PhiPsi17

Mainz, 26th June 2017

$(g-2)_{\mu}$ overview

- Introduction
- QED and weak contributions
- a^{had}: HVP (and HLbL) status, KNT17 HVP update ۲
- BSM?
- Outlook

Introduction & motivation:

SM `too' successful, but incomplete:

- v masses (small) and mixing point towards some high-scale (GUT) physics
- Need to explain dark matter & dark energy
- Not enough CP violation in the SM for matter-antimatter asymmetry
- And: $a_{\mu}^{EXP} a_{\mu}^{SM}$ at ~ 3-4 σ plus other deviations e.g. in the flavour sector

Is there a common New Physics (NP) explanation for all these puzzles?

- Uncoloured leptons are particularly clean probes to establish and constrain/ distinguish NP, complementary to high energy searches at the LHC
- No direct signals for NP from LHC so far:
 - some models like CMSSM are in trouble already when trying to accommodate LHC exclusion limits and to solve muon g-2
 - is there any TeV scale NP out there? Or unexpected new low scale physics?

The key may be provided by low energy observables including precision QED, EDMs and LFV → see talks by R. Szafron and A. de Gouvea

Introduction

- Dirac equation (1928): g is 2 for fundamental fermions
- 1947: small deviations from predictions in hydrogen and deuterium hyperfine structure; Kusch & Foley propose explanation with g_s= 2.00229 ± 0.00008
- 1948: Schwinger calculates the famous radiative correction: that g = 2 (1+a), with $a = (g-2)/2 = \alpha/(2\pi) = 0.001161$

`` If you can't join 'em, beat 'em "

• The anomaly a (Anomalous Magnetic Moment) is from the Pauli term:

$$\delta \mathcal{L}_{\text{eff}}^{\text{AMM}} = -\frac{Qe}{4m} a \bar{\psi}(x) \sigma^{\mu\nu} \psi(x) F_{\mu\nu}(x)$$

This is a dimension 5 operator, non-renormalisable and hence not part of the fundamental (QED) Lagrangian. But it occurs through radiative corrections and is calculable in perturbation theory.

Magnetic Moments: a_e vs. a_µ

a_e= 1 159 652 180.73 (0.28) 10⁻¹² [0.24ppb]

Hanneke, Fogwell, Gabrielse, PRL 100(2008)120801

one electron quantum cyclotron

a_µ= 116 592 089(63) 10⁻¹¹ [0.54ppm] Bennet et al., PRD 73(2006)072003

- a_e^{EXP} more than 2000 times more precise than a_μ^{EXP}, but for e⁻ loop contributions come from very small photon virtualities, whereas muon `tests' higher scales
- dimensional analysis: sensitivity to NP (at high scale $\Lambda_{_{
 m NP}}$): $a_\ell^{
 m NP}\sim {\cal C}\,m_\ell^2/\Lambda_{
 m NP}^2$

ightarrow μ wins by $m_{\mu}^2/m_e^2 \sim 43000$ for NP, but a_e provides best determination of lpha

a_µ: back to the future

- CERN started it nearly 40 years ago
- Brookhaven delivered 0.5ppm precision
- E989 at FNAL and J-PARC's g-2/EDM experiments are happening and should give us certainty
- ightarrow talks by Lee Roberts and Tsutomu Mibe

6

a_u : Status and future projection \rightarrow charge for SM TH

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NP?}}$$

- if mean values stay and with no
 a_μSM improvement:
 5σ discrepancy
- if also EXP+TH can improve a_μSM
 `as expected' (consolidation of L-by-L on level of Glasgow consensus, about factor 2 for HVP): NP at 7-8σ
- or, if mean values get closer, very strong exclusion limits on many NP models (extra dims, new dark sector, xxxSSSM)...

a_{μ}^{QED} Kinoshita et al.: g-2 at 1, 2, 3, 4 & 5-loop order

T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio (PRLs, 2012)

A triumph for perturbative QFT and computing!

 a_{μ}^{QED}

• Schwinger 1948: 1-loop $a = (g-2)/2 = \alpha/(2\pi) = 116 \ 140 \ 970 \times 10^{-11}$

- 72 3-loop and 891 4-loop diagrams ...
- Kinoshita et al. 2012: 5-loop completed numerically (12672 diagrams):

 a_{μ}^{QED} = 116 584 718.951 (0.009) (0.019) (0.007) (0.077) × 10⁻¹¹ errors from: lepton masses, 4-loop, 5-loop, α from ⁸⁷Rb

• QED extremely accurate, and the series is stable:

 $a_{\mu}^{\text{QED}} = C_{\mu}^{2n} \sum_{n} \left(\frac{\alpha}{\pi}\right)^{n}$

 $C^{2,4,6,8,10}_{\mu} = 0.5, \, 0.765857425(17), \, 24.05050996(32), \, 130.8796(63), \, 753.29(1.04)$

Could a_μ^{QED} still be wrong?
 Some classes of graphs known analytically (Laporta; Aguilar, Greynat, deRafael),

- ... but 4-loop and 5-loop rely heavily on numerical integrations
- Recently several independent checks of 4-loop and 5-loop diagrams: Baikov, Maier, Marquard [NPB 877 (2013) 647], Kurz, Liu, Marquard, Smirnov AV+VA, Steinhauser [NPB 879 (2014) 1, PRD 92 (2015) 073019, 93 (2016) 053017]:
- all 4-loop graphs with internal lepton loops now calculated independently, e.g.

