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Motivation

❖ He (750), whose name shall not be spoken …

❖ Spin-0 gauge singlets play an important role in many 
extensions of the SM, e.g. as mediators to a hidden 
(dark) sector or in solutions to the strong CP problem

❖ Determining the CP nature of such a new particle will 
be a top priority once it has been discovered 



Motivation
❖ Consider a spin-0 particle S, which is a singlet under the 

SM gauge group

❖ Its only renormalizable interactions with the SM arise 
through the Higgs portals:

❖ First term gives rise to a mixing of S with the Higgs, with 
mixing angle                        which naturally can be large

❖ Affects Higgs phenomenology (α must be small) and 
potentially the phenomenology of S decays

MITP/16-067
July 4, 2016

Analyzing the CP Nature of a New Scalar Particle via S ! Zh Decay

Martin Bauera, Matthias Neubertb,c, and Andrea Thammb

aInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
bPRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany

cDepartment of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

Scalar particles S which are singlets under the Standard Model gauge group are generic features
of many models of fundamental physics, in particular as possible mediators to a hidden sector. We
show that the decay S ! Zh provides a powerful probe of the CP nature of the scalar, because it is
allowed only if S has CP-odd interactions. We perform a model-independent analysis of this decay
using an e↵ective Lagrangian and compute the relevant Wilson coe�cients arising from integrating
out heavy fermions to one-loop order.

I. INTRODUCTION

Pseudoscalar singlets play an important role in various
extensions of the Standard Model (SM). They appear,
e.g., as mediators to a dark sector or in solutions to the
strong CP problem. Searches at the LHC focus on the
model-specific signals of these new states, which often
do not reveal their pseudoscalar nature – the phantom
digamma excess seen in the first 13TeV data [1, 2] could
have been an example of such a signal. Identifying the
CP properties of such a new state will be one of the top
priorities if a signal is seen in future data.

Let us consider a new spin-0 particle S, which is a
gauge singlet under the SM gauge group. Assuming its
mass is much larger than the electroweak scale, its inter-
actions can be described in terms of local operators in
the unbroken phase of the electroweak gauge symmetry.
At the renormalizable level, the only interactions of S
with SM particles arise from the Higgs portals

L
portal

= ��
1

S �†�� �
2

2
S2 �†� , (1)

where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have
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by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
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II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read
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c̃gg
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S Ga
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eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have

[Bauer, MN 2016; Dawson, Lewis 2016; …]



Motivation
❖ Finding ways of suppressing the coupling λ1 is a 

challenge to model building (coupling λ2 is harmless)

❖ Two options:

❖ dynamically, e.g. sequestering in WEDs, where λ1 is 
suppressed by a small wave-function overlap or a 
loop factor

❖ by means of a discrete symmetry, such as CP 
invariance, as λ1 is forbidden if S is a pseudoscalar 
boson

[Carmona, Goertz, Papaefstathiou 2016]

[Bauer, Hörner, MN 2016; Csaki, Randall 2016]



Motivation

❖ How can one probe is S if a scalar (CP even), a 
pseudoscalar (CP odd), or a particle with mixed CP 
properties?

❖ Traditionally (Higgs case):

❖ study angular distributions in S → ZZ → 4l decay 

❖ but method requires large statistics and fails if S only 
weakly couples to Z bosons 

[Soni, Xu 1993; Chala et al. 2016; Franceschini et al. 2016]



Motivation

❖ Our idea:

❖ search for the decay S → Z+h (→ l+l-bb), which can 
only be mediated via CP-odd interactions of S

❖ observing a single event proves that S is a pseudo-
scalar (if CP is conserved in the UV theory), or that    
it has pseudoscalar interactions (in case it is a mixture 
of CP eigenstates)



Introductory remarks

❖ We assume that S is heavy enough to decay into Z+h, 
i.e. mS > 2l6 GeV

❖ For illustration we will sometimes consider the cases   
mS = 750 GeV and mS = 1.5 TeV

❖ An analogous discussion can be made for the Higgs 
decay h → Z+A involving a light pseudoscalar A with 
mass mA < 34 GeV (work in progress) [with M. Bauer, A. Thamm]



Introductory remarks
❖ Besides the Higgs portals, all other interactions of S with 

SM particles arise from higher-dimensional operators 
starting at dimension 5

❖ The pseudoscalar couplings at D=5 order are:

❖ They induce couplings such as gg → S, S → γγ, S → ZZ,  
S → tt etc.

MITP/16-067
July 4, 2016

Analyzing the CP Nature of a New Scalar Particle via S ! Zh Decay

Martin Bauera, Matthias Neubertb,c, and Andrea Thammb

aInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
bPRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany

cDepartment of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

Scalar particles S which are singlets under the Standard Model gauge group are generic features
of many models of fundamental physics, in particular as possible mediators to a hidden sector. We
show that the decay S ! Zh provides a powerful probe of the CP nature of the scalar, because it is
allowed only if S has CP-odd interactions. We perform a model-independent analysis of this decay
using an e↵ective Lagrangian and compute the relevant Wilson coe�cients arising from integrating
out heavy fermions to one-loop order.

I. INTRODUCTION

Pseudoscalar singlets play an important role in various
extensions of the Standard Model (SM). They appear,
e.g., as mediators to a dark sector or in solutions to the
strong CP problem. Searches at the LHC focus on the
model-specific signals of these new states, which often
do not reveal their pseudoscalar nature – the phantom
digamma excess seen in the first 13TeV data [1, 2] could
have been an example of such a signal. Identifying the
CP properties of such a new state will be one of the top
priorities if a signal is seen in future data.

Let us consider a new spin-0 particle S, which is a
gauge singlet under the SM gauge group. Assuming its
mass is much larger than the electroweak scale, its inter-
actions can be described in terms of local operators in
the unbroken phase of the electroweak gauge symmetry.
At the renormalizable level, the only interactions of S
with SM particles arise from the Higgs portals

L
portal

= ��
1

S �†�� �
2

2
S2 �†� , (1)

where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
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2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (4) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

S ! Zh ! l+l�bb̄ [20].

