

Event generators for Multi Hadronic Production in e⁺e⁻ collisions

Rong-Gang Ping (Institute of High Energy Physics, CAS)

In collaboration with Xi-An Xiong, Lei Xia, Zhen Gao, Ying-Tian Li, Xing-Yu Zhou, Bing-Xing Zhang, Bo Zheng, Wen-Biao Yan, Hai-Ming Hu and Guang-Shun Huang from R-value working group

https:

PhiPsi2017, June 26-30, Mainz.

Phi

Outline

- Introduction
- Framework of event generator
- Optimization of LUARLW parameters
- Validation of tuned parameters
- Discussion and summary

Ref. [1] Ronggang Ping, et al., Chin. Phys. C40, 113002(2016). arXiv: 1605.09208 [2] Ronggang Ping, Chin. Phys. C38, 083001 (2014). arXiv: 1309.3932

Introduction

- Light hadron cross sections in e⁺e⁻ collisions is one of fundamental observables in particle physics.
- Cross sections for most processes were exclusively measured, and *R*-values have been measured by many experiments from $M_{2\pi}$ to *Z*-boson peak, but precision needs to be improved.
- High precision generators are essential for cross section and Rvalue measurements.
- To well deal with ISR/FSR effects, vacuum polarization, intermediate states, angular distribution of final states, and so on.
- A few exclusive modes are available in PHOKHARA, and for inclusive hadron event generation, Lund Area Law model has been developed to describe the quark hadronization at low energy region.
- Parameter optimization of Lund Area Law model is essential but tedious for the work of R-value measurement.

Framework of event generator

- Constructed as a model of BesEvtGen package, ConExc
- Measured processes (exclusive generator)+ unknown processes (Lund Area Law model)
- Initial state radiation correction

Observed cross section

$$\sigma(s) = \int_{M_{\rm th}}^{\sqrt{s}} \mathrm{d}m \frac{2m}{s} W(s, x) \frac{\sigma_0(m)}{|1 - \Pi(m)|^2}, \qquad (1)$$

 $\sigma_0(m)$: Born cross section $\Pi(m)$: vacuum polarization function W(s,x): radiative function, up to order of α^2

$$W(s,x) = \Delta \beta x^{\beta-1} - \frac{\beta}{2} (2-x) + \frac{\beta^2}{8} \left\{ (2-x) [3\ln(1-x) - 4\ln(x)] - 4\ln(x) - 4\ln(x) - 6 + x \right\},$$
(2)

$$L = 2\ln\frac{\sqrt{s}}{m_{\rm e}}, \qquad \qquad \delta_2 = \left(\frac{9}{8} - 2\xi_2\right)L^2 - \left(\frac{45}{16} - \frac{11}{2}\xi_2 - 3\xi_3\right)L$$
$$\Delta = 1 + \frac{\alpha}{\pi}\left(\frac{3}{2}L + \frac{1}{3}\pi^2 - 2\right) + \left(\frac{\alpha}{\pi}\right)^2\delta_2, \qquad -\frac{6}{5}\xi_2^2 - \frac{9}{2}\xi_3 - 6\xi_2\ln2 + \frac{3}{8}\xi_2 + \frac{57}{12},$$

Born cross section, $\sigma_0(m)$, for light hadron production in tau-charm energy region

ISR photon energy and angular distributions

Nucl.Phys.B27, 381 (1971)

$$\frac{\mathrm{d}\sigma(s,x)}{\mathrm{d}x\mathrm{d}\cos\theta} = \frac{2\alpha}{\pi x} \left(1 - x + \frac{x^2}{2}\right) \sigma_0(s(1-x))P(\theta),$$

$$= \frac{\sin^{2}\theta - \frac{x^{2}\sin^{4}\theta}{2(x^{2} - 2x + 2)} - \frac{m_{e}^{2}}{E^{2}}\frac{(1 - 2x)\sin^{2}\theta - x^{2}\cos^{4}\theta}{x^{2} - 2x + 2}}{\left(\sin^{2}\theta + \frac{m_{e}^{2}}{E^{2}}\cos^{2}\theta\right)^{2}}$$

