

4 loop QED corrections to $(g-2)_{\mu}$

PhiPsi17, Mainz, June 26-29, 2017

Matthias Steinhauser | in collaboration with A. Kurz, T. Liu, P. Marquard, A.V. Smirnov, V.A. Smirnov, D. Wellmann

TTP KARLSRUHE

Highlight of the year: $(g-2)_e$

Semi-analytic calculation of 4-loop coefficient

$$\frac{(g-2)_e}{2} = a_e = \frac{\alpha}{2\pi} + \dots + C_4 \left(\frac{\alpha}{\pi}\right)^4$$

$$c_4 = T_0 + T_2 + T_3 + T_4 + T_5 + T_6 + T_7$$

$$+ \sqrt{3} (V_{4a} + V_{6a}) + V_{6b} + V_{7b} + W_{6b} + W_{7b}$$

$$+ \sqrt{3} (E_{4a} + E_{5a} + E_{6a} + E_{7a}) + E_{6b} + E_{7b}$$

$$+ U$$
[Laporta'17]

I. Introduction

II.
$$(g-2)_{\mu}$$
: *e* and au loops

- III. $(g-2)_{\mu}$: photonic contribution and μ loops
- IV. Conclusions

Muon g-2

[Schwinger'48]

[Petermann'57; Sommerfeld'58]

[Laporta,Remiddi'96;

...; Passera'06]

[Laporta'93;Kinoshita,Nio'06;

Aoyama, Hayakawa, Kinoshita, Nio'07'08;

Kurz, Marquard, Liu, Steinhauser'14;

Kurz, Marquard, Liu, Smirnov, Smirnov, Steinhauser' 15'16;

Volkov'17; Laporta'17]

[Aoyama, Hayakawa, Kinoshita, Nio'12]

Muon g-2

$$0.5 \frac{\alpha}{\pi}$$

$$(-0.328...+1.094)$$

$$(1.181...+22.868)$$

$$(-1.910...+132.6)$$

$$(9.168(571)+742.6)$$

$$(-0.328...+1.094...|_{e})\frac{\alpha^{2}}{\pi^{2}}$$
$$(1.181...+22.868...|_{e})\frac{\alpha^{3}}{\pi^{3}}$$
$$(-1.910...+132.682...|_{e})\frac{\alpha^{4}}{\pi^{4}}$$
$$(9.168(571)+742.18(87)|_{e})\frac{\alpha^{5}}{\pi^{5}}$$

Muon g - 2

$$\begin{array}{c}
\bullet \ a_{\mu}(\exp) - a_{\mu}(\mathrm{SM}) \sim 250(90) \times 10^{-11} \\
\bullet \ \Delta a_{\mu}^{\mathrm{hadr}} \sim 40 \times 10^{-11} \\
\bullet \ \Delta a_{\mu}^{\mathrm{hadr},\mathrm{Ibl}} \sim 40 \times 10^{-11} \\
(-0.328... + 1.094... |_{e}) \frac{\alpha^{2}}{\pi^{2}} \\
(1.181... + 22.868... |_{e}) \frac{\alpha^{3}}{\pi^{3}} \\
(-1.910... + 132.682... |_{e}) \frac{\alpha^{4}}{\pi^{4}} \sim 380 \times 10^{-11} \\
(9.168(571) + 742.18(87) |_{e}) \frac{\alpha^{5}}{\pi^{5}}
\end{array}$$

$$(g-2)_{\mu}$$

- 4-loop massive form factor
- $\Gamma^{\mu}(q_1, q_2) = \left[F_1(q^2)\gamma^{\mu} \frac{i}{2m}F_2(q^2)\sigma^{\mu\nu}q_{\nu}\right]$

•
$$F_2(0) = \frac{(g-2)}{2} = a = \frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2)$$

- $q \rightarrow 0$: Taylor expansion \Rightarrow 4-loop OS integrals
- subset of MS-OS heavy quark mass relation in QCD 358 out 386 MIs [Marquard,Smirnov,Smirnov,Steinhauser,Wellmann'16]
 + many improvements in numerical results
- e and τ loops r in addition asymptotic expansion

e loops

• expand in $x = m_e/m_\mu$ up to $\mathcal{O}(x^3)$

apply methods of region [Beneke,Smirnov'98; Smirnov]