II. EFFECTIVE LAGRANGIAN ANALYSIS
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e↵ =

c̃gg
M

↵s
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S Ga
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where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have
a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[21]. It is thus reasonable to assume that the dominant
couplings are those to the third-generation quarks, which
for a pseudoscalar S and in unitary gauge can be param-
eterized in the form

Lferm
e↵ 3 �c̃tt

mt

M

✓
1 +

h

v

◆
S t̄ i�5 t+ [t ! b] . (3)

Via the second term the resonance S can be produced in
bottom-quark fusion at the LHC [22, 23].

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that, in many new-physics scenarios ad-
dressing the diphoton anomaly, the masses of the heavy
particles which are integrated out are in the TeV range.
Otherwise it is di�cult to account for the relatively large
diphoton signal �(pp ! S ! ��) = (4.6 ± 1.2) fb [24].
When there is no significant mass gap between S and the
new sector containing these particles, then contributions
from operators with dimension D � 6 are not expected
to be strongly suppressed compared with those shown
above. Some of these operators induce new structures
not present at dimension-5 level.

A. Operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at renormaliz-
able level via the kinetic terms [25, 26]. However, this

requires the pseudoscalar S to be light (since the e↵ect
vanishes in the decoupling limit) and carry electroweak
quantum numbers. In this case the existence of CP-odd
couplings of the heavy scalar bosons can be related to
three U(2) invariants of the scalar potential [27]. For the
case of a gauge-singlet scalar considered here, no such
invariants exist. Moreover, the e↵ective Lagrangian up
to dimension 5 does not contain any polynomial opera-
tor which could mediate the decay S ! Zh at tree level.
The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (4)

where cw ⌘ cos ✓w and the last expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
is a consequence of the partial conservation of the Higgs
current,

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3 mf f̄ i�5f , (5)

where T f
3 is the third component of weak isospin. The

resulting operators are of the same form as those in (3)
and do not give rise to a tree-level S ! Zh matrix el-
ement. Indeed, adding up the diagrams shown in Fig-
ure 1 one finds that the tree-level S ! Zh matrix ele-
ment of the operator in (4) vanishes identically, and the
same is true for the S ! Zhh matrix element.1 Impor-
tantly, however, in extensions of the SM containing heavy
particles whose masses arise (or receive their dominant
contributions) from electroweak symmetry breaking, the
non-polynomial operator

O5 = (@µS)
�
�†iDµ �+ h.c.

�
ln

�†�

µ2
(6)

can be induced [29]. Using an integration by parts and
the equations of motion, and neglecting fermionic terms
which do not contribute to S ! Zh decay at tree level,
this operator can be reduced to

O5 =̂ � S
�
�†iDµ �+ h.c.

� @µ(�†�)

�†�

! g

cw
S Zµ (v + h) @µh .

(7)

This gives rise to non-vanishing S ! Zh and S ! Zhh
matrix elements. At one-loop order, the S ! Zh decay
amplitude also receives a contribution from an operator
containing quark fields, and since the Higgs boson couples
proportional to the quark mass it su�ces to consider the

1 In [28] the operator in (4) was used to illustrate new-physics
e↵ects which could induce the Higgs decay h ! Z� into a hypo-
thetical, light scalar particle �. However, we find that its contri-
bution vanishes when all graphs shown in Figure 1 are included.

2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3

mf f̄ i�
5

f , (4)

where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
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t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate
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where xi = m2
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S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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Scalar particles S which are singlets under the Standard Model gauge group are generic features
of many models of fundamental physics, in particular as possible mediators to a hidden sector. We
show that the decay S ! Zh provides a powerful probe of the CP nature of the scalar, because it is
allowed only if S has CP-odd interactions. We perform a model-independent analysis of this decay
using an e↵ective Lagrangian and compute the relevant Wilson coe�cients arising from integrating
out heavy fermions to one-loop order.

I. INTRODUCTION

Pseudoscalar singlets play an important role in various
extensions of the Standard Model (SM). They appear,
e.g., as mediators to a dark sector or in solutions to the
strong CP problem. Searches at the LHC focus on the
model-specific signals of these new states, which often
do not reveal their pseudoscalar nature – the phantom
digamma excess seen in the first 13TeV data [1, 2] could
have been an example of such a signal. Identifying the
CP properties of such a new state will be one of the top
priorities if a signal is seen in future data.

Let us consider a new spin-0 particle S, which is a
gauge singlet under the SM gauge group. Assuming its
mass is much larger than the electroweak scale, its inter-
actions can be described in terms of local operators in
the unbroken phase of the electroweak gauge symmetry.
At the renormalizable level, the only interactions of S
with SM particles arise from the Higgs portals

L
portal

= ��
1

S �†�� �
2

2
S2 �†� , (1)

where � is the Higgs doublet. The first term gives rise to
a mixing between S and the Higgs boson, with a mixing
angle ↵ ⇠ v�

1

/m2

S . The coupling �
1

is naturally of order
the UV cuto↵ of the theory, but at least of order mS , and
hence one expects ↵ > v/mS . However, this mixing will
a↵ect the phenomenology of Higgs decay rates, and so
in practice ↵ must be small. The example of the elusive
750GeV diphoton resonance [1, 2] has demonstrated that
tight bounds on ↵ can also be derived from the decays
S ! ZZ, WW , tt̄, hh [3, 4]. The portal coupling �

2

, on
the other hand, does not give rise to dangerous e↵ects.

It is therefore a challenge to model building to find
ways of suppressing the coupling �

1

, either by means of
a symmetry or dynamically. A discrete Z

2

symmetry un-
der which S changes sign would enforce �

1

= 0. If the
ultraviolet theory is (at least approximately) CP invari-
ant, then neutral particles can be classified as CP eigen-
states. If S is a CP-odd pseudoscalar (JPC = 0�+), �

1

must be zero. A nice example of a dynamical suppression
is provided by models in which S is identified with the
lowest mode of a Z

2

-odd bulk scalar in a warped extra
dimension [3, 5]. When the Higgs sector is localized on

the IR brane, its coupling to S is either suppressed by
a small wave-function overlap or by a loop factor. Here
we entertain the possibility of eliminating the portal cou-
pling �

1

by supposing that S is a CP-odd pseudoscalar,
e.g. an axion-like particle.
Measurements of angular distributions in S ! ZZ !