\rightarrow talk by Matthias Steinhauser

- 4-loop universal (massless) term calculated semi-analytically to 1100 digits (!) by Laporta, arXiv:1704.06996, also new numerical results by Volkov, 1705.05800
- all agree with Kinoshita et al.'s results, so QED is on safe ground

• Electro-Weak 1-loop diagrams:

- known to 2-loop (1650 diagrams, the first EW 2-loop calculation):
 Czarnecki, Krause, Marciano, Vainshtein; Knecht, Peris, Perrottet, de Rafael
- agreement, a_{μ}^{EW} relatively small, 2-loop relevant: $a_{\mu}^{EW(1+2 \text{ loop})} = (154\pm2) \times 10^{-11}$
- Higgs mass now known, update by Gnendiger, Stoeckinger, S-Kim,

PRD 88 (2013) 053005

```
a_{\mu}^{EW(1+2 \text{ loop})} = (153.6 \pm 1.0) \times 10^{-11}
```

compared with $a_{\mu}^{QED} = 116584718.951(80) \times 10^{-11}$

Hadronic: non-perturbative, the limiting factor of the SM prediction X = V

• L-by-L: - so far use of model calculations (+ form-factor data and pQCD constraints),

- also good news from lattice QCD, and
- new dispersive approaches
- Below I will use the `updated Glasgow consensus': (original by Prades+deRafael+Vainshtein)
- so far no indication for a big surprise
- expect that L-by-L prediction can be improved further
- with new results & progress, tell politicians/sceptics: L-by-L _can_ be predicted!

- ightarrow overview talk by A. Nyffeler
- ightarrow talks by H. Wittig and C. Lehner
- ightarrow talks by B. Kubis, V. Pauk and G. Colangelo

 $a_{\mu}^{had,L-by-L}$ = (98 ± 26) × 10⁻¹¹

a^{had, VP}: Hadronic Vacuum Polarisation

HVP: - most precise prediction by using e^+e^- hadronic cross section (+ tau) data and well known dispersion integrals \rightarrow for space-like HVP see talk by L. Trentadue

- done at LO and NLO (see graphs) \rightarrow see HVP talks by Z. Zhang and F. Jegerlehner
- and recently at NNLO [Steinhauser et al., PLB 734 (2014) 144, also F. Jegerlehner] $a_{\mu}^{HVP, NNLO} = + 1.24 \times 10^{-10}$ not so small, from e.g.:

- Alternative: lattice QCD, but need QED and iso-spin breaking corrections Lots of activity by several groups, errors coming down, QCD+QED started

Hadronic Vacuum Polarisation, essentials:

Use of data compilation for HVP:

pQCD not useful. Use the dispersion relation and the optical theorem.

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$ How to get the most precise σ^{0}_{had} ? $e^{+}e^{-}$ data:

- Low energies: sum ~30 exclusive channels, 2π, 3π, 4π, 5π, 6π, KK, KKπ, KKππ, ηπ, ..., use iso-spin relations for missing channels
- Above ~1.8 GeV: can start to use pQCD (away from flavour thresholds), supplemented by narrow resonances (J/Ψ, Y)
- Challenge of data combination (locally in vs): many experiments, different energy bins, stat+sys errors from different sources, correlations; must avoid inconsistencies/bias
- traditional `direct scan' (tunable e⁺e⁻ beams)
 vs. `Radiative Return' [+ τ spectral functions]
- σ^{0}_{had} means `bare' σ , but WITH FSR: RadCorrs [HLMNT '11: $\delta a_{\mu}^{had, RadCor VP+FSR} = 2 \times 10^{-10} !$]

HVP: KLOE 2π combination [preliminary]

⇒ Combination of KLOE08, KLOE10 and KLOE12 gives 85 distinct bins between $0.1 \le s \le 0.95$ GeV²

 \rightarrow Covariance matrix now correctly constructed \Rightarrow a positive semi-definite matrix

 \rightarrow Non-trivial influence of correlated uncertainties on resulting mean value

$$a_{\mu}^{\pi^{+}\pi^{-}}(0.1 \le s' \le 0.95 \text{ GeV}^2) = (489.9 \pm 2.0_{\text{stat}} \pm 4.3_{\text{sys}}) \times 10^{-10}$$

Publication by KLOE-2, Grazinao Venanzoni, Alex Keshavarzi, Stefan Mueller and TT under review

HVP: complete 2π combination by Keshavarzi+Nomura+T

\Rightarrow Large improvement for 2π estimate

 \rightarrow BESIII [Phys.Lett. B753 (2016) 629-638] and KLOE combination provide downward influence to mean value

 $\Rightarrow \frac{\text{Correlated & experimentally corrected}}{\sigma^0_{\pi\pi(\gamma)} \text{ data now entirely dominant}}$

 $a_{\mu}^{\pi^{+}\pi^{-}}$ (0.305 $\leq \sqrt{s} \leq 2.00$ GeV): HLMNT11: 505.77 ± 3.09

KNT17: 502.85 ± 1.93 (!!)

