International Workshop on e^+e^- collisions from ϕ to ψ , 28 June 2017, Mainz

Recent results on XYZ physics from Belle

Roman Mizuk

Lebedev Physical Institute, Moscow Institute of Physics and Technology

Outline:

Observation of $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi \ D\bar{D}$ PRD95,112003(2017)

New measurement of
$$e^+e^- \rightarrow D^{(*)}\overline{D}^*$$
 via ISR NEW

 $\Upsilon(4S) \rightarrow \pi^{+}\pi^{-} \Upsilon(1S, 2S)$ $\Upsilon(4S) \rightarrow \eta \Upsilon(1S)$

NEW

Observation of $\chi_{c0}(2P)$ candidate

Reminder:

X(3915)
$$\begin{array}{c} B \rightarrow (J/\psi \ \omega) \ K \\ \gamma \gamma \rightarrow (J/\psi \ \omega) \end{array}$$

observed by Belle (2005), confirmed by BaBar

BaBar: $J^P = 0^+ \Rightarrow \chi_{c0}(2P)$ candidate PRD86,072002(2012)

Difficulties:

tiny width: 20 MeV, expect >100 MeV (190 MeV above S-wave threshold) $D\overline{D}$ not seen $\Rightarrow \Gamma(J/\psi \omega) > 0.6 \Gamma(D\overline{D})$ tiny $2^{3}P_{2}-2^{3}P_{1}$ splitting: 8.8 ± 3.2 MeV (in $b\overline{b}$: 36 MeV) Olsen PRD91,057501(2015)

Observation of an alternative $\chi_{c0}(2P)$ candidate in $e^+e^- \rightarrow J/\psi$ (DD) Belle PRD95,112003(2017)

X(3940) in $e^+e^- \rightarrow J/\psi$ (DD*) X(4

X(4160) in $e^+e^- \rightarrow J/\psi (D^*D^*)$

$$e^+e^- \rightarrow J/\psi (D\overline{D}) \qquad \leftarrow M_{rec} = \sqrt{[\underline{p}(e^+e^-) - \underline{p}(J/\psi) - \underline{p}(D)]^2}$$

reconstructed
$$J/\psi \rightarrow \mu^+\mu^- \qquad D^0 \rightarrow K^-\pi^+, K^-\pi^+\pi^0, \qquad D^+ \rightarrow K^-\pi^+\pi^+, K^-\pi^+\pi^+, K^-\pi^+\pi^+, K^-\pi^+\pi^-, K^-\pi^-\pi^-, K^-\pi^-\pi^-, K^-\pi^-\pi^-, K^-\pi^-\pi^-, K^-\pi^-\pi^-, K^-\pi^-, K^-\pi^-\pi^-, K^-\pi^-, K^-$$

Neural Networks. Variables: separation btw J/ ψ and D vertices, angle btw D momentum and direction from J/ ψ to D vertex, lepton PID, π^0 related: mass, helicity angle... $\Rightarrow v_i$

Requirements on M(J/ ψ), M(D), M_{rec} and v_i are chosen individually $\frac{\sum_i N_{sig}^{(i)}}{\frac{a}{1} + \sqrt{\sum N_i^{(i)}}}$

 $\Rightarrow 103$ selected events

 $\begin{array}{l} \mbox{Fraction of background?} \ \Rightarrow \mbox{3D fit in } M(J/\psi), \ M(D) \ \mbox{and } M_{rec} \\ 25 \pm 2 \ \mbox{background events} \end{array}$

fit gives also normalization of sidebands

 $e^+e^- \rightarrow J/\psi \ (D\overline{D})$

Sum over all D, J/ ψ channels. Sidebands describe background level well.

Amplitude analysis

In 6D phase space: $M_{D\bar{D}}, \theta_{\mathrm{prod}}, \theta_{J/\psi}, \theta_{X^*}, \varphi_{\ell^-}, \varphi_D$

Model: X* + non-resonant contribution

$$A_{X^*}(M) = \left(\frac{p(M)}{p(m)}\right)^L \frac{F_L(M)}{m^2 - M^2 - im\Gamma(M)}$$
Blatt-Weisskopf ff

Angular parts: helicity formalism.

$$\mathbf{M} = (3862^{+26}_{-32}{}^{+40}_{-13}) \text{ MeV}/c^2$$
$$\mathbf{\Gamma} = (201^{+154}_{-67}{}^{+88}_{-82}) \text{ MeV}$$

← significances include "look-elsewhere" effect ← MC pseudoexperiments

 0^{++} is favored over 2^{++} at 3.8σ ... at 2.5σ including systematics

What is X(3915) ? \Rightarrow Unlikely $\chi_{c0}(2P)$.

