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This talk is about Vacuum

Historical aside

Vacuum, since a long time ( 2500 years ), constitutes an always present issue 
in Physics or better in Natural Sciences Philosophy

Parmenides,  Leucippos,  Democritos, …..Torricelli, von Guericke…..
until nowadays

In Quantum Field Theory,  in the perturbative phase, 
the Vacuum is naturally represented by the vacuum polarization 

contribution
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Vacuum Polarization makes αem running
assuming a well defined “effective” value at any 

scale
vacuum polarization and the “effective charge” are 

defined by:

α

Δα takes contributions from leptonic and hadronic and gauge bosons 
elementary states

Among these the non-perturbative  Δαhad

Δα = Δαleptonic + Δαgb + Δαhad + Δα top



Hadronic Leading Order (HLO) Contribution 
to the Vacuum Polarization



The Standard Dispersive Approach
to the evaluation of the HLO contribution to 
the muon anomalous magnetic moment goes 

back to the ‘60
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Measurement of the running  of  αem
A direct measurement of αem(s/t) in space/

time-like regions can show the running of 
αem(s/t)

It can provide a test of  “duality” (far away 
from resonances)

It has been done in past by few experiments 
at e+e- colliders by comparing a “well-
known” QED process with some 
reference (obtained from data or MC)
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Nsignal can be any QED process, muon pairs, etc…
Nnorm can be Bhabha process, pure QED as γγ 
pair production, a well as theory, or any other 
reference process.



Within the framework of low-energy high precision measurements
the long-standing (3-4) �

discrepancy between the experimental value of the muon 
anomalous magnetic moment  and the Standard Model prediction    

aµ =
g � 2

2

Within the framework of low-energy high precision measurements
the long-standing (3-4)

�aµ(Exp� SM) ' 28± 8 · 10�10

   The accuracy of the SM prediction      5 · 10�10

is limited by strong interactions effects

�

The present error on the leading order hadronic 
contribution to muon  g � 2

It constitutes the main uncertainty of the SM predictions

�aHLO
µ ' 4 · 10�10
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The muon g-2 - The Hadronic contribution

from M. Passera



.From T. Blum et. al., “The Muon g-2 Theory Value: Present and Future” arXiv:1311.2198 [hep-ph]

Comparison between 
the SM predictions and 
the experimental 
determinations

Theory 
parametrizations   
DHMZ ( M.Davier et al. 
) , HLMNT ( K. 
Hagiwara et al. )
SMXX is the average 
of the two previous 
values 

BNL-E821 04 average 
is the current 
experimental value of 
aμ

New (g-2) exp. is the 
same central value with 
a fourfold improved 
precision of future g-2 
experiments at 
Fermilab and J-PARC.



will this possibly change in the next few years ?

The present experimental error as from the BNL E821 is
�aExp

µ

' 6.3 · 10�10[0.54 ppm]

The new experiments in preparation at Fermilab and J-PARC
are aiming to a precision of *

(*assuming the same central value as today’s one)
�aExp�FL/J�PARC

µ

' 1.6 · 10�10[0.14 ppm]
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The question is how to cope with such an 
improvement from the theory side



We propose an alternative  
approach



a

HLO
µ = (

↵

⇡

)

Z 0

�1

dt

�t

(
1� �

1 + �

)2⇧̄had(t) = �(
↵

⇡

)

Z 0

�1

dt

�t

(
1� �

1 + �

)2�↵had(t(x))

t(x) = �
x

2
m

2
µ

1� x

� =

r
1�

4m2
µ

t
↵(t) =

↵(0)

1��↵(t)

�↵had(t) is the hadronic contribution to the 
running of  ↵

t = �|q|2 �↵had(t) = �↵(t)��↵lep(t)

This may be obtained by using Bhabha scattering 
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The alternative approach of using a space-like formula for the vacuum 
polarization
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xpeak = 0.914 tpeak = �0.108 GeV

2

The integrand function 





The space-like kinematics allows a 
direct comparison with the lattice 

evaluations

                            [22]   C. Aubin, T. Blum, Phys. Rev. D 75 (2007) 114502;
                                      P. Boyle et al., Phys. Rev. D 85 (2012) 074504;
                                      X. Feng et al.,Phys. Rev. Lett. 107 (2011) 081802;
                                      M. Della Morte et al. ,J. High Energy Phys. 1203 (2012) 055.
                            [23]   T. Blum et al., PoS LATTICE 2012 (2012) 022.
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To summarize

with the “t” 
kernel



functional form of the kernel

Δα is dominated at low t by leptonic contributions

A. Arbuzov, D.Haidt, C.Matteuzzi,M.Paganoni, L.T. Eur. Phys. J. C 34 (2004) 267 
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A new possibility
via

scattering
µe ! µe

G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, 
O. Nicrosini M. Passera, F. Piccinini, R. Tenchini, L.T. and G. Venanzoni,
arXiv:1609.08987 [hep-ex], Eur. Phys. J. C77 (2017) 3, 139



