

BESIII results on time-like baryon form factors

Alaa Dbeyssi (Helmholtz-Institut Mainz) On behalf of BESIII collaboration

International Workshop on e⁺e⁻ collisions from Phi to Psi 2017 June 28, 2017 Mainz, Germany

The structure of hadrons

Hadrons: non-perturbative systems

- Their electromagnetic interactions can be described by long distance functions:
 - Electromagnetic form factors,
 - Parton Distribution Amplitudes,
 - Fragmentation Functions,
 - Generalized Parton Distributions,

0

 By a global analysis of scattering and annihilation experiments one can determine these functions and understand the hadron structure

Outline

Probing the structure of hadrons at BESIII by the annihilation of electron-positron beams of 1.0 - 2.3 GeV:

- BEPC-II and BESIII data
- Measurement of proton electromagnetic form factors (FFs) at BESIII using:
 - Scan technique: $e^+e^- \rightarrow p\overline{p}$
 - Initial state radiation (ISR) technique: $e^+e^- \rightarrow p\overline{p}\gamma$
- Measurement of hyperon FFs: $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-, e^+e^- \rightarrow \Lambda \overline{\Lambda}$
- Ongoing analysis on the measurement of baryon FFs at BESIII
- Summary

Proton electromagnetic FFs: the analyticity

- Electric G_E and magnetic G_M proton FFs are analytical functions of the momentum transfer squared q^2
- Playground for theory and experiment:
 - at low q^2 , probe the size of the nucleus,
 - at high q², test QCD scaling

Time-Like proton electromagnetic FFs

- No individual determination of G_E and G_M
- Steep behavior of the effective FF (G_{eff}) at threshold
- Structures appeared in BaBar data (PRD 87 (2013) 092005)?

BESIII data samples

Measurement of $e^+e^- \rightarrow p\overline{p}$ at BESIII Phys. Rev. D91, 112004 (2015)

Based on 157 pb⁻¹ collected in 12 scan points between 2.22 – 3.71 GeV in 2011/2012:

- Beam associated background
- Physical background: charged lepton/meson pair production,
- and $e^+e^- \rightarrow p\overline{p}\pi^0, p\overline{p}\pi^0\pi^0, \Lambda\bar{\Lambda}$

Charged tracks reconstructed by the MDC Particle identification:

- dE/dx and **TOF** (Prob(p) > Prob(K/ π)
- Proton: $E_{EMC}/p < 0.5$, $\cos\theta < 0.8$
- III. Two charged tracks
 - back-to-back in c.m.s
 - Momentum constraints for p and pbar

- Background negligible or subtracted
- Signal efficiency between 60% and 3%

Measurement of $e^+e^- \rightarrow p\overline{p}$ at BESIII Phys. Rev. D91, 112004 (2015)

N_{obs}: observed number of data

N_{bkg}: background evaluated from MC

L: luminosity; ϵ : detection efficiency; (1+ δ) and C: radiative and Coulomb correction factor

The measured born cross sections and the effective FFs are in good agreement with previous experiments, improving the overall uncertainty by $\sim 30\%$

Measurement of $e^+e^- \rightarrow p\overline{p}$ at BESIII Phys. Rev. D91, 112004 (2015)

Extraction of the electromagnetic $R = |G_E|/|G_M|$ ratio

Measurement of proton FFs with ISR technique

Measurement of proton FFs with tagged ISR technique

Event selection:

$$e^+e^- \rightarrow p\overline{p}\gamma$$

- Two charged tracks from vertex •
- One high energy shower in EMC (Tagged ISR)
- Kinematic constraints applied •
- Background evaluation and subtraction •

- Combine the seven data samples (7.4 fb^{-1})
- The proton FFs extracted between the threshold and 3.0 GeV
- Systematic uncertainty included

Proton effective FF

10

Baryon pair production: unexpected behavior near threshold

- Strong energy dependence near threshold with other charged baryons?
- Cross section for neutral baryon production near threshold?

Electromagnetic form factors of Hyperons

Hyperon pair production:

Possibility to be much closer to the threshold than the proton case with a direct production

Cross section measurement of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ at BESIII

BESIII has collected in 2014 significant data sample close to the Λ_c threshold:

$$e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$$

\sqrt{s} [GeV]	Luminosity [pb ⁻¹]
4.5745	47.67
4.580	8.545
4.590	8.162
4.5995	566.9

- First direct measurement of Λ_c form factors
- Data are very close to threshold
- Measurement of the Born cross section at 4 energy points below 4.6 GeV with **unprecedented statistical accuracy (**~1.3% at 4.6 GeV **)**
- **Possible determination** of the Λ_c FF ratio at 4.57 and 4.6 GeV

Cross section measurement of $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ at BESIII

Measurement of the angular distributions at center of mass energies 4.5745 and 4.5995 GeV:

First time measurement of the Λ_c^+ form factor ratio

\sqrt{s} [GeV]	Luminosity [pb ⁻¹]	$ G_E / G_M $
4.5745	47.67	$1.14 \pm 0.14 \pm 0.07$
4.580	8.545	
4.590	8.162	
4.5995	566.9	$1.23 \pm 0.05 \pm 0.03$