Ibl diagrams: m_e = 0 not possible

Example

3 loops

asymptotic expansion for
$$x \equiv m_e/m_\mu \ll 1$$

$$egin{array}{rcl} a_{\mu} &=& a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} {
m ln} \, rac{m_{\mu}}{m_{e}} \ &+ rac{m_{e}}{m_{\mu}} \left(a_{\mu}^{(1,0)} + a_{\mu}^{(1,1)} {
m ln} \, rac{m_{\mu}}{m_{e}}
ight) \ &+ rac{m_{e}^{2}}{m_{\mu}^{2}} \left(a_{\mu}^{(2,0)} + a_{\mu}^{(2,1)} {
m ln} \, rac{m_{\mu}}{m_{e}} + a_{\mu}^{(2,2)} {
m ln}^{2} \, rac{m_{\mu}}{m_{e}} \ &+ a_{\mu}^{(2,3)} {
m ln}^{3} \, rac{m_{\mu}}{m_{e}}
ight) \ &+ \ldots \end{array}$$

$$\begin{array}{c} \ln \frac{m_{\mu}}{m_{e}} \approx 5.332 \\ \frac{m_{e}}{m_{\mu}} \approx 0.005 \qquad \qquad \frac{m_{e}}{m_{\mu}} \ln \frac{m_{\mu}}{m_{e}} \approx 0.026 \\ \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{3} \frac{m_{\mu}}{m_{e}} \approx 0.004 \qquad \qquad \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{4} \frac{m_{\mu}}{m_{e}} \approx 0.019 \end{array}$$

 $rac{m_e}{m_\mu} \ln^2 rac{m_\mu}{m_e} pprox 0.137$

3 loops

• asymptotic expansion for
$$x \equiv m_e/m_\mu \ll 1$$

$$egin{array}{rcl} a_{\mu} &=& a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} {
m ln} \, rac{m_{\mu}}{m_{e}} \ &+ rac{m_{e}}{m_{\mu}} \left(a_{\mu}^{(1,0)} + a_{\mu}^{(1,1)} {
m ln} \, rac{m_{\mu}}{m_{e}}
ight) \ &+ rac{m_{e}^{2}}{m_{\mu}^{2}} \left(a_{\mu}^{(2,0)} + a_{\mu}^{(2,1)} {
m ln} \, rac{m_{\mu}}{m_{e}} + a_{\mu}^{(2,2)} {
m ln}^{2} \, rac{m_{\mu}}{m_{e}} \ &+ a_{\mu}^{(2,3)} {
m ln}^{3} \, rac{m_{\mu}}{m_{e}}
ight) \ &+ \dots \end{array}$$

 $= \left(20.52801865 + 0.42645778 + 0.00655695 + \ldots
ight) \left(rac{lpha}{\pi}
ight)^3$

$$\begin{array}{c} \ln \frac{m_{\mu}}{m_{e}} \approx 5.332 \\ \frac{m_{e}}{m_{\mu}} \approx 0.005 \qquad \qquad \frac{m_{e}}{m_{\mu}} \ln \frac{m_{\mu}}{m_{e}} \approx 0.026 \\ \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{3} \frac{m_{\mu}}{m_{e}} \approx 0.004 \qquad \qquad \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{4} \frac{m_{\mu}}{m_{e}} \approx 0.019 \end{array}$$

 $rac{m_e}{m_\mu}\ln^2rac{m_\mu}{m_e}pprox 0.137$

• asymptotic expansion for
$$x \equiv m_e/m_\mu \ll 1$$
 4 loops

$$\begin{array}{ll} a_{\mu} & = & a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} \ln \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(0,2)} \ln^{2} \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(0,3)} \ln^{3} \frac{m_{\mu}}{m_{e}} \\ & + \frac{m_{e}}{m_{\mu}} \left(a_{\mu}^{(1,0)} + a_{\mu}^{(1,1)} \ln \frac{m_{\mu}}{m_{e}} \right) \\ & + \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(a_{\mu}^{(2,0)} + a_{\mu}^{(2,1)} \ln \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(2,2)} \ln^{2} \frac{m_{\mu}}{m_{e}} \\ & + a_{\mu}^{(2,3)} \ln^{3} \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(2,4)} \ln^{4} \frac{m_{\mu}}{m_{e}} \right) \\ & + \dots \end{array}$$

$$\begin{array}{c} \ln \frac{m_{\mu}}{m_{\mu}} \approx 5.332 \\ \frac{m_{e}}{m_{\mu}} \approx 0.005 \qquad \qquad \frac{m_{e}}{m_{\mu}} \ln \frac{m_{\mu}}{m_{e}} \approx 0.026 \\ \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{3} \frac{m_{\mu}}{m_{e}} \approx 0.004 \qquad \qquad \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{4} \frac{m_{\mu}}{m_{e}} \approx 0.019 \end{array}$$

