

Measurement of the $e^+e^- \rightarrow \pi^0\gamma$ cross section at SND

L.Kardapoltsev

(for SND collaboration)

Budker Institute of Nuclear Physics,

Novosibirsk state university

PhiPsi 2017, Mainz, Germany

June 2017

Outline

- Motivation to study $e^+e^- \rightarrow \pi^0\gamma$ process
- Measurement from SND@VEPP-2M
- Measurement from SND@VEPP-2000 (preliminary)

Radiative decays

• $e^+e^- \rightarrow \pi^0 \gamma$ cross section is the third largest cross section below 1 GeV (after 2π and 3π)

• branching fraction of radiative decays of ρ , ω , ϕ and their excitations can be extracted from the fit to the cross section

• this information is important for different phenomenological models

[1] Eur.Phys.J. A16 (2003) 209
[2] Eur.Phys.J. C22 (2001) 503
[3] Phys.Rev. D65 (2002) 092003

Hadronic light-by-light scattering

 $\mbox{ \bullet} The anomalous magnetic moment of the muon serves as an important test of SM$

- One of the main sources of $(g_{\mu}\text{-}2)$ uncertainty originates from the hadronic light-by-light scattering

- The only way to calculate it is to use models
- Pseudo-scalar pole contribution is numerically dominant according to the most of model calculations
- Measurement of $e^+e^- \rightarrow \pi^0 \gamma$ cross section can help to improve phenomenological models describing $\pi^0 \gamma^{(*)} \gamma^{(*)}$ transition form factor $(F\pi\gamma^*\gamma^*)$

KLOE measurement

• There is an inconsistency between KLOE measurement of the ratio $\Gamma(\omega \to \pi^0 \gamma) / \Gamma(\omega \to \pi^+ \pi^- \pi^0)$ [1] and other measurements of w-meson parameters

• KLOE has studied the $e^+e^- \rightarrow \omega \pi^0$ process near φ meson resonance in two decay modes $\omega \rightarrow \pi^+\pi^-\pi^0$ and $\omega \rightarrow \pi^0\gamma$

•The w -meson parameters obtained from KLOE studies have large shift from the previous measurement, especially for $w \rightarrow \pi^0 \gamma$

•new measurement of $e^+e^- \rightarrow \pi^0 \gamma$ cross section will help to resolve or enhance this inconsistency

[1] F. Ambrosino at al. Phys. Lett. B 669, 223 (2008)

SND@VEPP-2M

e⁺e⁻ collider VEPP-2M

There were two detectors on VEPP-2M : SND and CMD-2

2E = 0.36-1.38 GeV

 $L \sim 3.10^{30} \text{ cm}^{-2} \text{s}^{-1}$ (2E = 1GeV)

The Spherical Neutral Detector (SND)

1 - vacuum pipe, 2 - drift chambers, 3 - scintillation counter, 4 - light guides, 5 -PMTs, 6 - NaI(Tl) crystals, 7 - vacuum phototriodes, 8 - iron absorber, 9 - streamer tubes, 10 - 1cm iron plates, 11 - scintillation counters, 12 - storage ring lens, 13 - bending magnets.

Analysis features

We use $e^+e^- \rightarrow \gamma\gamma$ process for normalization

Common selection criteria for 2g and 3g final states:

• trigger, no charged tracks, total energy deposition and momentum, muon system veto.

Final selection is based on kinematic fit to $e^+e^- \rightarrow 3\gamma$ hypothesis $\chi^2 < 30$ and $80 < M_{rec} < 190$ MeV The number of signal events was determined from the fit of π° in the spectrum of recoil mass against most energetic photon (M_{rec}).

To suppress 5y background above 1.06 GeV we selected exactly 3 photons and use a tighter cut on χ^2 of kinematic fit

Systematic uncertainties

Total systematic uncertainty below 1.06 GeV is 1.4 %

- luminosity measurement 1.2 %
- selection criteria 0.6 %

Systematic uncertainty of luminosity measurement includes theoretical error of cross section calculation (1%) and selection criteria (0.7 %)

In w-meson peak energy region the accuracy is mostly determined by systematic uncertainty

Energy region	Statistical error	Systematic uncertainty
ω-meson peak	1.0 %	1.4 %
ф-meson peak	3.2 %	1.4 %

Cross section

Branching fractions

From the fit to the cross section we obtain the products of branching fractions

 $\begin{array}{l} B(\rho \rightarrow \pi^{0}\gamma) \; B(\rho \rightarrow e^{+}e^{-}) = (1.98 \pm 0.22 \pm 0.10 \;) \cdot 10^{-8} \\ B(\omega \rightarrow \pi^{0}\gamma) \; B(\omega \rightarrow e^{+}e^{-}) = (6.336 \pm 0.056 \pm 0.089 \;) \cdot 10^{-6} \\ B(\varphi \rightarrow \pi^{0}\gamma) \; B(\varphi \rightarrow e^{+}e^{-}) = (3.92^{+0.71}_{-0.40} \pm 0.51 \;) \cdot 10^{-7} \end{array}$

and relative phases

$$\phi_{\rho} = (-12.7 \pm 3.4 \pm 3.0)^{\circ}
 \phi_{\phi} = (158^{+31}_{-18} \pm 21)^{\circ}$$

