CMD-3 OVERVIEW

Ivan Logashenko

on behalf of CMD-3 collaboration

Budker Institute of Nuclear Physics Novosibirsk State University

PHIPSI 2017, 26-29 June 2017

$\sigma(e^+e^- \rightarrow hadrons)$ and the hadronic contribution to a_{μ}

So far, the hadronic contribution to a_{μ} is calculated by integrating experimental cross-section $\sigma(e^+e^- \rightarrow hadrons)$.

Weighting function $\sim 1/s$, therefore lower energies contribute the most.

Many sources of data:

- Novosibirsk: CMD-2 and SND (VEPP-2M), CMD-3 and SND (VEPP-2000)
- Factories: Babar, KLOE
- BES-III, KEDR

$$R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

 $\begin{aligned} \Delta a_{\mu}(exp - th) &= (287 \pm 80) \cdot 10^{-11} \text{ (DHMZ'12)} \\ \text{ corresponds to} \\ (4.15 \pm 1.15)\% \cdot a_{\mu}^{had,LO} \end{aligned}$ FNAL expected precision of 140 ppb

corresponds to $0.25\% \cdot a_{\mu}^{had,LO}$

PHIPSI 2017

C.m. energy range is 0.32-2.0 GeV; unique optics – "round beams" Design luminosity is $L = 10^{32} 1/cm^2 s @ \sqrt{s} = 2$ GeV Experiments with two detectors, CMD-3 and SND, started by the end of 2010

Detector CMD-3

PHIPSI 2017

- 1.0-1.3 T magnetic field
- Tracking: $\sigma_{R\varphi} \sim 100 \,\mu$, $\sigma_z \sim 2 3 \,\text{mm}$
- Combined EM calorimeter (LXE, Csl, BGO), 13.5 X₀

$$\succ \sigma_E/E \sim 3\% - 10\%$$

$$\succ \sigma_{\Theta} \sim 5 \text{ mrad}$$

Collected luminosity in 2011-2013

The luminosity was limited by a deficit of positrons and limited energy of the booster.

The VEPP-2000 upgrade has started in 2013.

About 60 pb-1 collected per detector		
ω(782)	8.3 1/pb	
$2E < 1 \text{ GeV} (\text{except } \omega)$	9.4 1/pb	
$\varphi(1019)$	8.4 1/pb	
2E > 1.04 GeV	34.5 1/pb	

VEPP-2000 upgrade (2013-2016)

Collider upgrades:

- x10 more intense positron source
- booster up to 1 GeV (match VEPP-2000)

CMD-3 upgrades:

- New electronics for Lxe calorimeter
- New TOF system
- DAQ and electronics upgrades

Detectors resumed data taking by the end of 2016

Talk by Dmitry SHWARTZ on Thursday

In 2013-2016 the TOF system was completely replaced

- More granulated (16 counters \rightarrow 175 counters) •
- 0.8 ns resolution per counter

Beam axis

In 2017: big improvement in luminosity at high 2 energy, still way to go

Collected data at "high" energies

About 50 pb ⁻¹ collected		
2.007 GeV ($e^+e^- \to D^{0*}$)	4 1/pb	
$par{p}$ and $nar{n}$ threshold	14 1/pb	
Overall:		
1.28 – 2.007 GeV	50 1/pb	

11

Overview of CMD-3 data taking runs

Exclusive channels $e^+e^- \rightarrow hadrons$

At VEPP-2000 we do exclusive measurement of $\sigma(e^+e^- \rightarrow hadrons)$.