ISR photon : soft energy and beam collinear

• Vacuum polarization $\Pi(s)$

- Essential for R-value measurements in tau-charm energy region
- Only consider time-like case
- Calculated by many groups, we use HADR5N subroutine, by Fred Jegerlehner group

Cross section for exclusive processes

ID	$e^+e^- \rightarrow$	$\sqrt{s}/{ m GeV}$	Ref.	ID	$\rm e^+e^- \rightarrow$	$\sqrt{s}/{ m GeV}$	Ref.
1	pp	1.877 - 4.500	[15]	39	$\omega \pi^+ \pi^-$	1.150 - 2.525	[17]
2	$nar{n}$	1.90 - 2.44	[16]	40	$\omega f_0(980)$	1.700 - 2.475	[17]
3	$\Lambdaar{\Lambda}$	2.23 - 5.00	[17]	41	$\eta' \pi^+ \pi^-$	1.58 - 3.42	[17]
4	$\Sigma \bar{\Sigma}^0$	2.385 - 5.000	[17]	42	$f_1(1285)\pi^+\pi^-$	1.66 - 3.50	[17]
5	$\Lambda ar{\Sigma}^{m{0}}$	2.308 - 5.000	[17]	43	ωK^+K^-	1.57 - 3.45	[17]
6	$\Sigma^{0}\bar{\Lambda}$	2.308 - 5.000	[17]	44	$\omega\pi^+\pi^-\pi^0$	1.500 - 4.423	[21]
7	$\pi^+\pi^-$	0.305 - 2.950	[18]	45	$\Sigma^- \bar{\Sigma}^+$	2.308 - 5.000	[17]
8	$\pi^+\pi^-\pi^0$	1.063 - 2.989	[19]	46	K^+K^-	1.009 - 4.170	[27, 29]
9	$K^+K^-\pi^0$	1.34 - 4.68	[20]	47	$K_{S}K_{L}$	1.004 - 2.140	[27]
10	$ m K_S K^+ \pi^-$	1.26 - 4.66	[20]	48	ωη	1.371 - 3.178	[26]
11	$K_S K^- \pi^+$	1.26 - 4.66	[20]	49	${ m p}ar{ m p}\pi^0$	4.009 - 4.200	[28]
12	$\rm K^+K^-\eta$	1.69 - 3.13	[20]	50	$\mathrm{p} \bar{\mathrm{p}} \eta$	4.009 - 4.200	[28]
13	$2(\pi^{+}\pi^{-})$	0.615 - 4.45	[21]	51	$D^-D^{*0}\pi^+$	4.020 - 5.171	[33]
14	$\pi^+\pi^-2\pi^0$	0.185 - 2.98	[22]	52	$D^+D^{*0}\pi^-$	4.020 - 5.171	[33]
15	$K^+K^-\pi^+\pi^-$	1.425 - 4.988	[23]	53	$D^{*0-}D^{*0}$	4.033 - 4.991	[31]
16	$K^+K^-2\pi^0$	1.50 - 4.02	[23]	54	$\mathrm{D}^{0}\bar{\mathrm{D}}^{*0}$	4.033 - 4.991	[30]
17	$2(K^{+}K^{-})$	2.02 - 4.54	[24]	55	$\bar{\mathrm{D}}^{0}\mathrm{D}^{*0}$	3.814 - 4.990	[30]
18	$2(\pi^{+}\pi^{-})\pi^{0}$	1.013 - 4.488	[25]	56	$\mathrm{D}^{0}\bar{\mathrm{D}}^{0}$	3.814 - 4.990	[30]
19	$2(\pi^+\pi^-)\eta$	1.313 - 4.488	[25]	57	D+D-	3.814 - 4.990	[30]
20	$K^+K^-\pi^+\pi^-\pi^0$	1.613 - 4.488	[25]	58	D^+D^{*-}	3.890 - 4.994	[31]
21	$K^+K^-\pi^+\pi^-\eta$	2.113 - 4.488	[25]	59	$D^{-}D^{*+}$	3.890 - 4.994	[31]