 $rac{m_e}{m_\mu} \ln^2 rac{m_\mu}{m_e} pprox 0.137$

• asymptotic expansion for $x\equiv m_e/m_\mu\ll$ 1

$$a_{\mu} = a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} \ln \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(0,2)} \ln^{2} \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(0,3)} \ln^{3} \frac{m_{\mu}}{m_{e}} \\ + \frac{m_{e}}{m_{\mu}} \left(a_{\mu}^{(1,0)} + a_{\mu}^{(1,1)} \ln \frac{m_{\mu}}{m_{e}} \right) \\ + \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(a_{\mu}^{(2,0)} + a_{\mu}^{(2,1)} \ln \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(2,2)} \ln^{2} \frac{m_{\mu}}{m_{e}} \\ + a_{\mu}^{(2,3)} \ln^{3} \frac{m_{\mu}}{m_{e}} + a_{\mu}^{(2,4)} \ln^{4} \frac{m_{\mu}}{m_{e}} \right) \\ + \dots \\ = (1.08 - 1.52 + 0.06 - 0.0002 + \dots) \left(\frac{\alpha}{\pi} \right)^{4}$$

$$\begin{array}{c} \ln \frac{m_{\mu}}{m_{\mu}} \approx 5.332 \\ \frac{m_{e}}{m_{\mu}} \approx 0.005 \qquad \qquad \frac{m_{e}}{m_{\mu}} \ln \frac{m_{\mu}}{m_{e}} \approx 0.026 \\ \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{3} \frac{m_{\mu}}{m_{e}} \approx 0.004 \qquad \qquad \frac{m_{e}^{2}}{m_{\mu}^{2}} \ln^{4} \frac{m_{\mu}}{m_{e}} \approx 0.019 \end{array}$$

$$rac{m_e}{m_\mu} \ln^2 rac{m_\mu}{m_e} pprox 0.137$$

Techniques

- generation of amplitudes with qgraf [Nogueira'91]
- traces, projectors, ... FORM [Vermaseren,...]
- asymptotic expansion: asy [Pak, Smirnov'10] and in-house program basic idea: alpha parametrization
- 4-loop on-shell integrals:

 $\approx 70 = 40_{ana/high \ prec.} + 30_{num} \ {}^{\text{[Marquard,Smirnov,Smirnov,Steinhauser,Wellmann'15]}}$

4-loop "linear" integrals:

 $\approx 70 = 20_{ana/high \ prec.} + 50_{num}$ [Kurz,Liu,Marquard,Smirnov,Smirnov,Steinhauser'15'16]

numerical integration with FIESTA [Smirnov'13]

τ loops:

[Kurz,Marguard,Liu,Steinhauser'14]

- asymptotic expansion for $m_{ au} \gg m_e$
- analytic calculation
- numerically small

 $(g-2)_{\mu}$: results

(8) . .