2 charged

$$e^+e^- \rightarrow \pi^+\pi^-, K^+K^-, K_SK_L, p\overline{p}$$

- 2 charged + γ 's $e^+e^- \rightarrow \pi^+\pi^-\pi^0, \pi^+\pi^-\eta, K^+K^-\pi^0, K^+K^-\eta, K_SK_L\pi^0, \pi^+\pi^-\pi^0\eta, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0, \pi^-\pi^0\pi^0, \pi^-\pi^0, \pi^-\pi^0$
- 4 charged

$$e^+e^- \to \pi^+\pi^-\pi^+\pi^-, K^+K^-\pi^+\pi^-, K_SK^*$$

- 4 charged + γ 's $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0, \pi^+\pi^-\eta, \pi^+\pi^-\omega, \pi^+\pi^-\pi^0\pi^0, K^+K^-\eta, K^+K^-\omega$
- 6 charged

$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$$

γ's only

$$e^+e^- \rightarrow \pi^0 \gamma, \eta \gamma, \pi^0 \pi^0 \gamma, \pi^0 \eta \gamma, \pi^0 \pi^0 \pi^0 \gamma, \pi^0 \pi^0 \eta \gamma$$

other

$$e^+e^- \rightarrow n\overline{n}, \pi^0 e^+ e^-, \eta e^+ e^-$$

Published results from 2011-2013: CMD-3

¥

1980

2000

E_{c.m.}, MeV

E_{c.m.}, MeV

Dominant channel: $e^+e^- \rightarrow \pi^+\pi^-$

- Energy range below φ was scanned in 2013. Data analysis is in progress.
- Energy range above φ was scanned in 2011-2012. Data analysis for $\pi^+\pi^-$ havn't started yet. There are known problems with data, which will limit precision, e.g. the beam energy was measured only for subset of energy points.

Talk by Fedor Ignatov on Monday

R(s) at $N\overline{N}$ threshold

One of first results from CMD-3:

- Sudden drop of $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross section at $N\overline{N}$ threshold
- Confirmed, that $p\bar{p}$ production cross section increases quickly at threshold
- Preliminary studies of dynamics of $e^+e^- \rightarrow 3(\pi^+\pi^-)$, hint of energy dependent dynamics in 1.7-1.9 GeV energy range

1.6^E

0.8

0.6

0.4

0.2

 $\mathfrak{I}(\mathrm{e}^+\mathrm{e}^- o 3(\pi^+\pi^-)),$ nb

BaBar

CMD-3

01600 1650 1700 1750 1800 1850 1900 1950 2000 2050

2017: $e^+e^- \rightarrow 3(\pi^+\pi^-)$ at $N\bar{N}$ threshold

In 2017, CMD-3 collected 13 1/pb in the narrow energy range around $N\overline{N}$ threshold Very first look at the data:

- the sharp drop in cs is confirmed
- can be described as single transition at $(m_p + m_n)/2$ with ~2.5 MeV width
- or as two narrow transitions at m_p or m_n (consistent with only beam energy spread, $\sigma_{2E} \approx 1.2$ MeV)

Ec.m., MeV

Recent result from CMD-3:

- $K_S K_L$ at φ , systematic precision 1.8%
- K^+K^- at φ , systematic precision 2.5% (under internal review)

K^+K^- : comparison with other measurements

 $K_S K_L$ at φ is consistent between different experiments, but there is discrepancy in K^+K^- channel.

New CMD-3 K^+K^- cross-section is above CMD-2 and BaBar, but is consisteny with isospin symmetry:

$$R = \frac{g_{\varphi K^+ K^-}}{g_{\varphi K_S K_L} \sqrt{Z(m_{\varphi})}} = 0.990 \pm 0.017$$

- $R_{SND} = 0.92 \pm 0.03(2.6\sigma)$
- $R_{CMD-2} = 0.943 \pm 0.013(4.4\sigma)$
- $R_{BaBar} = 0.972 \pm 0.017(1.5\sigma)$

$K_S K_L$ and $K^+ K^-$: $\rho - \varphi$ interference

 $\rho - \varphi$ interference can be directly observed:

$$R_{c/n} = \sigma(e^+e^- \to K^+K^-) \times \frac{p_{K^0}^3(s)}{p_{K^\pm}^3(s)} \times \frac{1}{Z(s)} - \delta \times \sigma(e^+e^- \to K_S K_L)$$

• $r_{\rho,\omega} = 0.91 \pm 0.04$

deviation of SU(3) relations $g_{\omega K^+K^-} = g_{\rho K^+K^-} = -g_{\varphi K^+K^-}/\sqrt{2}$