Table continued

22	$3(\pi^{+}\pi^{-})$	1.313 - 4.488	[26]	60	D*+D*-	4.033-4.991	[31]
23	$2(\pi^+\pi^-\pi^0)$	1.313 - 4.488	[26]	61	$\mathrm{D}^{0}\mathrm{D}^{-}\pi^{+}$	4.015 - 4.974	[32]
24	φη	1.57 - 3.45	[20]	62	$ar{\mathrm{D}}^{0}\mathrm{D}^{+}\pi^{-}$	4.015 - 4.974	[32]
25	$\phi\pi^0$	1.25 - 1.45	[20]	63	$\mathrm{D}^{0}\mathrm{D}^{*-}\pi^{+}$	4.020 - 5.171	[33]
26	K^+K^{*-}	1.37 - 1.99	[20]	64	$ar{\mathrm{D}}^0\mathrm{D}^{*+}\pi^-$	4.020 - 5.171	[33]
27	K^-K^{*+}	1.37 - 1.99	[20]	65	$\psi(2S)\pi^0\pi^0$	4.127 - 5.480	[37]
28	$K_{S}\bar{K}^{*0}(892)$	1.37 - 1.99	[20]	66	$\eta J/\psi$	3.81 - 4.68	[35]
29	$K^{*}(892)^{0}K^{+}\pi^{-}$	1.588 - 3.963	[23]	67	$\pi^+\pi^-h_c$	4.009 - 4.420	[38]
30	$K^{*}(892)^{0}K^{-}\pi^{+}$	1.588 - 3.963	[23]	68	$\pi^0\pi^0\mathrm{h_c}$	4.009 - 4.420	[39]
31	$K^{*}(892)^{-}K^{+}\pi^{0}$	1.588 - 3.963	[23]	69	K^+K^-J/ψ	4.179 - 4.970	[41]
32	$K^{*}(892)^{+}K^{-}\pi^{0}$	1.588 - 3.963	[23]	70	$ m K^0_S K^0_S J/\psi$	4.179 - 4.970	[40]
33	$K_2^*(1430)^0 K^+ \pi^-$	2.348 - 3.965	[23]	71	$J/\psi\pi^+\pi^-$	3.829 - 5.471	[36]
34	$K_2^*(1430)^0 K^- \pi^+$	2.348 - 3.965	[23]	72	$\psi(2S)\pi^+\pi^-$	4.127 - 5.480	[37]
3 5	$K^+K^-\rho$	1.777 - 3.830	[23]	73	$D_s^+ D_s^-$	3.97 - 4.26	[42]
36	$\phi \pi^+ \pi^-$	1.488 - 2.863	[23]	74	$D_s^{*+}D_s^{-}$	4.12 - 4.26	[42]
37	$\phi f_0(980)$	1.888 - 2.963	[23]	75	$D_s^{*-}D_s^+$	4.12 - 4.26	[42]
38	$\eta\pi^+\pi^-$	1.025 - 2.975	[17]	76	$\Lambda_c^+ \Lambda_c^-$	4.57 - 4.64	[34]

For vector resonances, $\psi(3770)$, $\psi(2S)$, J/ ψ , $\rho(1770)^{0}$, and $\omega(1420)$, cross section is taken

$$\sigma_{\rm BW}(s) = 12\pi \frac{\gamma_{\rm ee}\gamma}{(s-M^2)+M^2\gamma^2},$$

• Measured cross sections are parametrized with multi-Gaussian functions, eg.

- Multi-body decays are generated with PHSP model
- Two-body decays of angular distributions are generated according to 1+αcos²θ in the helicity system of two-body CMS with

$$a = \begin{cases} 1 & \text{for VP mode} \\ -1 & \text{for PP mode} \\ 0 \sim 1 & \text{for B}\overline{B} & \text{mode, quark model prediction} \end{cases}$$

• FSR effects are considered with PHOTOS package.