$A_2^{(r)}(e)$	[Kurz,Marquard,Liu,Smirnov,		
	Smirnov, Steinhauser'15'16]		
I(a0)	7.223076	7.223077 ± 0.000029	[Kinoshita et al.'04]
		7.223076	[Laporta'93]
l(a1)	0.494072	0.494075 ± 0.000006	[Kinoshita et al.'04]
		0.494072	[Laporta'93]
I(a2)	0.027988	0.027988 ± 0.000001	[Kinoshita et al.'04]
		0.027988	[Laporta'93]
I(a)	7.745136	7.74547 ± 0.00042	[Aoyama et al.'12]
I(bc0)	8.56876 ± 0.00001	8.56874 ± 0.00005	[Kinoshita et al.'04]
I(bc1)	0.1411 ± 0.0060	0.141184 ± 0.000003	[Kinoshita et al.'04]
I(bc2)	0.4956 ± 0.0004	0.49565 ± 0.00001	[Kinoshita et al.'04]
l(bc)	9.2054 ± 0.0060	9.20632 ± 0.00071	[Aoyama et al.'12]
l(d)	$-$ 0.2303 \pm 0.0024	$-$ 0.22982 \pm 0.00037	[Aoyama et al.'12]
		$-$ 0.230362 \pm 0.000005	[Baikov et al.'95]
ll(a)	- 2.77885	$-$ 2.77888 \pm 0.00038	[Aoyama et al.'12]
		- 2.77885	[Laporta'93]
II(bc0)	-12.212631	$-$ 12.21247 \pm 0.00045	[Kinoshita et al.'04]
II(bc1)	$-$ 1.683165 \pm 0.000013	$-$ 1.68319 \pm 0.00014	[Kinoshita et al.'04]
II(bc)	-13.895796 ± 0.000013	$-$ 13.89457 \pm 0.00088	[Aoyama et al.'12]
	10.800 ± 0.022	10.7934 ± 0.0027	[Aoyama et al.'12]
IV(a0)	116.76 ± 0.02	116.759183 ± 0.000292	[Kinoshita et al.'04]
		111.1 ± 8.1	[Calmet et al.'75]
		117.4 ± 0.5	[Chlouber et al'77]
IV(a1)	2.69 ± 0.14	2.697443 ± 0.000142	[Kinoshita et al.'04]
IV(a2)	4.33 ± 0.17	4.328885 ± 0.000293	[Kinoshita et al.'04]
IV(a)	123.78 ± 0.22	123.78551 \pm 0.00044	[Aoyama et al.'12]
IV(b)	-0.38 ± 0.08	$-$ 0.4170 \pm 0.0037	[Aoyama et al.'12]
IV(c)	2.94 ± 0.30	2.9072 ± 0.0044	[Aoyama et al.'12]
IV(d)	-4.32 ± 0.30	-4.43243 ± 0.00058	[Aoyama et al.'12]