Our measurement of φ_{ρ} is in good agreement with theoretical prediction $\varphi_{\rho} = (-13.5 \pm 0.6)^{\circ}$ based on [1]

Total uncertainty ~20% for ϕ -meson is caused by strong correlation between σ_{ϕ} and ϕ_{ϕ} . The value of ϕ_{ϕ} from $e^+e^- \rightarrow \pi^+ \pi^- \pi^0$ process study is $\phi^{3\pi}{}_{\phi} = (163 \pm 7)^{\circ}$ [2] We can significantly improve accuracy by fixing ϕ_{ϕ} at this value $B(\phi \rightarrow \pi^0 \gamma) B(\phi \rightarrow e^+e^-) = (4.04 \pm 0.09 \pm 0.19) \cdot 10^{-7}$

[1] H.B. O'Connell et. al. Prog. Part. Nucl. Phys. 39, 201 (1997)
[2] M.N. Achasov et al. Phys Rev D 68, 052006 (2003)

Branching fractions

Using measured $B(\omega \to \pi^0 \gamma) B(\omega \to e^+e^-)$ and PDG value for $B(\omega \to \pi^+ \pi^- \pi^0) B(\omega \to e^+e^-)$ we calculated

```
B(\omega \rightarrow \pi^0 \gamma) / B(\omega \rightarrow \pi^+ \pi^- \pi^0) = 0.0992 ± 0.0023
```

which disagrees with the KLOE measurement (0.0897 \pm 0.0016) by 3.4 σ

To calculate w-meson parameters we use measured $B(\omega \rightarrow \pi^0 \gamma) B(\omega \rightarrow e^+e^-)$, PDG value for $B(\omega \rightarrow \pi^+ \pi^- \pi^0) B(\omega \rightarrow e^+e^-)$ and branching fraction of other decays

B(
$$\omega \rightarrow \pi^0 \gamma$$
) = (8.88 ± 0.18) %
B($\omega \rightarrow \pi^+ \pi^- \pi^0$) = (89.47 ± 0.18) %
B($\omega \rightarrow e^+e^-$) = (7.13 ± 0.10) · 10⁻⁵

PDG values are (8.28 \pm 0.28)% , (89.2 \pm 0.7)%, (7.28 \pm 0.14) \cdot 10^{-5}

Using PDG value for
$$B(\rho \rightarrow e^+e^-)$$
 and $B(\phi \rightarrow e^+e^-)$
 $B(\phi \rightarrow \pi^0 \gamma) = (1.367 \pm 0.030 \pm 0.065) \cdot 10^{-3}$
 $B(\rho \rightarrow \pi^0 \gamma) = (4.20 \pm 0.47 \pm 0.22) \cdot 10^{-4}$
PDG values are $(1.27 \pm 0.06) \cdot 10^{-3}$ and $(6.0 \pm 0.8) \cdot 10^{-3}$

SND@VEPP-2000 (preliminary)

VEPP-2000 in 2010-2013

C.m. energy range is E=0.3-2.0 GeV, round beam optics Luminosity at E=1.8 GeV is 2×10^{31} cm⁻² s⁻¹ Two detectors, SND and CMD-3

SND after upgrade:

- new tracking system
- · Cherenkov aerogel counters
- EM calorimeter remains the same

This measurement is based on 45.5 pb⁻¹ integrated luminosity collected by SND at VEPP-2000 in 2010-2013

Energy range (MeV)	VEPP-2M Integrated luminosity (pb ⁻¹)	VEPP-2000 Integrated luminosity (pb ⁻¹)
360-970	9.4	8.5
1050-1380	8.7	10
1380-2000	-	27

Cross section

For the analysis we use the same technique as for VEPP-2M data

SND@VEPP-2M and SND@VEPP-2000 data are in good agreement with each other

Conclusion

• The cross section for the process $e^+e^- \rightarrow \pi^0\gamma$ has been measured in energy range of 0.60 – 1.38 GeV with the SND at VEPP-2M e^+e^- collider

• This is the most accurate measurement of the cross section

 \cdot From the fit to the cross section the products of branching fractions was determined

• The values of the three directly measured parameters of w-meson $\begin{array}{c} B(\omega \rightarrow \pi^{0}\gamma) \ B(\omega \rightarrow e^{+}e^{-}) \\ B(\omega \rightarrow \pi^{+} \ \pi^{-} \ \pi^{0}) \ B(\omega \rightarrow e^{+}e^{-}) \\ B(\omega \rightarrow \pi^{0}\gamma) \ / \ B(\omega \rightarrow \pi^{+} \ \pi^{-} \ \pi^{0}) \end{array}$ contradict each other. With our measurement, the level of disagreement

contradict each other. With our measurement, the level of disagreement between them reaches 3.4σ .

• Preliminary measurement of $e^+e^- \rightarrow \pi^0\gamma$ cross section with the SND at VEPP-2000 e^+e^- collider was presented

THANK YOU FOR YOUR ATTENTION!