LUND Area Law (LUARLW) model

- In high energy region, available models, e.g. cluster model in HERWIG, LUND model in JETSET/PYTHIA
- In tau-charm energy region, LUARLW is designed to describe multiplicity distribution of primary hadrons, [arXiv: hep-ph/9910285]

$$P_{n} = \frac{\mu^{n}}{n!} \exp[c_{0} + c_{1}(n-\mu) + c_{2}(n-\mu)^{2}] \quad \text{with } \mu = \alpha + \beta \exp(\gamma \sqrt{s})$$

Parameters to be tuned: $c_0, c_1, c_2, \alpha, \beta, \gamma$

Monte-Carlo algorithm

• Sampling of M_{hadrons}

$$\begin{split} \sigma(s) &\equiv \sigma^{I}(s) + \sigma^{II}(s) \\ \sigma^{I}(s) &= \int_{M_{\rm th}}^{M_{0}} \mathrm{d}m \frac{2m}{s} W(s, x) \frac{\sigma_{0}(m)}{|1 - \Pi(m)|^{2}} \\ \sigma^{II}(s) &= \int_{M_{0}}^{\sqrt{s}} \mathrm{d}m \frac{2m}{s} W(s, x) \frac{\sigma_{0}(m)}{|1 - \Pi(m)|^{2}}, \end{split}$$

with
$$M_0 = \sqrt{s - 2\sqrt{s}E_{\gamma}^{\mathrm{cut}}}$$
 $E_{\gamma}^{\mathrm{cut}} = 1~\mathrm{MeV}$

The ISR returned energy for the $\sigma'(s)$ events is imposed by one ISR photon The ISR photons for the $\sigma''(s)$ events are not produced, since below detector sensitivity

MC technique: to discretize the $\sigma(s)$

$$\hat{\sigma}(m_i) = \frac{1}{\sigma(s)} \int_{M_{\rm th}}^{m_i} \mathrm{d}m \frac{2m}{s} W(s, x) \frac{\sigma_0(m)}{|1 - \Pi(m)|^2}$$

For example

To sample $M_{hadrons}$ at \sqrt{s} = 3.65 GeV

Sampling of event type

Exclusive process *m*, is sampled according to the probability

$$c_m = \sigma_m(M_{\rm hadrons}) / \sigma^{\rm tot}(M_{\rm hadrons})$$

Remainder probability, 1- Σc_m , is set for LUNARLW model.

Optimization of LUARLW parameters

Response function method

- Borrowed the idea from generator tuning tool: Professor and River, introduced by TASSO, later used by ALEPH, DELPHI, and recently by LHC.
- To simultaneously fit data with the response function:

$$f(\boldsymbol{p}_{0} + \delta \boldsymbol{p}, x) = a_{0}^{(0)}(x) + \sum_{i=1}^{n} a_{i}^{(1)}(x) \delta p_{i}$$
$$+ \sum_{i=1}^{n} \sum_{j=i}^{n} a_{ij}^{(2)}(x) \delta p_{i} \delta p_{j}$$
$$\approx MC(\boldsymbol{p}_{0} + \delta \boldsymbol{p}, x),$$

• The parameters, $a_0^{(0)}(x)$, $a_i^{(1)}(x)$, $a_{ij}^{(2)}(x)$, are determined with MC sample ensemble *L*

$$L = 1 + n + n(n+1)/2,$$

- Parameters, p_0 , the error δp_0 , and the correlation coefficients $\rho_{\rm ij}$ are determined with package MINUIT
- Distributions sensitive to parameter tuning

$$S_i(x) = \frac{\delta MC(x)}{MC(x)} \Big|_{p_i} \Big/ \frac{\delta p_i}{p_i} \approx \frac{\partial \ln MC(x)}{\partial \ln |p_i|} \Big|_{p_i}$$

Azimuthal distributions of charged tracks are insensitive to parameter tuning

12 distributions are included in the simultaneous fit: multiplicity of photons and charged tracks, momentum of charged tracks, $x_f=2P_z/W$, $x_\perp=2P_\perp/W$, shericity, aplarinarity, and Fox-Wolfam moments (H_{20} , H_{30} , H_{40}).