• $\delta = 0.989 \pm 0.003$

test of systematic errors

$$e^+e^- \to \pi^+\pi^-\pi^+\pi^- @\varphi(1020)$$

PLB 768 (2017) 345-350

2011-2013 data, 10 1/pb systematic error 3.5%

 $B(\varphi \to 2(\pi^{+}\pi^{-})) = (6.5 \pm 2.7 \pm 1.6) \times 10^{-6}$

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$$

CMD-3 preliminary: $\pi^+\pi^-(\omega,\eta), K^+K^-(\omega,\eta)$

$$\omega \rightarrow \pi^o e^+ e^-$$

- Motivation: study of the internal structure of the vector mesons (transition form factor).
- $\pi \circ \rightarrow \gamma \gamma$.
- π⁺π⁻π⁰: opening angle between tracks, kinematic of the decay, recoil mass of photon pairs.
- $\pi^0 \gamma$: The method for $\pi^0 e^+e^-$ and $\pi^0 \gamma$ (with conversion γ on material of the detector) separation is based on information from drift chamber and uses a neural network.

- 1339 events of decay were selected (The amount of statistic 8 1/pb);
- Current value $Br(\omega \rightarrow \pi^0 e^+e^-) = (8,15 \pm 0,18) \cdot 10^{-4}$ (stat.) (the contributions of $\omega \rightarrow \pi^+ \pi^- \pi^0$, $\omega \rightarrow \pi^0 \gamma$ were not taken into account).

Search for $e^+e^- \rightarrow \eta'(958)$ at CMD-3

PHIPSI 2017

Phys.Lett. B740 (2015) 273-277

 $B(\eta' \to e^+e^-) = 3.7 \cdot 10^{-11}$

 γ virtuality and transition form factor can enhance it

New limit:

 $B(\eta' \rightarrow e^+e^-) < 1.2 \cdot 10^{-8} (90\% CL)$ CMD3 $B(\eta' \rightarrow e^+e^-) < 2.1 \cdot 10^{-7} (90\% CL)$ ND

Dedicated data taking at $\sqrt{s} = M_{\eta \prime}$ Continuous beam energy monitoring is crucial

PHIPSI 2017

Talk by Alexey Petrov (WSU) at ICHEP'16 and JHEP 1511 (2015) 142

$$\sigma(e^+e^- \to D\pi)_{\sqrt{s} \simeq m_{D^*}} \equiv \sigma_{D^*}(s) = \frac{12\pi}{m_{D^*}^2} \ \mathcal{B}_{D^* \to e^+e^-} \mathcal{B}_{D^* \to D\pi} \ \frac{m_{D^*}^2 \Gamma_0^2}{(s - m_{D^*}^2)^2 + m_{D^*}^2 \Gamma_0^2}$$

Estimated sensitivity:

$$B_{D^* \to e^+ e^-} \ge \frac{4 \times 10^{-10}}{\varepsilon \int L dt \ [pb^{-1}]} \times \frac{\sigma_{2E}}{\Gamma_{D^*} \ [60 \ keV]}$$

Standard Model: $B_{D^* \rightarrow e^+ e^-} \approx (0.1 \div 7) \times 10^{-19}$

Example of New Physics contribution: $B_{D^* \rightarrow e^+ e^-}^{Z'} < 2.5 \times 10^{-11}$

In 2017 CMD-3 collected 4 pb^{-1} at 2007 MeV with $\sigma_{2E} \approx 2$ MeV

- In 2011-2013 CMD-3 has collected 60 1/pb in the whole energy range $0.32 \le \sqrt{s} \le 2.0$ GeV, available at VEPP-2000.
- Data analysis of exclusive modes of $e^+e^- \rightarrow hadrons$ is in progress. Many results have been published.
- In 2013-2016 the collider and the CMD-3 detector have been upgraded.
- The data taking was resumed in 2017. About 50 1/pb were collected over 5 months in the energy range above 1.28 GeV.