4l or S ! Z� ! 4l decays have been considered as a way
of probing the spin and CP properties of a new resonance
[6, 7], in analogy with the corresponding measurements
in Higgs decays [8]. However, the rates for these decays
are likely to be quite small, since a gauge-singlet S has
no renormalizable couplings to gauge bosons. Hence it
may require very large statistics to perform these analy-
ses. In this Letter we propose the decay S ! Zh, which
is strictly forbidden for a CP-even scalar, as a novel and
independent way to test the spin and CP quantum num-
bers of a new particle S. The very existence of this decay
would constitute a smoking-gun signal for a pseudoscalar
nature of S (or for significant CP-odd couplings, in case
S is a state with mixed CP quantum numbers), without
the need to analyze angular distributions. The observa-
tion of this decay would also exclude a spin-2 explana-
tion of a hypothetical new resonance [9]. To the best
of our knowledge this signature has not been studied in
the literature. Established experimental searches in the
context of two-Higgs-doublet models can be adapted for
the proposed search. The most promising decay mode is
S ! Zh ! l+l�bb̄ [10].

II. EFFECTIVE LAGRANGIAN ANALYSIS

At the level of dimension-5 operators, the most general
couplings of a CP-odd scalar to gauge bosons read

Lgauge

e↵

=
c̃gg
M

↵s

4⇡
S Ga

µ⌫
eGµ⌫,a + . . . , (2)

where M denotes the new-physics scale, and the dots
represent analogous couplings to the SU(2)L and U(1)Y
gauge bosons. Via this operator the resonance S can be
produced in gluon fusion at the LHC. The most general
dimension-5 couplings of S to fermions have the same
form as the SM Yukawa interactions times S/M , and
with the Yukawa matrices replaced by some new matri-
ces. In any realistic model these couplings must have
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Caveat:  EFT does not really make sense if MNP~mS !



Operator analysis of S→Z+h decay
(not in 2HDM, but for a SM gauge singlet!)



Operator analysis at D=5
❖ There does not exist a dimension-5 operator giving rise 

to a tree-level S → Z+h matrix element!

❖ The obvious candidate

can be eliminated using the equations of motion:

❖ The corresponding S → Zh(h) matrix elements vanish!
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current

@µ
�
�†iDµ �+ h.c.

� ! �
⇣
1+

h

v

⌘X

f

2T f
3

mf f̄ i�
5

f , (4)

where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
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t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1
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2m2

t � xm2

h � zm2

Z

m2

t � xzm2
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Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2
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5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current
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where T f
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is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
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the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is
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where T t
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. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
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t , the function F is formally suppressed by a factor
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S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate
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We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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the operator in (3) to S ! Zh decay. The internal dashed
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
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�†iDµ �+ h.c.
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2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current
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where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is
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S is
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with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2
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t , the function F is formally suppressed by a factor
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S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate
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We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
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lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
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erator which could mediate the decay S ! Zh at tree
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
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a hierarchical structure in the mass basis in order to be
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[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
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keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
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e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.
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The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
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unitary gauge, can be reduced to operators containing
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element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
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S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-

2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
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matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)
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integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
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[11]. It is thus reasonable to assume that the dominant
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are in the TeV range. When there is no significant mass
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operators with dimension D � 6 are not expected to be
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e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
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erator which could mediate the decay S ! Zh at tree
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fields, and since the Higgs boson couples proportional to
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where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate
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resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to
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[11]. It is thus reasonable to assume that the dominant
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troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
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tributing to the decay S ! Zh are shown in Figure 2.
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in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
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light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2
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cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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fermions in the loop are negligible. Evaluating the inte-
gral for mt ⌘ mt(mS) = 146.77GeV and with the physi-
cal Higgs and Z-boson masses gives F ⇡ �0.009+0.673 i.
It is instructive to study the behavior of the function F
in more detail, neglecting for simplicity the small e↵ects
due to m2

h and m2
Z . In the limit m2
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S , we obtain
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This function is formally suppressed by a factor m2
t/m

2
S ,

and its real part is accidentally small. The imagi-
nary part, on the other hand, is enlarged by a factor
2⇡ ln(m2

S/m
2
t ), and as a result |F | is numerically of O(1).

If the dominant contribution to the S ! Zh decay am-
plitude is indeed related to the top-quark contribution
proportional to ct5, then we can derive a relation between
the S ! Zh and S ! tt̄ rates. It reads

�(S ! Zh)
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=

3y2t
16⇡2

⇣mS

4⇡v

⌘2

|F |2 �
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1� 4xt
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which evaluates to 3.6 · 10�4. The present experimental
upper bound on the S ! tt̄ rate of about 0.7 pb at

p
s =

8TeV [30] yields �(pp ! S ! tt̄) < 3.2 pb at 13TeV
under the assumption of gluon-initiated production. Re-
lation (17) then implies �(pp ! S ! Zh)top < 1.2 fb.

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (15) much larger
than the mass of the resonance S, i.e. m2

t � m2
S . In this

case the parameter integral yields F = 1 + O(m2
S/m

2
t ).