Cross section measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at BESIII

Based on 40.5 pb⁻¹ collected in 4 scan points between 2.2324 - 3.08 GeV in 2012:

- Non-zero behavior at threshold: in theory Coulomb correction is not considered
- Results are consistent with previous measurements: precision improved by 10%

Prospects: New energy scan 2015

Scan data 2015 between 2 and 3.08 GeV (552 pb⁻¹)

Unprecedented determination of baryons (proton, neutron, hyperons) form factors with a direct production of baryon pairs

Prospects: New energy scan 2015

Proton form factors

- Precise measurement of proton FFs $(|G_M| \text{ and } |G_F|)$ in narrow q²-bins
- Expected (MC) statistical accuracies on $R=|G_E|/|G_M|=1$, between 9 % and 35%

Λ form factors:

- 6 points between 2.23 -2.9 GeV: unprecedented data samples.
- First determination of the ralative phase ϕ between G_E and G_M at 2.396 GeV
- Enough statistics at 4 energy points to extract $R=|G_E|/|G_M|$

Summary

- The **proton FFs** are measured at 12 c.m. energies based on 2012 scan data:
 - The effective FF measurements are in good agreement with previous experiments, improving the overall uncertainty by ~30%.
 - The $|\mathbf{G}_{\mathbf{E}}|/|\mathbf{G}_{\mathbf{M}}|$ ratio is extracted at three energy points, with uncertainty in 25% and 50% (dominated by statistics).
- Preliminary results on the proton FF measurement from the tagged-ISR analysis have been shown. Untagged ISR analysis is also ongoing.
- Preliminary results on *A* FF measurement based on 2012 scan data have been also shown
- First measurement of Λ_c FFs (effective FF and FF ratio) in direct baryon pair production
- The measurements of baryon FFs will be significantly improved with the 2015 energy scan data from 2.0 GeV to 3.08 GeV

Thank you for your attention

Back-up slides

Measurement of proton FFs with untagged ISR technique

Event selection (untagged analysis)

- Two charged tracks
- Identification of the non detected ISRphoton based on the distributions of the **missing momentum** and the **missing mass squared**.
- Background channels are almost suppressed
- ➢ Signal efficiency ~16%

Measurement of proton FFs with untagged ISR technique

Event selection (untagged analysis)

- Two charged tracks
- Identification of the non detected ISRphoton based on the distributions of the **missing momentum** and the **missing mass squared**.
- Background channels are almost suppressed
- ➢ Signal efficiency ~16%

Cross section measurement of $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at BESIII

Based on 40.5 pb⁻¹ collected in 4 scan points between 2.2324 – 3.08 GeV in 2012:

$\sqrt{s} \; (\text{GeV})$	Channel
2.2324	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$
	$\overline{\Lambda} ightarrow \overline{n} \pi^0$
	combined
2.4000	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$
2.8000	
3.0800	

 $\overline{\Lambda} \to \overline{n} \pi^0$

- Multiply Variable Analysis tool (Boosted Decision Tree)
- The final states of π^0 has a monomomentum around 105 MeV.

Prospects: hyperon FFs at BESIII

Scan data 2015 between 2 and 3.08 GeV (552 pb⁻¹)

$$e^+e^- \rightarrow \Lambda \overline{\Lambda}, \Lambda \rightarrow p\pi$$

• Polarization is accessible thanks to the weak, parity violating decay: $\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$

$$P_{n} = -\frac{\sin 2\theta \sin \Delta \phi / \tau}{R \sin^{2} \theta_{\Lambda} / \tau + (1 + \cos^{2} \theta_{\Lambda}) / R} = \frac{3}{\alpha_{\Lambda}} \langle \cos \theta_{p} \rangle$$

- First determination of the ralative phase ϕ between G_E and G_M
- Enough statistics at 4 energy points to extract $R=|G_E|/|G_M|$
- Analysis are ongoing

BEPC-II and BESIII detector

Beijing Electron Positron Collider

BESIII detector

RPC:8 RPC: 9 Electro Magnetic Calorimeter lavers layers SC Solenoid> Barrel TOF Endcap_ $\cos\theta=0.93$ ToF SC · Ouadrupole

Electromagnetic Calorimeter $\sigma_{\rm F}/\sqrt{\rm E}(\%)$ =2.5% (1 GeV), (Csl) $\sigma_{z,\phi}$ (cm)=0.5-0.7 cm/ \sqrt{E}

Muon Counter σ_{xv} <2 cm

- Symmetric e⁺e⁻ collider Ο
- Beam energy: 1.0 2.3 GeV Ο
- Optimum energy: 1.89 GeV Ο
- Design luminosity: 10³³ cm⁻² s⁻¹ Ο
- Crossing angle: 22 mrad Ο

Time Of Flight σ_{τ} (barrel)=90 ps $\sigma_{T}(endcap)=110 \text{ ps}$

Main Drift Chamber σ_{xy} =130 mm, dE/dx~6% $\sigma_{\rm p}/\rm p$ = 0.5% at 1 GeV

cos0=0.83