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Outline
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I Light-by-light contribution to the Lamb shift
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Some of the lepton-related SM puzzles
I muon g-2 anomaly

I proton radius puzzle

I theoretical challenges (mass hierarchy of SM particles, flavor
structure of the theory etc.)

New, precise measurements with muons and electrons

I Energy levels of hydrogen and muonic hydrogen

I Bound electron g-factor

I Muonium hyperfine spiting

I Decay spectrum of bound muon (CLFV)

The largest corrections come from the QED.
We need precise SM predictions and cross-checks before we can
claim any New Physics discovery.
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How can we check SM prediction

Electron g-2 may be sensitive to the same New Physics

δge ∼ m2
e

m2
µ
δgµ, but a new source of α is needed

I Atomic spectroscopy (R∞ = α2mec
4π~ )

I Bound electron g
I currently the best source of me

I in the future also a source of α

We need QED corrections for the Lamb shift, and bound electron
g-factor!
Current relative uncertainty for 1S − 2S transition ∼ 10−15 and for
bound g -factor ∼ 10−10; improvement expected soon.
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Lamb shift

70 years ago - first radiative correction in QED

∆E2S−2P ∼ α
π (Zα)4 ln(Zα) ∼ 1057 MHz
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Lamb shift
70 years ago - first radiative correction in QED

∆E2S−2P ∼ α
π (Zα)4 ln(Zα) ∼ 1057 MHz

∆E =
α

π

(
A41(Zα)4 ln(Zα)−2 + A40(Zα)4 + A50(Zα)5 + . . .

)
+(α

π

)2 (
B40(Zα)4 + B50(Zα)5 + B63(Zα)6 ln3(Zα)−2 + . . .

)
+ . . .

+ relativistic corrections, recoil corrections, finite nuclear size
corrections . . .
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Light-by-light contribution

e e

N N

1. Wichmann-Kroll potential
I O

(
α(Zα)6

)
: A60

I ∆E1S = 2.5kHz (Z=1)
I [E. Wichmann and N. M. Kroll, 1954, 1956]
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Light-by-light contribution

e e

N N

2. Dirac form factor
I O

(
α3(Zα)4

)
: C40

I [K. Melnikov and T. van Ritbergen, 2000]
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Light-by-light contribution

e e

N N

3. O
(
α2(Zα)5

)
: B50

I ∆E1S = −5.3kHz (Z=1)
I [M.I.Eides,H.Grotch,and P.Peble, 1994; K. Pachucki 1993, 1994]

A given diagram may contribute also to higher orders in Zα.
In the third case, the higher order contribution is
logarithmically enhanced → B61.
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Two step matching

LQED = Ψ
(
i /D −me

)
Ψ− 1

4
FµνF

µν

Hard-scale matching; QED→ NRQED

LNRQED ⊃ ψ†

cA

(
~B2 − ~E 2

)
m3

e

− cB
~E 2

m3
e

ψ + d
ψ†ψNN†

m2
e

Soft-scale matching; NRQED→ PNRQED, two types of
potentials

V2(r) ∼ (Zα)2

m2
e

δ3(r)

V3(r) ∼ (Zα)2

m3
e r

4
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δ-contribution

e e

N N

e e

N N

I O
(
α2(Zα)5

)
I ∆E1S = −5.3kHz (Z=1)

I [M.I.Eides,H.Grotch,and P.Peble, 1994; K. Pachucki 1993, 1994, M.

Dowling, J. Mondejar, J. H. Piclum, and A. Czarnecki 2011]
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Logarithmic contribution

e e

A
0

A
0

~E 2 ∼ (Zα)2

r4
(1)

The matrix element of this operator is logarithmically divergent

∆EnS = χLBL

〈
~E 2
〉
nS

=
(Zα)6

n3
ln(Zα)24χLBL (2)

with the matching coefficient

χLBL =
(α
π

)2( 43

144
− 133

3456
π2
)

[A. Czarnecki, R.S., 2016]
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Significance of the LBL correction

Total corrections at O
(
α2(Zα)6 ln(Zα)

)
[K. Pachucki 2001, U. D.

Jentschura, A. Czarnecki, and K. Pachucki, 2005] are much larger than
the LBL contribution.

LBL correction decreases 1S − 2S by 280Hz; experimental accuracy
is 10Hz. Other transitions are measured with accuracy ∼ kHz.

Theory of hydrogen spectrum has to be further checked!

Measurements of 1S − 2S transition in He+ can provide a test of
bound-state QED. [M. Herrmann et al. 2009]
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Bound electron g-factor
Leading effect [Breit, 1928]

ge =
2

3

(
1 + 2

√
1− (Zα)2

)
≈ 2− 2

3
(Zα)2 (3)

~A

e

Radiative corrections

I O
(
αn(Zα)2

)
: universal corrections related to free-electron

g − 2 [H. Grotch, 1970]

I O
(
α(Zα)4

)
: [K. Pachucki, U. Jentschura, and V. A. Yerokhin, 2004]

I O
(
α2(Zα)4

)
: [K. Pachucki, A. Czarnecki, U. Jentschura, and V.A.

Yerokhin, 2005]

I O
(
α(Zα)5

)
: LBL [S.G. Karshenboim and A.I. Milstein, 2002]
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Why do we measure the bound electron g-factor

I Currently it is used to determine me

Larmor frequency: ωL = g
2

e
me

B

Cyclotron frequency of the ion: ωc = Q
MB

me =
g

2

e

Q

ωc

ωL
M (4)

I Future plans
I Determination of 4He+ mass
I New measurement of fine structure constant – g rather than

g − 2 is measured
– large reduction of relativistic shifts compared to free
electron, nucleus acts as an anchor
– combination of measurements for different energy levels
allows to cancel leading nuclear effects

I Some proposals suggest measurement that will be independent
of the free g − 2 contribution

[Yerokhin et al., 2016; Shabaev et al. 2006]
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LBL correction
Calculation of the LBL correction to the bound electron g-2 is
similar to Lamb

A

e e

A
0

A

LNRQED ⊃
ψ†(~σ · ~B)(~∇ · ~E )ψ

m3
e

The LBL correction (not included in previous evaluation of

(Zα)4
(
α
π

)2
terms)

δge = (Zα)4
(α
π

)2 16− 19π2

108

[A. Czarnecki, R.S., 2016]
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LBL correction to bound electron g factor

LBL loop changes the non-Logarithmic part of the correction(α
π

)2
(Zα)4

(
28

9
lnZα− 16.4

)
→
(α
π

)2
(Zα)4

(
28

9
lnZα− 18.0

)
This shifts the value of electron mass by 0.3σ [J. Zatorski et al. 2017 ]

The sensitivity is reduced because unknown corrections α2(Zα)5

are treated as a fit parameter [S. Sturm et al. 2014].

Experiments designed to provide tests of bound state QED

I Mainz g-factor experiment

I ALPHATRAP (MPI-K Heidelberg)

I HITRAP (GSI Darmstadt)
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Conclusions

I Spectroscopic measurements serve as the most precise source
of fundamental constants and they can also facilitate
discovery of new physics

I Theory of hydrogen energy levels has to be further scrutinized

I Bound electron g-factor opens exciting opportunities for
progress both on theoretical and experimental side