The fermion is a very heavy particle, which should be
integrated out from the low-energy theory. The contri-
bution (14) then corresponds to a matching contribution
to the Wilson coe�cient of a local dimension-5 opera-
tor, suppressed by only a single power of M . Close in-
spection shows that the leading term corresponds to a
matching contribution to the operator O5 in (6). The
non-polynomial structure arises because the particle in-
tegrated out (the hypothetical heavy fermion) receives its
mass from electroweak symmetry breaking, so it is heavy
only in the broken phase of the theory. The equivalent
form of the operator shown in (7) can readily be mapped
onto the structure of the parameter integral in (15). Con-
sider, as an illustration, a sequential fourth generation of
heavy leptons, and assume that the heavy charged state
L has mass mL > mS/2 and a coupling c̃LL to the pseu-
doscalar resonance defined in analogy to (3). Integrating
out this heavy lepton generates the contribution

C5 =
y2L c̃LL

16⇡2
=

m2
L c̃LL

8⇡2v2
> 0.03 c̃LL (18)

to the Wilson coe�cient of the operator O5. Comparison
with (13) indicates that, for c̃LL = O(1) of natural size, it
would be possible in this case to obtain a S ! Zh decay
rate close to the present experimental upper bound.

There is an interesting subtlety related to the calcu-
lation of F worth pointing out. We have obtained the

result (14) using the naive definition of �5, such that
{�µ, �5} = 0. It is well know that this scheme is not
consistent beyond tree level. We have thus repeated the
calculation using the ‘tHooft-Veltman (HV) scheme [31],
in which �5 anticommutes with �µ for µ = 0, 1, 2, 3, while
it commutes with the remaining (d� 4) �µ matrices. We
then find an additional, gauge-dependent contribution to
F given by

�FHV = �1� 2

3

6m2
t �m2

S

m2
S � ⇠m2

Z

. (19)

Note the peculiar feature that in unitary gauge (⇠ = 1)
this contribution would have the e↵ect of subtracting
the leading asymptotic contribution to F in the limit
m2

t � m2
S , leaving a result which formally corresponds

to the matrix element of a dimension-7 operator. This
seems to contradict the conclusion drawn above. How-
ever, it is well known that the HV scheme (like any other
consistent scheme for implementing �5 in dimensional
regularization) violates the chiral Ward identities of the
electroweak theory [32]. In our case, the relevant Ward
identity takes the form

kµ�
µ(k) = �imZ �(k) , (20)

where �µ(k) is the proper vertex function of an on-shell S
decaying to an on-shell Higgs boson and a Z-boson cur-
rent with momentum k, while �(k) is the corresponding
proper vertex function with the current replaced by the
Goldstone boson '3. The Ward identity must be restored
by means of appropriate counterterms. We find that,
when this is done consistently, the counterterm contribu-
tion to the S ! Zh decay amplitude precisely cancels the
extra term in (19), so that we recover the result obtained
using the naive definition of �5. This finding should not
come as a surprise. In [33] a consistent scheme for imple-
menting �5 in dimensional regularization was proposed,
which for traces involving an even number of �5 matri-
ces yields results identical to those obtained in the naive
scheme with anticommuting �5.

III. HEAVY VECTOR-LIKE FERMIONS

It is instructive to illustrate our findings with a con-
crete new-physics model, which generates the e↵ective
interactions of the scalar resonance with SM particles via
loop diagrams involving heavy vector-like fermions that
are mixed with the SM fermions. Such a scenario is real-
ized, e.g., in models of partial compositeness or warped
extra dimension [34–36]. We consider an SU(2)L dou-
blet  = (T B)T of vector-like quarks with hypercharge
Y = 1

6 , which mixes with the third-generation quark
doublet of the SM. The most general Lagrangian is

L =  ̄ (i /D �M) + Q̄L i /DQL + t̄R i /D tR + b̄R i /D bR

� yt
�
Q̄L�̃ tR + h.c.
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�
, (21)

F ⇡ �0.01 + 0.67i
F ⇡ �0.09 + 0.23i



Operator analysis at D=5
❖ We find                                                                 

in both cases, which is a very small decay rate

❖ If the decay into top-quark pairs is kinematically 
allowed, one obtains

yielding 3.6·10-4 (1.8·10-4) for mS = 750 GeV (1.5 TeV)

2

FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
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keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
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The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
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For the case of a gauge-singlet scalar considered here no
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up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
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in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
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integral with mt ⌘ mt(mS) and with the physical Higgs
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a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
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where T f
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resulting operators do not give rise to a tree-level S ! Zh
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FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.
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This ratio evaluates to 3.6 · 10�4 for mS = 750GeV and
1.8 · 10�4 for mS = 1.5TeV. The present experimen-
tal upper bounds on the corresponding S ! tt̄ rates of
about 0.7 pb and 65 fb at

p
s = 8TeV [15] yield �(pp !

S
750

! tt̄) < 3.2 pb and �(pp ! S
1500

! tt̄) < 0.6 pb
at

p
s = 13TeV under the assumption of gluon-initiated

production. Relation (9) then implies the bounds �(pp !
S
750

! Zh)D=5

< 1.1 fb and �(pp ! S
1500

! Zh)D=5

<
0.1 fb. These are two orders of magnitude smaller than
the present direct experimental upper limits �(pp !
S
750

! Zh) < 123 fb and �(pp ! S
1500

! Zh) < 40 fb
at

p
s = 13TeV [10].

B. D = 7 operator analysis of S ! Zh decay

The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2

t/m
2

S . If mS is not much smaller
than the new-physics scale M , the loop contributions
arising at dimension 7 can give rise to similar e↵ects.
Moreover, at dimension 7 there exists a unique operator
giving rise to a tree-level contribution to the S ! Zh
amplitude. It reads
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where in the second step we have used an integration by
parts and the equations of motion for the Higgs field,
neglecting the fermionic terms in (4), which do not con-
tribute to S ! Zh decay at tree level. The expression in
the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.

At one-loop order there exist several dimension-7 op-
erators contributing to the decay S ! Zh. Those which
mix with O
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plus analogous operators containing the right-handed
bottom quark. The dimension-6 operator proportional
to ct

6

contributes in conjunction with the operator in (5)
to give a contribution of order 1/M3.