µe ! µe

s ' 0.16 GeV

2 � 0.14  t  0 GeV

2 0  x  0.93

• High intensity muon beam available in the CERN North Area E =150 GeV                     
• pure t-channel process                                                         d�

dt
=

d�0

dt
|↵(t)
↵(0)

|2

Same process can 
be used for signal 
and normalization
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The Detector
i)   Initial muons have to be tagged with their direction and momentum

ii)  20 Be (C)  layers interfaced with Si planes spaced by 1m air gap modularly spaced
iii)  The use of a low Z material in order to reduce multiple scattering and background

iv)  A final EM calorimeter to discriminate e/mu at small angles ( 2-3 mrad )



Muon and electron scattering angles are correlated
This very important constraint may be used to select elastic events, reject 

background from radiative events and minimize systematics

Electron scattering angle (mrad)
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This experiment has been proposed to CERN
• The idea has been presented on the 3 and 4 September 2016 to the                                                                

“Physics Beyond Collider Study Group”                                          

• C. Matteuzzi and G. Venanzoni are members of the board as the experiment representatives.

• Physics Beyond Collider Study Group will select experiments aiming to:                                            

• Enrich and diversify the CERN scientific program
    Exploit the unique opportunities offered by CERN’s accelerator complex and scientific infrastructure
       Complement the laboratory’s collider programme (LHC, HL-LHC and possible future colliders).
       The scientific findings will be collected in a report to be delivered by the end of 2018. 

This document will also serve as input to the next update of  the European Strategy for Particle Physics.

and to the INFN NSCI on May 2017 
U. Marconi at the CSN1 May 2017
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Resummaton of dominant corrections up to all orders, matched 
with NLO corrections. Mass effects should be included. 

NNLO corrections: some classes of NNLO re-usable from existing 
Bhabha calculations, some new ones due to the presence of  
different mass scales mμ and me. In any case, NNLO contributions must be  
obtained. 
See “Quest for precision in hadronic cross sections at low energy: 
Monte Carlo tools vs. experimental data”
 Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies 
S. Actis et al. Eur. Phys. J. C 66 (2010) 585 and references therein.

Development of dedicated MC tools including all the above ingredients.

Detailed study of all the mentioned corrections, comparison
among independent calculations, estimate of higher-order corrections.

A planned theory workshop this year in Padova 4-5 September and in 2018 
here in Mainz  a topical Workshop:
“The Evaluation of the Leading Hadronic Contribution
to the muon anomalous magnetic moment”
February 19-23

On the Theory side
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You are all welcome!



This new approach for a direct measurement of the hadronic contribution to the 
anomalous muon magnetic moment  represents a path within an unexplored 

region of field theoretical dynamics

It constitutes an independent determination, alternative and potentially 
competitive with respect to the time-like dispersive approach

 The (crossed) t-channel dynamics, as complementary and independent with 
respect to the s-channel one, will permit a direct comparison with the lattice 

evaluations

It will consolidate the theoretical prediction for the muon g-2 in the Standard 
Model and allow a firmer interpretation of the measurements of the future muon 

g-2 experiments at  Fermilab and J-PARC

Conclusions and Outlook



This work is dedicated to the memory 
of  our colleague and friend 
Eduard Alekseevich Kuraev
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Spare Transparencies



AN EXAMPLE OF A  
SPACE-LIKE APPROACH



A. Arbuzov, D. Haidt, C. Matteuzzi, M. Paganoni and L.T., Eur. Phys. J. C 34 
(2004) 267



each one of them known with an accuracy of at least 0.1% 
1st factor

The Born cross section 
contains all the soft and 

virtual  corrections

Bhabha is a pure QED  process
Quarks enter only in loops



2nd factor Vacuum polarization effects
gives the running of alpha

3rd factor

with all the real and virtual effects not incorporated in the running of 
alpha



↵(0) is the Sommerfeld 
fine structure constant

measured with a precision of

O(10�9)

from loop contributions to the photon propagator�↵(q2)



A couple of years later….





This has been made possible by a very accurate determination 
of the Luminosity by the OPAL collaboration
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Giovanni Abbiendi 

INFN - Bologna 

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015 

A measurement of the Luminosity at 10-4 at LEP 
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Small-angle Bhabha scattering in OPAL 
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2 cylindrical calorimeters encircling the beam pipe  
at ± 2.5 m from the Interaction Point 

19 Silicon layers 

18 Tungsten layers 
 Total Depth 22 X0  
       (14 cm) 

Sensitive radius: 6.2 – 14.2 cm, 
corresponding to scattering angle 
of 25 – 58 mrad from the beam line 

Each detector layer divided 
into 16 overlapping wedges 

! 

e+e" # e+e"    s $ 91.2 GeV
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Final Error on Luminosity 

Total Experimental Systematic Error :      3.4 × 10-4 

After all the effort on Radial reconstruction the dominant systematic 
error is related to Energy (mostly tail in the E response and nonlinearity)  
Quantitatively:                    (�����
��������������������������
�
��������	�	��
 

Systematic  
Error (×10-4) 

Energy 1.8 

Inner Anchor 1.4 

Radial Metrology 1.4 

Theoretical Error on Bhabha cross section:  5.4 × 10-4 



The Method used follows the above parametrization/factorization
of the Bhabha cross-section















“La Bibbia”   ( “The Bible“)   -  June 1961




