(no radiative correction uncertainties)

HVP: other notable exclusive channels

KNT17: 22.76 ± 0.22

KNT17: 13.09 ± 0.12

HVP: region of inclusive data/pQCD

 $\Rightarrow \text{New KEDR inclusive } R \text{ data ranging } 1.84 \leq \sqrt{s} \leq 3.05 \text{ GeV} \text{ [Phys.Lett. B770 (2017) 174-181]} \text{ and } 3.12 \leq \sqrt{s} \leq 3.72 \text{ GeV} \text{ [Phys.Lett. B753 (2016) 533-541]}$

 \Rightarrow Choose to adopt entirely data driven estimate from threshold to 11.2 GeV

aSM: update HLMNT11 \rightarrow KNT17 presented @ TGM2

	<u>2011</u>		<u>2017</u>	* to be discussed
QED	11658471.81 (0.02)	\longrightarrow	11658471.90 (0.01) [Ph	ys. Rev. Lett. 109 (2012) 111808]
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Ph	ys. Rev. D 88 (2013) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EF	PJ Web Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20) [Ph	ys. Lett. B 735 (2014) 90] *
	HLMNT11		<u>KNT17</u>	
LO HVP	694.91 (4.27)	\longrightarrow	692.23 <mark>(2.54)</mark> tl	nis work*
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.83 (0.04) th	nis work*
NNLO HVP			1.24 (0.01) [Pr	nys. Lett. B 734 (2014) 144] \star
Theory total	11659182.80 <mark>(4.94)</mark>	\longrightarrow	11659181.00 (3.62) tł	nis work
Experiment			11659209.10 (6.33) w	orld avg
Exp - Theory	26.1 (8.0)	\longrightarrow	28.1 (7.3) th	nis work
Δa_{μ}	3.3σ	\rightarrow	3.9σ t	his work

a_μ: New Physics?

• Many BSM studies use g-2 as constraint or even motivation

- Needs μ >0, `light' SUSY-scale Λ and/or large tan β to explain 281 x 10⁻¹¹
- This is already excluded by LHC searches in the simplest SUSY scenarios (like CMSSM); causes large χ^2 in simultaneous SUSY-fits with LHC data and g-2
- However: * SUSY does not have to be minimal (w.r.t. Higgs),
 - * could have large mass splittings (with lighter sleptons),
 - * be hadrophobic/leptophilic,
 - * or not be there at all, but don't write it off yet...

New Physics? just a few of many recent studies

- Don't have to have full MSSM (like coded in GM2Calc [by Athron, ..., Stockinger et al., EPJC 76 (2016) 62], which includes all latest two-loop contributions), and
- extended Higgs sector could do, see, e.g. Stockinger et al., JHEP 1701 (2017) 007, `The muon magnetic moment in the 2HDM: complete two-loop result'
- → lesson: 2-loop contributions can be highly relevant in both cases; one-loop analyses can be misleading
- **1 TeV Leptoquark** Bauer + Neubert, PRL 116 (2016) 141802

one new scalar could explain several anomalies seen by BaBar, Belle and LHC in the flavour sector (e.g. violation of lepton universality in B -> Kll, enhanced B -> Dτν) and solve g-2, while satisfying all bounds from LEP and LHC

New Physics? just a few of many recent examples

• light Z' can evade many searches involving electrons by non-standard couplings preferring heavy leptons (but see BaBar's direct search limits in a wide mass range, PRD 94 (2016) 011102), or invoke flavour off-diagonal Z' to evade constraints [Altmannshofer et al., PLB 762 (2016) 389]

- axion-like particle (ALP), contributing like π^{0} in HLbL [Marciano et al., PRD 94 (2016) 115033]
- `dark photon' like fifth force particle [Feng et al., PRL 117 (2016) 071803]

 \rightarrow see talks by M. Pospelov, A. Filippi, I. Jaegle

Conclusions/Outlook:

- All sectors of the Standard Model prediction of g-2 have been scrutinised a lot in recent years
- The basic picture has not changed, but recent data, many from ISR, significantly improve the prediction for a_{μ}^{HVP} $a_{\mu}^{had,L}$

- With further hadronic data in the pipeline, also on FFs for HLbL, and efforts from lattice, the goal of squeezing Δa_{μ}^{SM} is in reach
- Many approaches to explain the discrepancy with NP, linking g-2 with other precision observables, the flavour sector, dark matter and direct searches, but so far NP only (con)strained...