Let us focus for a moment on the potentially dominant
tree-level contribution from the operator O

7

, which yields
the decay rate
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With C

7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in
this case. If we assume for simplicity that the resonance
is produced in gluon fusion, and that its dominant decay
is into dijets (S ! gg), the current experimental upper
bounds on the pp ! S ! Zh rates quoted above trans-
late into |C

7

| < 1.3 (M/TeV)3 for mS = 750GeV and
|C

7

| < 2.5 (M/TeV)3 for mS = 1.5TeV. The coupling
c̃gg in (2) cancels out in this case [3]. These estimates
show that S ! Zh rates close to the present experimen-
tal bounds are possible for reasonable parameter choices.

C. Non-polynomial operators

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (7) much larger
than the mass of the resonance S. Then the parameter
integral yields F = 1+O(m2

S/m
2

t ). The fermion is a very
heavy particle, which can be integrated out from the low-
energy theory. The contribution (6) then corresponds to
a one-loop matching contribution to the Wilson coe�-
cient of a local dimension-5 operator with a tree-level
S ! Zh matrix element. Our operator analysis in Sec-
tion IIA did not reveal the existence of such an operator.
However, in extensions of the SM containing heavy par-

ticles whose masses arise (or receive their dominant con-
tributions) from electroweak symmetry breaking, opera-
tors with a non-polynomial dependence on the Higgs field
can arise [16]. The non-polynomial structure appears be-
cause the particle integrated out (the hypothetical heavy
fermion) receives its mass from electroweak symmetry
breaking, so it is heavy only in the broken phase of the
theory. In our case, the relevant operator reads

O
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where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).
Consider, as an illustration, a sequential fourth genera-

tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the
pseudoscalar resonance defined in analogy to (5). Inte-
grating out this heavy lepton generates the contribution
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Operator analysis at D=5
❖ Under the assumption of S production in gluon fusion, 
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The contribution from Ctop
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where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
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Heavy vector-like quarks
❖ To illustrate our results, we have considered a heavy, 

SU(2)L doublet                       of vector-like quarks, which 
mix with the SM quarks

❖ The most general renormalizable Lagrangian reads:

❖ Tree-level matching gives:
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to the Wilson coe�cient C
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/M of the operator O
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ing this expression instead of Ctop
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in (8), we obtain the
upper bounds |c̃LL| < 1.3 (M/TeV) for mS = 750GeV
and |c̃LL| < 0.6 (M/TeV) for mS = 1.5TeV. In such a
model it would be natural to obtain S ! Zh decay rates
close to the present experimental upper bounds.
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yields a
loop correction to the T parameter given by ↵(mZ)T =
�⇧ZZ(0)/m2
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/(4⇡)2. Electroweak precision mea-
surements then imply |C

5

| < 0.66 at 95% confidence level
[22]. This constraint is much weaker than the bounds de-
rived from S ! Zh decay.

The operator O
5

and analogous non-polynomial op-
erators of higher dimension are absent in models where
the new heavy particles have masses not related to the
electroweak scale. We now study such a model in detail.

III. HEAVY VECTOR-LIKE FERMIONS

It is instructive to consider a concrete new-physics
model, which generates the e↵ective interactions of the
scalar resonance with SM particles via loop diagrams in-
volving heavy vector-like fermions that are mixed with
the SM fermions. Such a scenario is realized, e.g., in mod-
els of partial compositeness or warped extra dimension
[17–19]. We consider an SU(2)L doublet  = (T B)T of
vector-like quarks with hypercharge Y = 1

6

, which mixes
with the third-generation quark doublet of the SM. The
most general Lagrangian reads
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v

2/M2.
Likewise, the masses of the heavy T and B quarks are
split by a small amount MT �MB ⇡ (g2t � g2b ) v

2/(4M).
Integrating out the heavy fermion doublet at tree level,

by solving its equations of motion, we generate the op-
erators in the e↵ective Lagrangians (5) and (11) with
coe�cients c̃tt = �c
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gt/yt and (for f = t, b)
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The coe�cient cb
6

is constrained by precision measure-
ments of the Z-boson couplings to fermions performed
at LEP and SLD. A recent global analysis finds [20]
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where the pull away from zero is largely driven by the b-
quark forward-backward asymmetry AFB

b , whose exper-
imental value is about 2.8� smaller than the SM pre-
diction [21]. Our model can resolve this anomaly in a
natural way. It is likely that the coupling gt is at least
as large as gb, perhaps even significantly larger. In our
model the relation c̃bb/c̃tt = (gb/gt) (mt/mb) holds, and
hence the coupling of the resonance S to bottom quarks
defined in analogy with (5) can be rather large.
The coe�cient C

7

in (11) is induced at one-loop order
by diagrams such as those shown in Figure 2, where now
both heavy and light quarks can propagate in the loops.
In order to calculate C
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a proper matching onto the low-
energy theory must be performed. We obtain
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2

S on the right-hand side of this expression,
which is a consequence of the fact that there is no cor-
responding dimension-7 operator. There is a non-trivial
operator mixing, such that the scale dependence of the
coe�cient C

7

cancels against the scale dependence of the
one-loop matrix elements of the fermionic operators in
the e↵ective Lagrangian (11), see [23] for details. To es-
timate the dimension-7 contribution we set µ = mZ in
(18) and neglect the fermion-loop contributions in the
low-energy theory. All large logarithms L ⇡ 4.8 are in-
cluded in the Wilson coe�cient C

7

, for which we obtain,

assuming M ⇡ 1TeV in the argument of the logarithms,
the expression

C
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For natural values of the couplings this coe�cient can be
rather large. For example, with gt = 2 and gb = 0.87 set
by (17) we get C

7

⇡ (0.36 c
1

� 0.17 c̃tt). For a 750GeV
resonance produced in gluon fusion (and dominantly de-
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
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mixing induced by the couplings gi leads to modifica-
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2

S on the right-hand side of this expression,
which is a consequence of the fact that there is no cor-
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2

S on the right-hand side of this expression,
which is a consequence of the fact that there is no cor-
responding dimension-7 operator. There is a non-trivial
operator mixing, such that the scale dependence of the
coe�cient C

