collaboration 4.3 x 10⁴ [Phys.Rev. D83 (2011) 012003]

Neutral decay GAMS4 π collaboration 1.5 x 10⁴ [Phys Atomic Nucl, 2009, Vol. 72, 231]

$η' \rightarrow η π^0 π^0$ Results A2

[G|L

Exp / Th	а	b	С	d	
VES	-0.127(18)	-0.106(31)	-	-0.082(19)	
BESIII	-0.047(11)	-0.069(21)	0.019(11)	-0.073(12)	
GAMS4π	-0.066(16)	-0.064(29)	-	0.067(20)	
LN _c ChPT	-0.098(48)*	-0.050(1)	0	-0.092(8)	
RChT	-0.098(48)*	-0.033(1)	0	-0.072(1)	
A2 prel	-0.074(8)(6)	-0.063(14)(5)	-	-0.050(9)(5)	
A2 prel	-0.074(8)(6)	-0.063(14)(5)		-0.050(9)(5)	

Factor 8 greater statistics compared to GAMS4 π , 120 000 events Results in agreement with GAMS4 π but with better precision

- blue and red data points analysis I and II
- green linear parametrization
- purple polynomial black NREFT

Fit to cusp using NREFT amplitude gives -0.19(8), compatible with $a_2-a_0 = -0.2644$ Strong indication that sc. lengths can be determined for decays other than $K \rightarrow 3\pi$! Paper forthcoming...

...also data in good agreement with the dispersive representation ...with BESIII data used as input

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

[G|L

Several new results from A2 collaboration on time-like TFF. Prepared for theoreticians by giving data points with total uncertainties

η' campaign in 2014. Several Ph.D. and post-docs working on the analyses. Preliminary results on η'→ η π⁰π⁰ showing indication of cusp in m_{ππ}

Outlook: Exciting results from A2 in the upcoming years.

THANK YOU

Two analyses conducted on same data sample- results consistent

Removal of background by kinfit with mass constraints

Largest background from $3\pi^0$, $\eta\pi^0$

Factor 8 greater statistics compared to GAMS4 π , 120 000 events