 $(g-2)_{\mu}$: results

$A_{2}^{(8)}(e)$	[Kurz,Marquard,Liu,Smirnov,		
	Smirnov, Steinhauser'15'16]		
I(a0)	7.223076	7.223077 ± 0.000029 [Kinoshita et al.'04]	
		7.223076 [Laporta'93]	
l(a1)	0.494072	0.494075 ± 0.000006 [Kinoshita et al.'04]	
		0.494072 [Laporta'93]	
l(a2)	0.027988	0.027988 ± 0.000001 [Kinoshita et al.'04]	
		0.027988 [Laporta'93]	
l(a)	7.745136	7.74547 ± 0.00042 [Aoyama et al.'12]	
I(bc0)	8.56876 ± 0.00001	8.56874 ± 0.00005 [Kinoshita et al.'04]	
I(bc1)	0.1411 ± 0.0060	0.141184 ± 0.000003 [Kinoshita et al.'04]	
I(bc2)	0.4956 ± 0.0004	0.49565 ± 0.00001 [Kinoshita et al.'04]	
l(bc)	9.2054 ± 0.0060	9.20632 ± 0.00071 [Aoyama et al.'12]	
l(d)	$-$ 0.2303 \pm 0.0024	- 0.22982 ± 0.00037 [Aoyama et al.'12]	
		0.000000 L 0.000005 [Deilwu et el/05]	
II(a)	- 2.7788		
	C ^{ro} n C		
II(bc0)	-12.2126	<u>YMMMM PAY</u>	
II(bc0) II(bc1)	- 12.2126		
II(bc0) II(bc1) II(bc)	-12.2126 - 1.6831 -13.8957	$\frac{1}{I(b)} \frac{1}{I(c)} \frac{1}{I(d)} \frac{1}{I(a)} \frac{1}{I(b)} \frac{1}{I(c)} \frac{1}{I(c)}$	
II(bc0) II(bc1) II(bc) III	- 12.2126 - 1.6831 - 13.8957 10.800 =	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \hline \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ $ \\	
II(bc0) II(bc1) II(bc) III IV(a0)	-12.2126 - 1.6831 -13.8957 10.800 116.76 ±	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
II(bc0) II(bc1) II(bc) III IV(a0)	-12.2126 - 1.6831 -13.8957 10.800 116.76 ±	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \end{array} \end{array} $ \\ \hline \end{array} \\ \\ \end{array} \\ \\	
II(bc0) II(bc1) II(bc) III IV(a0)	-12.2126 - 1.6831 -13.8957 10.800 116.76 ±		
II(bc0) II(bc1) II(bc) III IV(a0) IV(a1)	$\begin{array}{c} -12.2126 \\ -1.6831 \\ -13.8957 \\ 10.800 \\ 116.76 \\ \pm \\ 2.69 \\ \pm \\ 1II \end{array}$	$\frac{1}{1(b)} \xrightarrow{I(c)} I(d) \xrightarrow{I(a)} I(b) \xrightarrow{I(b)} I(c)$	
II(bc0) II(bc1) II(bc) III IV(a0) IV(a1) IV(a2)	$\begin{array}{c c} -12.2126 & & & & & \\ \hline -13.8957 & & & & \\ 10.800 & & & & \\ 116.76 \pm & & & & \\ 2.69 \pm & & & \\ 4.33 \pm 0.17 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
II(bc0) II(bc1) II(bc) III IV(a0) IV(a1) IV(a2) IV(a)	$\begin{array}{c c} -12.2126 \\ -1.6831 \\ -13.8957 \\ 10.800 \\ 116.76 \\ \pm \\ 2.69 \\ \pm \\ 111 \\ 4.33 \\ \pm \\ 0.17 \\ 123.78 \\ \pm \\ 0.22 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
II(bc0) II(bc1) II(bc) III IV(a0) IV(a1) IV(a2) IV(a) IV(a)	$\begin{array}{c c} -12.2126 \\ -1.6831 \\ -13.8957 \\ 10.800 \\ 116.76 \pm \\ 2.69 \pm \\ 111 \\ 4.33 \pm 0.17 \\ 123.78 \pm 0.22 \\ -0.38 \pm 0.08 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
II(bc0) II(bc1) II(bc) III IV(a1) IV(a2) IV(a) IV(a) IV(b) IV(c)	$\begin{array}{c c} -12.2126 \\ -1.6831 \\ -13.8957 \\ 10.800 \\ 116.76 \\ \pm \\ 2.69 \\ \pm \\ 111 \\ 4.33 \\ \pm \\ 0.17 \\ 123.78 \\ \pm \\ 0.22 \\ -0.38 \\ \pm \\ 0.08 \\ 2.94 \\ \pm \\ 0.30 \end{array}$	I(b) I(c) I(d) II(a) II(b) II(c) I(b) I(c) I(d) II(a) II(b) II(c) IV(a) IV(b) IV(c) IV(d) V 4.328885 ± 0.000293 [Kinoshita et al:04] V 123.78551 ± 0.00024 [Aoyama et al:12] V - 0.4170 ± 0.0037 [Aoyama et al:12] V 2.9072 ± 0.0044 [Aoyama et al:12] V	

 $(g-2)_{\mu}$: results

.

.(8)

$A_2^{(r)}(e)$	[Kurz,Marquard,Liu,Smirnov,				
	Smirnov, Steinhauser'15'16]				
I(a0)	7.223076	7.223077 ± 0.000029	[Kinoshita et al.'04]		
		7.223076	[Laporta'93]		
l(a1)	0.494072	0.494075 ± 0.000006	[Kinoshita et al.'04]		
		0.494072	[Laporta'93]		
I(a2)	0.027988	0.027988 ± 0.000001	[Kinoshita et al.'04]		
		0.027988	[Laporta'93]		
l(a)	7.745136	7.74547 ± 0.00042	[Aoyama et al.'12]		
I(bc0)	8.56876 ± 0.00001	8.56874 ± 0.00005	[Kinoshita et al.'04]		
I(bc1)	0.1411 ± 0.0060	0.141184 ± 0.000003	[Kinoshita et al.'04]		
I(bc2)	0.4956 ± 0.0004	0.49565 ± 0.00001	[Kinoshita et al.'04]		
I(bc)	9.2054 ± 0.0060	9.20632 ± 0.00071	[Aoyama et al.'12]		
l(d)	$-$ 0.2303 \pm 0.0024	$-$ 0.22982 \pm 0.00037	[Aoyama et al.'12]		
		e ⁻ τ	$e^- + \tau$		
$a^{(8)}_{\mu}$	$= a^{(8)}_{\mu} _{\text{univ.}} + 132.8$	6(48) + 0.0424941(53) + 0.062722(10)	[Kurz et al.'14'15'16]	
$a_{\mu}^{(8)}$	= -1.9106(20) + 132.6	852(60) + 0.04234(12)	+ 0.06272(4)	[Aoyama et al.12]	
final uncertainty $0.48 \times (\alpha/\pi)^4 \approx 1.4 \times 10^{-11}$ much smaller than uncertainty of					
_	2 (0)	$(SM) \sim 250(90)$	$\times 10^{-11}$		
	$a_{\mu}(\exp) - a_{\mu}(\sin) \sim 250(90) \times 10^{-11}$				
even atter a projected improvement by a factor 4					
1v(a)	-4.32 ± 0.30	-4.43243 ± 0.00036	[Aoyama et al. 12]		