7

cancels against the scale dependence of the
one-loop matrix elements of the fermionic operators in
the e↵ective Lagrangian (11), see [23] for details. To es-
timate the dimension-7 contribution we set µ = mZ in
(18) and neglect the fermion-loop contributions in the
low-energy theory. All large logarithms L ⇡ 4.8 are in-
cluded in the Wilson coe�cient C

7

, for which we obtain,

assuming M ⇡ 1TeV in the argument of the logarithms,
the expression
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For natural values of the couplings this coe�cient can be
rather large. For example, with gt = 2 and gb = 0.87 set
by (17) we get C

7

⇡ (0.36 c
1

� 0.17 c̃tt). For a 750GeV
resonance produced in gluon fusion (and dominantly de-



Heavy vector-like quarks
❖ The coefficient      is constrained by precision 

measurements of the Z-boson couplings at LEP:

❖ The pull away from 0 is driven by the b-quark forward-
backward asymmetry, which is 2.8σ below its SM value

❖ Our model can easily account for this effect
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and |c̃LL| < 0.6 (M/TeV) for mS = 1.5TeV. In such a
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close to the present experimental upper bounds.

The e↵ective Lagrangian L
e↵

= (C
5

/M)O
5

yields a
loop correction to the T parameter given by ↵(mZ)T =
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surements then imply |C
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| < 0.66 at 95% confidence level
[22]. This constraint is much weaker than the bounds de-
rived from S ! Zh decay.
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5

and analogous non-polynomial op-
erators of higher dimension are absent in models where
the new heavy particles have masses not related to the
electroweak scale. We now study such a model in detail.
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It is instructive to consider a concrete new-physics
model, which generates the e↵ective interactions of the
scalar resonance with SM particles via loop diagrams in-
volving heavy vector-like fermions that are mixed with
the SM fermions. Such a scenario is realized, e.g., in mod-
els of partial compositeness or warped extra dimension
[17–19]. We consider an SU(2)L doublet  = (T B)T of
vector-like quarks with hypercharge Y = 1
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, which mixes
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v

2/M2.
Likewise, the masses of the heavy T and B quarks are
split by a small amount MT �MB ⇡ (g2t � g2b ) v

2/(4M).
Integrating out the heavy fermion doublet at tree level,

by solving its equations of motion, we generate the op-
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The coe�cient cb
6

is constrained by precision measure-
ments of the Z-boson couplings to fermions performed
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hence the coupling of the resonance S to bottom quarks
defined in analogy with (5) can be rather large.
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by diagrams such as those shown in Figure 2, where now
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2
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operator mixing, such that the scale dependence of the
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cancels against the scale dependence of the
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the e↵ective Lagrangian (11), see [23] for details. To es-
timate the dimension-7 contribution we set µ = mZ in
(18) and neglect the fermion-loop contributions in the
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For natural values of the couplings this coe�cient can be
rather large. For example, with gt = 2 and gb = 0.87 set
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the new heavy particles have masses not related to the
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v

2/M2.
Likewise, the masses of the heavy T and B quarks are
split by a small amount MT �MB ⇡ (g2t � g2b ) v

2/(4M).
Integrating out the heavy fermion doublet at tree level,

by solving its equations of motion, we generate the op-
erators in the e↵ective Lagrangians (5) and (11) with
coe�cients c̃tt = �c

2

gt/yt and (for f = t, b)

cf
6

= g2f , cf
7a = c

2

gf , cf
7b = c

1

g2f . (16)

The coe�cient cb
6

is constrained by precision measure-
ments of the Z-boson couplings to fermions performed
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where the pull away from zero is largely driven by the b-
quark forward-backward asymmetry AFB

b , whose exper-
imental value is about 2.8� smaller than the SM pre-
diction [21]. Our model can resolve this anomaly in a
natural way. It is likely that the coupling gt is at least
as large as gb, perhaps even significantly larger. In our
model the relation c̃bb/c̃tt = (gb/gt) (mt/mb) holds, and
hence the coupling of the resonance S to bottom quarks
defined in analogy with (5) can be rather large.
The coe�cient C
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in (11) is induced at one-loop order
by diagrams such as those shown in Figure 2, where now
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2

S on the right-hand side of this expression,
which is a consequence of the fact that there is no cor-
responding dimension-7 operator. There is a non-trivial
operator mixing, such that the scale dependence of the
coe�cient C

7

cancels against the scale dependence of the
one-loop matrix elements of the fermionic operators in
the e↵ective Lagrangian (11), see [23] for details. To es-
timate the dimension-7 contribution we set µ = mZ in
(18) and neglect the fermion-loop contributions in the
low-energy theory. All large logarithms L ⇡ 4.8 are in-
cluded in the Wilson coe�cient C
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, for which we obtain,

assuming M ⇡ 1TeV in the argument of the logarithms,
the expression
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For natural values of the couplings this coe�cient can be
rather large. For example, with gt = 2 and gb = 0.87 set
by (17) we get C

7

⇡ (0.36 c
1

� 0.17 c̃tt). For a 750GeV
resonance produced in gluon fusion (and dominantly de-
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v

2/M2.
Likewise, the masses of the heavy T and B quarks are
split by a small amount MT �MB ⇡ (g2t � g2b ) v
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where the pull away from zero is largely driven by the b-
quark forward-backward asymmetry AFB

b , whose exper-
imental value is about 2.8� smaller than the SM pre-
diction [21]. Our model can resolve this anomaly in a
natural way. It is likely that the coupling gt is at least
as large as gb, perhaps even significantly larger. In our
model the relation c̃bb/c̃tt = (gb/gt) (mt/mb) holds, and
hence the coupling of the resonance S to bottom quarks
defined in analogy with (5) can be rather large.
The coe�cient C
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in (11) is induced at one-loop order
by diagrams such as those shown in Figure 2, where now
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2

S on the right-hand side of this expression,
which is a consequence of the fact that there is no cor-
responding dimension-7 operator. There is a non-trivial
operator mixing, such that the scale dependence of the
coe�cient C
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cancels against the scale dependence of the
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v
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split by a small amount MT �MB ⇡ (g2t � g2b ) v