No more 0^{++} charmonia nearby are expected \Rightarrow exotics.

Zhou, Xiao, Zhou PRL115,022001(2015)

 J^{PC} measurement by BaBar is model dependent, X(3915) could be $\chi_{c2}(2P)$.

discussion – talk by Alexey Nefediev

Update of $e^+e^- \rightarrow D^{(*)+}D^{*-}$

R

BELLE

R

BELLE

R

BELLE

Coupled-channel analysis

Uglov, Kalashnikova, Nefediev, Pakhlova, Pakhlov JETP Lett.105,1(2017)

Goals:

masses of $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ couplings of resonances to $D\overline{D}$, $D\overline{D}^*$, $D^*\overline{D}^*$, $D\overline{D}_2$ channels

Results / conclusions: good description of data is achieved accuracy in parameters of ψ states is poor – errors in cross sections are big – no information on $D^*\overline{D}^*$ polarization

Need an update of cross section measurements

Improvements in the update:

more data (factor 1.7) implement standalone tracking in vertex detector \Rightarrow efficiency for low momentum tracks ×2 more D⁰, D⁺ channels

Method: same as in previous publication Belle PRL98,092001(2007)

$$e^+e^- \rightarrow D^{(*)+}D^{*-}\gamma_{ISR}$$

 $\downarrow D^0\pi^-$

 $D\overline{D}$ channel is coming later need full reconstruction feed-down: first measure $D^{(*)}\overline{D}^*$

Cross sections of $e^+e^- \rightarrow D^{(*)+}D^{*-}$

helicities	λ_1	λ_2	
	±1	±1	TT
	±1	0	TL
	0	0	LL

D*

In each energy bin perform 2D fit $\cos \theta_1$ vs. $\cos \theta_2$

Cross sections have different shapes.

TL is the only non vanishing at high \sqrt{s} , as expected.

Grozin, Neubert PRD55,272(1997)

It is of interest to perform coupled-channel analysis of new results.

Hadronic transitions from Υ (4S)

Hadronic transitions in bottomonia

Transition	Partial width (keV)
$\Upsilon(2S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	5.7 ± 0.5
$\Upsilon(1S)\eta$	$(9.3 \pm 1.5) \times 10^{-3}$
$\Upsilon(3S) \rightarrow$	
$\Upsilon(1S) \pi^+ \pi^-$	0.89 ± 0.08
$\Upsilon(1S)\eta$	$< 2 \times 10^{-3}$
$\Upsilon(2S)\pi^+\pi^-$	0.57 ± 0.06
$\Upsilon(4S) \rightarrow$	BaBar (2008)
$\Upsilon(1S) \pi^+\pi^-$	1.7 ± 0.2
$\Upsilon(1S)\eta$	4.0 ± 0.8
$\Upsilon(2S)\pi^+\pi^-$	1.8 ± 0.3
$h_b(1P) \eta$	45 ± 7

π⁺π⁻ transitions: E1E1 gluons
η transitions: E1M2,
require spin-flip of b quark
strongly suppressed

Results on $\Upsilon(4S) \rightarrow \Upsilon(1S)\eta$, $\Upsilon(2S)\pi^+\pi^-$ remained unconfirmed \Rightarrow study at Belle

Hadronic transitions from Υ (4S)

Results

Conclusions

Observation of X*(3860)

 \Rightarrow good $\chi_{c0}(2P)$ candidate

$$M = (3862^{+26}_{-32}) \text{ MeV}/c^2$$
$$\Gamma = (201^{+154}_{-67}) \text{ MeV}$$
$$J^{PC} = 0^{++} \text{ are favored}$$

Update of $e^+e^- \rightarrow D^{(*)+}D^{*-}$

accuracy improved by a factor of 2 cross sections for different polarizations are measured

Hadronic transitions from Υ (4S)

BaBar result on $\Upsilon(4S) \rightarrow \Upsilon(1S)\eta$ is confirmed hint of $\Upsilon(4S) \rightarrow \Upsilon(1S) f_0(980)$