• To consider some special requirements on the fit quality of charged multiplicity, it is weighted with factor of 10 in the χ^2 objective function.

Event selection and optimization results

- Data set taken at 3.65 GeV used to optimize the LUARLW parameters
- Event selection criteria are the same as applied to the Rvalue measurements
- QED backgrounds are subtracted with MC simulation, e.g. $e^+e^- \rightarrow l^+l^-, \gamma\gamma, \gamma^*\gamma^*$.
- To check possible correlations among the selected distributions , different combinations are tried.
- Strong correlation among the tuned parameters are seen in the covariant matrix.

Optimization I : Exclusive processes + LUNARLW

Optimized parameters at $\sqrt{s} = 3.65$ GeV. The statistical errors are negligible. $^{(2S+1)}P_J$ denotes a meson has spin S, orbital angular momentum (L) and total spin J.

parameters	tuned	description
PARJ(1)	0.065	suppression of diquark-antidiquark pair production
PARJ(2)	0.260	suppression of s quark pair production
PARJ(11)	0.612	probability that a light meson has spin 1
PARJ(12)	0.000	probability that a strange meson has spin 1
PARJ(14)	0.244	probability for a 1P_1 meson production
PARJ(15)	0.000	probability for a ${}^{3}P_{0}$ meson production
PARJ(16)	0.437	probability for a ${}^{3}P_{1}$ meson production
PARJ(17)	0.531	probability for a ${}^{3}P_{2}$ meson production
PARJ(21)	0.066	width of Gaussian for transverse momentum
RALPA(15)	0.577	LUARLW model parameter
RALPA(16)	0.364	LUARLW model parameter
RALPA(17)	0.000	LUARLW model parameter

Optimization II : optimization using data at 3.08GeV Phokhara (10 modes)+ other exclusive processes + LUNARLW

Parameters	optimized	Description
PARJ(1)	0.118	P(qq)/P(q)
PARJ(2)	0.670	P(ss)/P(uu)
PARJ(11)	0.868	V/P ratio of u- and d-quarks
PARJ(12)	0.644	V/P ratio of s-qaruk
PARJ(14)	0.188	axial vector meson ratio
PARJ(15)	0.232	scalar meson ratio
PARJ(16)	0.518	another axial vector meson
PARJ(17)	0.320	tensor meson
PARJ(21)	0.201	σ , width of Gaussian
RALPA(67)	0.191	LUNDA model parameter
RALPA(16)	1.000	LUNDA model parameter
RALPA(17)	-0.537	LUNDA model parameter

Validation of optimized parameters

optimization I: Comparisons between MC and data taken at 3.65 GeV

Comparisons with data below DDbar threshold. Dots: data, red bar: MC

Comparison of optimizations, where $\Delta^2 = \sum_{J} (p_{MC}^J - p_{data}^J)^2$ sums over data sets taken at 2.2324, 2.4, 2.8, 3.05, 3.06, 3.08, 3.4, 3.5, 3.5424, 3.5538, 3.5611, 3.6, 3.65 and 3.671 GeV

Distributions	N _{trk}	cosθ	P _{trk}
Opti. I	Δ ² =15.5	$\Delta^2 = 1.7$	Δ ² =14.0
Opti. II	Δ ² =6.0	$\Delta^2 = 1.1$	Δ ² =6.4

Discussion and summary

- We developed an event generator for multihadron production for R-value measurements
- Events are generated with the scheme of "exclusive + inclusive" processes.
- Parameters for inclusive generation are optimized below DDbar threshold.
- Inclusion of PHOKHARA modes is helpful to describe data