Preliminary Update on the HVP Determination

Comprendre le monde, construire l'avenir

M. Davier, A. Hoecker,

B. Malaescu, <u>Z. Zhang</u>

OverviewResults

Summary

Phi to Psi 2017, Mainz, June 26-29, 2017

Overview

LO Hadronic Vacuum Polarization (HVP) being the most uncertain part for $a_{\mu} \& \Delta \alpha$ has been the focus over last 5 decades.

The precision is steadily improving thanks to

- more precise/complete e⁺e⁻
 annihilation (& tau) data
- state of the art techniques
 for data interpolation, combination
 and error correlation treatment

Davier, Hoecker, Malaescu, Zhang, for "Standard Theory Essays in the 60th Anniversary of CERN", published recently by World Scientific

Phi to Psi 2017, Mainz, June 26-29, 2017

Project at Orsay initiated by Alemany, Davier, Hoecker in 1998 joined by Zhang since 2003 and Malaescu since 2009 with contributions from a few others, e.g. Eidelman, Yuan

Relative (%)	$\delta a_{\mu}^{had, LO}$	$\Delta lpha^{(5)}_{ m had}$
1998 [ADH]	2.1 [e+e-] 1.3 [e+e-⊕tau]	2.2 [e+e-] 2.2 [e+e-⊕tau]
2003 [DEHZ]	1.0 [e+e-] 0.8 [tau]	
2009 [DHMZ+]	0.59-0.76 [e+e-] 0.64 [tau]	
2011 [DHMZ]	0.61 [e+e-] 0.67 [tau]	0.36 [e+e-] 0.40 [tau]
2017 [DHMZ]	0.49 [e+e-]	0.34 [e+e-]

 Uncertainty on a_µ reduced by 20% wrt 2011, and a factor of >4 over 20 years
 Toologies and a factor of a second disconsistence of

> Tau less precise now and involves isospin breaking corrections

Phi to Psi 2017, Mainz, June 26-29, 2017

Combination Procedure (HVPTools)

The integration of data points belonging to different experiments, with different within-experiment and inter-experiment correlated systematic errors, and with different data densities requires a careful treatment

DHMZ approach (HVPTools since 2009):

- Quadratic interpolation of the data points/bins for each experiment
- Local weighted average between interpolations performed in infinitesimal bins (1 MeV)
- Full covariance matrices: correlations between data points of an experiment (systematic errors), between experiments and channels (VP, luminosity, ...)
- Consistent error propagation using pseudo experiments (toys)
- > Possible bias tested in 2π channel using a GS model: negligible for quadratic interpolation, but not for linear model (trapezoidal rule)

Main New Inputs for the Update

39 exclusive channels (vs. 22 for 2011) Previous evaluation used estimation from isospin symmetry for quite a few unmeasured channels, ~(0.69 ± 0.07)% of $a_{\mu}^{had,LO}$

$\pi^+\pi^-$:	KLOE-2012, BES-2015			
π ⁺ π ⁻ 2π ⁰ :	Babar-2016			
2π ⁺ 2π ⁻ :	Babar-2012, CMD3-2017			
K _S K _L :	Babar-2014, CMD3-2016			
K⁺K⁻:	SND-2016			
$K_{S}K^{\pm}\pi^{\mp}$, $K^{+}K^{-}\pi^{0}$, $K_{S}K_{L}\pi^{0}$: Babar-2011			
K⁺K⁻π+π-, K⁺K⁻2π ⁰ :	Babar-2011			
K _S K _L 2π, 2K _S 2π:	Babar-2014			
$K_{S}K_{L}2\pi^{0}, K_{S}K^{\pm}\pi\mp\pi^{0}$:	Babar 2017			
2Κ2π:	Babar-2012 (update), CMD3-2016			
2K2π ⁰ :	Babar-2012 (update)			
2K _L 2π:	estimated by CP symmetry			
+ many others (small cross section) channels				

The Dominant 2π Channel

Closer Comparison of Different Measurements

Relative Weights & Inconsistency

Four Pions Channels

Phi to Psi 2017, Mainz, June 26-29, 2017

KKbar Channels

Phi to Psi 2017, Mainz, June 26-29, 2017

Zhiqing Zhang (LAL, Orsay)