2/(4M).
Integrating out the heavy fermion doublet at tree level,

by solving its equations of motion, we generate the op-
erators in the e↵ective Lagrangians (5) and (11) with
coe�cients c̃tt = �c

2

gt/yt and (for f = t, b)

cf
6

= g2f , cf
7a = c

2

gf , cf
7b = c

1

g2f . (16)

The coe�cient cb
6

is constrained by precision measure-
ments of the Z-boson couplings to fermions performed
at LEP and SLD. A recent global analysis finds [20]

cb
6

= g2b = (0.76± 0.27)

✓
M

TeV

◆
2

, (17)

where the pull away from zero is largely driven by the b-
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imental value is about 2.8� smaller than the SM pre-
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natural way. It is likely that the coupling gt is at least
as large as gb, perhaps even significantly larger. In our
model the relation c̃bb/c̃tt = (gb/gt) (mt/mb) holds, and
hence the coupling of the resonance S to bottom quarks
defined in analogy with (5) can be rather large.
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where L = ln(M2/µ2). Note the absence of terms pro-
portional to m2

S on the right-hand side of this expression,
which is a consequence of the fact that there is no cor-
responding dimension-7 operator. There is a non-trivial
operator mixing, such that the scale dependence of the
coe�cient C
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cancels against the scale dependence of the
one-loop matrix elements of the fermionic operators in
the e↵ective Lagrangian (11), see [23] for details. To es-
timate the dimension-7 contribution we set µ = mZ in
(18) and neglect the fermion-loop contributions in the
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cluded in the Wilson coe�cient C
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For natural values of the couplings this coe�cient can be
rather large. For example, with gt = 2 and gb = 0.87 set
by (17) we get C
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� 0.17 c̃tt). For a 750GeV
resonance produced in gluon fusion (and dominantly de-
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in (8), we obtain the
upper bounds |c̃LL| < 1.3 (M/TeV) for mS = 750GeV
and |c̃LL| < 0.6 (M/TeV) for mS = 1.5TeV. In such a
model it would be natural to obtain S ! Zh decay rates
close to the present experimental upper bounds.
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loop correction to the T parameter given by ↵(mZ)T =
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surements then imply |C
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| < 0.66 at 95% confidence level
[22]. This constraint is much weaker than the bounds de-
rived from S ! Zh decay.

The operator O
5

and analogous non-polynomial op-
erators of higher dimension are absent in models where
the new heavy particles have masses not related to the
electroweak scale. We now study such a model in detail.

III. HEAVY VECTOR-LIKE FERMIONS

It is instructive to consider a concrete new-physics
model, which generates the e↵ective interactions of the
scalar resonance with SM particles via loop diagrams in-
volving heavy vector-like fermions that are mixed with
the SM fermions. Such a scenario is realized, e.g., in mod-
els of partial compositeness or warped extra dimension
[17–19]. We consider an SU(2)L doublet  = (T B)T of
vector-like quarks with hypercharge Y = 1
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, which mixes
with the third-generation quark doublet of the SM. The
most general Lagrangian reads
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where we neglect the small Yukawa coupling |yb| ⌧ 1 of
the bottom quark. The terms in the last line contain the
couplings to the pseudoscalar resonance S. The mass
mixing induced by the couplings gi leads to modifica-
tions of the masses and Yukawa couplings of the SM top
and bottom quarks by small amounts of order g2i v

2/M2.
Likewise, the masses of the heavy T and B quarks are
split by a small amount MT �MB ⇡ (g2t � g2b ) v

2/(4M).
Integrating out the heavy fermion doublet at tree level,

by solving its equations of motion, we generate the op-
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is constrained by precision measure-
ments of the Z-boson couplings to fermions performed
at LEP and SLD. A recent global analysis finds [20]
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where the pull away from zero is largely driven by the b-
quark forward-backward asymmetry AFB

b , whose exper-
imental value is about 2.8� smaller than the SM pre-
diction [21]. Our model can resolve this anomaly in a
natural way. It is likely that the coupling gt is at least
as large as gb, perhaps even significantly larger. In our
model the relation c̃bb/c̃tt = (gb/gt) (mt/mb) holds, and
hence the coupling of the resonance S to bottom quarks
defined in analogy with (5) can be rather large.
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in (11) is induced at one-loop order
by diagrams such as those shown in Figure 2, where now
both heavy and light quarks can propagate in the loops.
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.

a hierarchical structure in the mass basis in order to be
consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.

When using an e↵ective Lagrangian to describe the
production and decays of the resonance S one should
keep in mind that in many new-physics scenarios the
masses of the heavy particles which are integrated out
are in the TeV range. When there is no significant mass
gap between S and the new sector, contributions from
operators with dimension D � 6 are not expected to be
strongly suppressed. Some of these operators can induce
new structures not present at dimension-5 level.

A. D = 5 operator analysis of S ! Zh decay

The decay S ! Zh has been studied in the context of
two-Higgs-doublet models, where it arises at the renor-
malizable level via the kinetic terms [12, 13]. However,
this requires the pseudoscalar S to be light (since the
e↵ect vanishes in the decoupling limit) and carry elec-
troweak quantum numbers. In this case the existence of
CP-odd couplings of the heavy scalar bosons can be re-
lated to three U(2) invariants of the scalar potential [14].
For the case of a gauge-singlet scalar considered here no
such invariants exist. Moreover, the e↵ective Lagrangian
up to dimension 5 does not contain any polynomial op-
erator which could mediate the decay S ! Zh at tree
level. The obvious candidate

(@µS)
�
�†iDµ �+ h.c.

� ! � g

2cw
(@µS)Zµ (v + h)2 , (3)

where cw ⌘ cos ✓w and the second expression holds in
unitary gauge, can be reduced to operators containing
fermionic currents using the equations of motion. This
follows from the partial conservation of the Higgs current
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where T f
3

is the third component of weak isospin. The
resulting operators do not give rise to a tree-level S ! Zh
matrix element. Indeed, adding up the diagrams shown
in Figure 1 one finds that the tree-level S ! Zh matrix
element of the operator in (3) vanishes identically, and
the same is true for the S ! Zhh matrix element.

