Precision QED systems

Light-by-light scattering in the Lamb shift and the bound electron g factor

Robert Szafron

27 June 2017

PhiPsi 2017

Outline

- Introduction; QED bound states
- ► Light-by-light contribution to the Lamb shift
- Bound electron g-factor and the LBL contribution
- Conclusions

Some of the lepton-related SM puzzles

- muon g-2 anomaly
- proton radius puzzle
- theoretical challenges (mass hierarchy of SM particles, flavor structure of the theory etc.)

New, precise measurements with muons and electrons

- Energy levels of hydrogen and muonic hydrogen
- Bound electron g-factor
- Muonium hyperfine spiting
- Decay spectrum of bound muon (CLFV)

The largest corrections come from the QED.

We need precise SM predictions and cross-checks before we can claim any New Physics discovery.

How can we check SM prediction

Electron g-2 may be sensitive to the same New Physics $\delta g_e \sim \frac{m_e^2}{m_\mu^2} \delta g_\mu$, but a new source of α is needed

- Atomic spectroscopy $(R_{\infty} = rac{lpha^2 m_e c}{4\pi\hbar})$
- Bound electron g
 - currently the best source of m_e
 - ightharpoonup in the future also a source of lpha

We need QED corrections for the Lamb shift, and bound electron g-factor!

Current relative uncertainty for 1S-2S transition $\sim 10^{-15}$ and for bound g-factor $\sim 10^{-10}$; improvement expected soon.

Lamb shift

70 years ago - first radiative correction in QED

PHYSICAL REVIEW

VOLUME 72, NUMBER 4

AUGUST 15, 1947

The Electromagnetic Shift of Energy Levels

$$\Delta \textit{E}_{2S-2P} \sim rac{lpha}{\pi} (\emph{Z}lpha)^4 \ln(\emph{Z}lpha) \sim 1057 \; \mathrm{MHz}$$

Lamb shift

70 years ago - first radiative correction in QED

PHYSICAL REVIEW

VOLUME 72. NUMBER 4

AUGUST 15, 1947

The Electromagnetic Shift of Energy Levels

H. A. Bethe Cornell University, Ithaca, New York (Received June 27, 1947)

$$\Delta E_{2S-2P} \sim \frac{\alpha}{\pi} (Z\alpha)^4 \ln(Z\alpha) \sim 1057 \text{ MHz}$$

$$\Delta E = \frac{\alpha}{\pi} \left(A_{41} (Z\alpha)^4 \ln(Z\alpha)^{-2} + A_{40} (Z\alpha)^4 + A_{50} (Z\alpha)^5 + \ldots \right) +$$

$$\left(\frac{\alpha}{\pi} \right)^2 \left(B_{40} (Z\alpha)^4 + B_{50} (Z\alpha)^5 + B_{63} (Z\alpha)^6 \ln^3 (Z\alpha)^{-2} + \ldots \right) + \ldots$$

+ relativistic corrections, recoil corrections, finite nuclear size corrections . . .

Light-by-light contribution

1. Wichmann-Kroll potential

- \triangleright $\mathcal{O}\left(\alpha(Z\alpha)^6\right)$: A_{60}
- ► [E. Wichmann and N. M. Kroll, 1954, 1956]

Light-by-light contribution

2. Dirac form factor

- $ightharpoonup \mathcal{O}\left(\alpha^3(Z\alpha)^4\right)$: C_{40}
- ► [K. Melnikov and T. van Ritbergen, 2000]

Light-by-light contribution

- 3. $\mathcal{O}(\alpha^2(Z\alpha)^5)$: B_{50}
 - ▶ $\Delta E_{1S} = -5.3 \text{kHz} (Z=1)$
 - ► [M.I.Eides, H.Grotch, and P.Peble, 1994; K. Pachucki 1993, 1994]

A given diagram may contribute also to higher orders in $Z\alpha$. In the third case, the higher order contribution is $logarithmically\ enhanced \rightarrow B_{61}$.

Two step matching

$$\mathcal{L}_{\mathrm{QED}} = \overline{\Psi} \left(i \not \! D - m_{\mathrm{e}} \right) \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Hard-scale matching; $QED \rightarrow NRQED$

$$\mathcal{L}_{\mathrm{NRQED}} \supset \psi^{\dagger} \left(c_{A} \frac{\left(\vec{B}^{2} - \vec{E}^{2} \right)}{m_{e}^{3}} - c_{B} \frac{\vec{E}^{2}}{m_{e}^{3}} \right) \psi + d \frac{\psi^{\dagger} \psi N N^{\dagger}}{m_{e}^{2}}$$

Soft-scale matching; $\mathrm{NRQED} \to \mathrm{PNRQED},$ two types of potentials

$$V_2(r) \sim \frac{(Z\alpha)^2}{m_e^2} \delta^3(r)$$

 $V_3(r) \sim \frac{(Z\alpha)^2}{m_a^2 r^4}$

δ -contribution

- $\triangleright \mathcal{O}\left(\alpha^2(Z\alpha)^5\right)$
- ▶ $\Delta E_{1S} = -5.3 \text{kHz} (Z=1)$
- [M.I.Eides, H.Grotch, and P.Peble, 1994; K. Pachucki 1993, 1994, M. Dowling, J. Mondejar, J. H. Piclum, and A. Czarnecki 2011]