KKbar+ π 's Channels (Very Recent Babar Results)

Improvement of 2017 Update over 2011 Version

Exclusive data integrated up to 1.8 GeV and in charm region [3.7 - 5] GeV pQCD otherwise

Channel	a_{μ}^{had} [10 ⁻¹⁰] 2017	a _µ ^{had} [10 ⁻¹⁰] 2011	$\delta a_{\mu}^{had, LO}$ reduction
π +π-	$507.14 \pm 1.13 \pm 2.20 \pm 0.75$	$507.80 \pm 1.22 \pm 2.50 \pm 0.56$	-9%
2π+2π-	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$13.35 \pm 0.10 \pm 0.43 \pm 0.29$	-42%
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$18.01 \pm 0.14 \pm 1.17 \pm 0.40$	-56%
K+K-	$22.81 \pm 0.24 \pm 0.28 \pm 0.17$	$21.63 \pm 0.27 \pm 0.58 \pm 0.36$	-46%
K _S K _L	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$	$12.96 \pm 0.18 \pm 0.25 \pm 0.24$	-38%
$KK^{bar}\pi$	$2.45 \pm 0.06 \pm 0.12 \pm 0.07$	Est:2.39 $\pm 0.07 \pm 0.12 \pm 0.08$	-6%
$KK^{bar}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$	Est: $1.35 \pm 0.09 \pm 0.38 \pm 0.03$	-86%
R _{QCD}	$33.45 \pm 0.28 \pm 0.59_{dual}$	33.45 ± 0.28	
missing (%)	0.10 ± 0.03	0.69 ± 0.07	
Sum	693.1±1.2±2.6±1.7±0.1±0.7	692.3±1.4±3.1±2.4±0.2±0.3	-19%
	stat, sys, cor, ψ, QCD		

Contribution in the Region 1.8 - 3.7 GeV

pQCD evaluated from 4 loops + $O(a_s^2)$ quark mass corrections Uncertainties: a_s , truncation, FOPT/CIPT, m_q

Phi to Psi 2017, Mainz, June 26-29, 2017

Contribution from the Charm Resonance Region

 $7.29 \pm 0.05 \pm 0.30 \pm 0.00 \Rightarrow 1.05\% \text{ of } a_{\mu}^{had, LO}$ stat sys cor

Performed a non-trivial test: $a_{\mu}^{had, LO}$ from R_{ee} agrees with that from sum of exclusive channels

Status of a_µ

Include other contributions in unit of 10^{-10} : QCD NLO: -9.87 ± 0.07; NNLO: 1.24 ± 0.01; LBL: 10.5 ± 2.6 EW: 15.36 ± 0.10 QED: 11 658 471.895 ± 0.008

 $\Rightarrow a_{\mu} = 11\ 659\ 182.3 \pm 3.4 \pm 2.6 \pm 0.2\ (4.3_{tot})$

JN 2009 -301 ± 65 **HLMNT 2011** -263 ± 49 edictions In comparison with the DHMZ 2011 direct measurement: -289 + 4911 659 209.1 \pm 5.4 \pm 3.3 (6.3_{tot}) DHMZ 2017 (this work) -268 + 43 \Rightarrow 26.8 ± 7.6 (3.5 σ) BNL-E821 (world average) 0 ± 63 -700 -600 -500 -400 -300 -200 -100 0 $imes 10^{-11}$ $a_u - a_u^{exp}$

Phi to Psi 2017, Mainz, June 26-29, 2017

Summary & Perspectives

 \Box $a_{\mu}^{had, LO}$ reaches 0.5% relative precision

► A factor of ~2 improvement over last ~13 years

The precision is partially limited by the inconsistency between different measurements

Need more precise and consistent data sets

- > Babar & CMD3 aim for 0.3% syst for π + π -
- > Important to improve $\pi^+\pi^-\pi^0$ and K^+K^- in [1-2] GeV mass range

Uncertainty on LBL will be a next candidate to improve
 Lattice QCD?

Good perspective from direct measurements

Fermilab & JPARC aim for an improvement by a factor ~4