Highlight of the year: $(g-2)_e$

Semi-analytic calculation of 4-loop coefficient

$$a_{e} = \frac{\alpha}{2\pi} + \dots + C_{4} \left(\frac{\alpha}{\pi}\right)^{4}$$

$$C_{4} = T_{0} + T_{2} + T_{3} + T_{4} + T_{5} + T_{6} + T_{7}$$

$$+ \sqrt{3} (V_{4a} + V_{6a}) + V_{6b} + V_{7b} + W_{6b} + W_{7b}$$

$$+ \sqrt{3} (E_{4a} + E_{5a} + E_{6a} + E_{7a}) + E_{6b} + E_{7b}$$

$$+ U$$

$$(Laporta'17)$$

- "finalizing a 20-year effort"
- high-precision (few 1000 digits) numerical result for master integrals
- fit to analytic expressions (PSLQ)
 - "usual" transcendental constants
 - HPLs with arguments 1, 1/2, $e^{i\pi/2}$, $e^{i\pi/3}$, $e^{i2\pi/3}$
 - one-dimensional integrals of products of elliptic integrals
 - six finite parts of master integrals;

$(g-2)_{\mu}$: photonic contr. and μ loops

[Marquard,Smirnov,Smirnov, Steinhauser,Wellmann] [Laporta'17]

[Aoyama,Hayakawa, [Kinoshita,Nio'12]

 $\begin{array}{rl} -2.161 \pm 0.065 & -2.1755 \pm 0.0020 \\ -2.176866027739540077443259355895893938670 \end{array}$

 $\begin{array}{c} 0.077 \pm 0.031 \\ 0.05611089989782836483146927441890884223 \end{array}$

 $-0.3048 \pm 0.021 \qquad \qquad -0.3162 \pm 0.0002$

-0.31653839064894015884326038238151328482

 $-0.07461 \pm 0.00008 \qquad -0.074665 \pm 0.000005$

-0.0746711843261055138601599657227931268

 $\begin{array}{c} 0.597204 \pm 0.0012 \\ 0.598842072031421820464649513201747727836 \end{array}$

0.000876865...0.000876865...0.000876865858889990697913748939713726165

Matthias Steinhauser — 4 loop QED corrections to $(g - 2)_{\mu}$

Conclusions

(g-2)_e cross checked: semi-analytic calculation (g-2)_μ photonic, μ loops cross checked: 3 calculations

 $\left. \begin{array}{c} e \text{ loops} \\ \tau \text{ loops} \end{array} \right\} \text{ cross checked:} \left\{ \begin{array}{c} \text{purely numerical calc.;} \\ \text{asymptotic expansion} \\ + \text{ numerical/analytic calc.} \end{array} \right.$

[Aoyama, Hayakawa, Kinoshita, Nio'12]

group	A ₂ ⁽⁸⁾ (e)	$A_{2}^{(8)}(\tau)$	$A_{3}^{(8)}(e, \tau)$
l(a)	7.74547 (42)	0.000032 (0)	0.003209 (0)
l(b)	7.58201 (71)	0.000252 (0)	0.002611 (0)
l(c)	1.624307 (40)	0.000737 (0)	0.001807 (0)
l(d)	-0.22982 (37)	0.000368 (0)	0
II(a)	-2.77888 (38)	-0.007329 (1)	0
II(b)	-4.55277 (30)	-0.002036 (0)	-0.009008 (1)
II(c)	-9.34180 (83)	-0.005246 (1)	-0.019642 (2)
III	10.7934 (27)	0.04504 (14)	0
IV(a)	123.78551 (44)	0.038513 (11)	0.083739 (36)
IV(b)	-0.4170 (37)	0.006106 (31)	0
IV(c)	2.9072 (44)	-0.01823 (11)	0
IV(d)	-4.43243 (58)	-0.015868 (37)	0