Logarithmic contribution

The matrix element of this operator is logarithmically divergent

$$\Delta E_{nS} = \chi_{\text{LBL}} \left\langle \vec{E}^2 \right\rangle_{nS} = \frac{(Z\alpha)^6}{n^3} \ln(Z\alpha)^2 4\chi_{\text{LBL}} \tag{2}$$

with the matching coefficient

$$\chi_{\rm LBL} = \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{43}{144} - \frac{133}{3456}\pi^2\right)$$

Significance of the LBL correction

Total corrections at $\mathcal{O}\left(\alpha^2(Z\alpha)^6\ln(Z\alpha)\right)$ [K. Pachucki 2001, U. D. Jentschura, A. Czarnecki, and K. Pachucki, 2005] are much larger than the LBL contribution.

LBL correction decreases 1S-2S by $280{\rm Hz}$; experimental accuracy is $10{\rm Hz}$. Other transitions are measured with accuracy $\sim {\rm kHz}$.

Theory of hydrogen spectrum has to be further checked!

Measurements of 1S-2S transition in He^+ can provide a test of bound-state QED. [M. Herrmann et al. 2009]

Bound electron g-factor

Leading effect [Breit, 1928]

$$g_e = \frac{2}{3} \left(1 + 2\sqrt{1 - (Z\alpha)^2} \right) \approx 2 - \frac{2}{3} (Z\alpha)^2 \tag{3}$$

Radiative corrections

- ▶ $\mathcal{O}\left(\alpha^n(Z\alpha)^2\right)$: universal corrections related to free-electron g-2 [H. Grotch, 1970]
- $ightharpoonup \mathcal{O}\left(lpha(Zlpha)^4
 ight)$: [K. Pachucki, U. Jentschura, and V. A. Yerokhin, 2004]
- $ightharpoonup \mathcal{O}\left(\alpha^2(Z\alpha)^4\right)$: [K. Pachucki, A. Czarnecki, U. Jentschura, and V.A. Yerokhin, 2005]
- \blacktriangleright $\mathcal{O}\left(\alpha(Z\alpha)^5\right)$: LBL [S.G. Karshenboim and A.I. Milstein, 2002]

Why do we measure the bound electron g-factor

• Currently it is used to determine m_e Larmor frequency: $\omega_L = \frac{g}{2} \frac{e}{m_e} B$ Cyclotron frequency of the ion: $\omega_c = \frac{Q}{M} B$

$$m_{\rm e} = \frac{g}{2} \frac{\rm e}{Q} \frac{\omega_c}{\omega_L} M \tag{4}$$

- Future plans
 - ▶ Determination of ⁴He⁺ mass
 - New measurement of fine structure constant -g rather than g-2 is measured
 - large reduction of relativistic shifts compared to free electron, nucleus acts as an anchor
 - combination of measurements for different energy levels allows to cancel leading nuclear effects
 - Some proposals suggest measurement that will be independent of the free g-2 contribution

[Yerokhin et al., 2016; Shabaev et al. 2006]

LBL correction

Calculation of the LBL correction to the bound electron g-2 is similar to Lamb

$$\mathcal{L}_{\mathrm{NRQED}} \supset rac{\psi^{\dagger}(ec{\sigma} \cdot ec{\mathcal{B}})(ec{
abla} \cdot ec{\mathcal{E}})\psi}{m_{e}^{3}}$$

The LBL correction (not included in previous evaluation of $(Z\alpha)^4 \left(\frac{\alpha}{\pi}\right)^2$ terms)

$$\delta g_e = (Z\alpha)^4 \left(\frac{\alpha}{\pi}\right)^2 \frac{16 - 19\pi^2}{108}$$

LBL correction to bound electron g factor

LBL loop changes the non-Logarithmic part of the correction

$$\left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \left(\frac{28}{9} \ln Z\alpha - 16.4\right) \rightarrow \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \left(\frac{28}{9} \ln Z\alpha - 18.0\right)$$

This shifts the value of electron mass by 0.3σ [J. Zatorski et al. 2017] The sensitivity is reduced because unknown corrections $\alpha^2(Z\alpha)^5$ are treated as a fit parameter [S. Sturm et al. 2014].

Experiments designed to provide tests of bound state QED

- Mainz g-factor experiment
- ALPHATRAP (MPI-K Heidelberg)
- HITRAP (GSI Darmstadt)

Conclusions

- Spectroscopic measurements serve as the most precise source of fundamental constants and they can also facilitate discovery of new physics
- ▶ Theory of hydrogen energy levels has to be further scrutinized
- Bound electron g-factor opens exciting opportunities for progress both on theoretical and experimental side