At one-loop order, the S ! Zh decay amplitude re-
ceives a contribution from an operator containing quark
fields, and since the Higgs boson couples proportional to

FIG. 2. Top-loop contributions to S ! Zh decay. We omit a
mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
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S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
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where T t
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. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral
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with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
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S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate
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S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-
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FIG. 1. Tree-level diagrams representing the contribution of
the operator in (3) to S ! Zh decay. The internal dashed
line in the third graph represents the Goldstone boson '3.
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consistent with the strong constraints from flavor physics
[11]. It is thus reasonable to assume that the dominant
couplings are those to the top quarks, see (5) below.
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mirror copy of the first graph with a di↵erent orientation of
the fermion loop and diagrams involving Goldstone bosons.

the quark mass it su�ces to consider the term involving
the top quark. The relevant Lagrangian is

LD=5

e↵

= �c̃tt
yt
M

S
⇣
iQ̄L�̃ tR + h.c.

⌘
, (5)

where QL is the third-generation left-handed quark dou-
blet and �̃ = ✏�⇤. The one-loop Feynman diagrams con-
tributing to the decay S ! Zh are shown in Figure 2.
Analogous diagrams involving electroweak gauge bosons
in the loop vanish, since it is impossible to saturate the
Lorentz indices of the ✏µ⌫↵� tensor associated with the
dual field strength in CP-odd interactions such as (2).
We have evaluated the diagrams in Figure 2 in a general
R⇠ gauge. The resulting decay amplitude is

iA(S ! Zh) = �2mZ ✏⇤Z · ph
M

Ctop

5

,

with Ctop

5

= �Nc y
2

t

8⇡2

T t
3

c̃tt F ,

(6)

where T t
3

= 1

2

. The Z boson is longitudinally polarized,
and hence the structure 2mZ ✏⇤Z · ph ⇡ 2pZ · ph ⇡ m2

S is
proportional to the mass squared of the heavy particle.
The quantity F denotes the parameter integral

F =

Z
1

0

d[xyz]
2m2

t � xm2

h � zm2

Z

m2

t � xzm2

S � xym2

h � yzm2

Z � i0
, (7)

with d[xyz] ⌘ dx dy dz �(1� x� y � z). The factor y2t =
2m2

t/v
2 in (6) ensures that analogous contributions from

light fermions in the loop are negligible. Evaluating the
integral with mt ⌘ mt(mS) and with the physical Higgs
and Z-boson masses gives F ⇡ �0.010+0.673 i for mS =
750GeV and F ⇡ �0.092 + 0.230 i for mS = 1.5TeV,
where here and below we pick two representative values
for the mass of the pseudoscalar resonance. For m2

S �
m2

t , the function F is formally suppressed by a factor
m2

t/m
2

S , but its imaginary part is numerically enhanced.
From the amplitude (6) we obtain the decay rate

�(S ! Zh)D=5

=
m3

S

16⇡M2

��Ctop

5

��2 �3/2(1, xh, xZ) , (8)

where xi = m2

i /m
2

S and �(x, y, z) = (x � y � z)2 � 4yz.
We find �(S ! Zh)D=5

⇡ 0.6MeV c̃2tt (TeV/M)2 in both
cases, which for c̃tt = O(1) is a very small partial rate.
Under the assumption that the dominant contribution to
the S ! Zh decay amplitude indeed arises at dimen-
sion 5, one can derive a model-independent relation be-

mt � mS

F = 1 +O(m2
S/m

2
t )



Operator analysis at D=5

❖ This yields a short-distance, D=5 matching contribution!

❖ However, we found that no corresponding dimension-5 
operator exists on the effective Lagrangian!?!

❖ What’s going on?



Land of confusion

❖ One finds that the result for the top-quark loop graphs 
depends on the treatment of γ5

❖ Our result was obtained using the NDA scheme; in the 
’t Hooft-Veltman (HV) scheme we find an extra term (in 
unitary gauge)                      , which precisely cancels the 
asymptotic value of F and hence turns the amplitude 
into a D=7 contribution!

❖ Is this the solution to the puzzle?

�FHV = �1



Land of confusion
❖ No, since there is no corresponding D=7 operator whose 

matrix element is proportional to mS2/M2 !

❖ Also, the result of the calculation is gauge dependent:

❖ The HV scheme breaks the Ward identities of chiral gauge 
theories, in our case:

❖ When these are restored by finite counter-terms, one 
recovers the previous result found in the NDA scheme!

4

fermions in the loop are negligible. Evaluating the inte-
gral for mt ⌘ mt(mS) = 146.77GeV and with the physi-
cal Higgs and Z-boson masses gives F ⇡ �0.009+0.673 i.
It is instructive to study the behavior of the function F
in more detail, neglecting for simplicity the small e↵ects
due to m2

h and m2
Z . In the limit m2

t ⌧ m2
S , we obtain

F = �m2
t

m2
S

✓
ln

m2
S

m2
t

� i⇡

◆2

+O
✓
m4

t

m4
S

◆
. (16)

This function is formally suppressed by a factor m2
t/m

2
S ,

and its real part is accidentally small. The imagi-
nary part, on the other hand, is enlarged by a factor
2⇡ ln(m2

S/m
2
t ), and as a result |F | is numerically of O(1).

If the dominant contribution to the S ! Zh decay am-
plitude is indeed related to the top-quark contribution
proportional to ct5, then we can derive a relation between
the S ! Zh and S ! tt̄ rates. It reads

�(S ! Zh)

�(S ! tt̄)
=

3y2t
16⇡2

⇣mS

4⇡v

⌘2

|F |2 �
3/2(1, xh, xZ)p

1� 4xt
, (17)

which evaluates to 3.6 · 10�4. The present experimental
upper bound on the S ! tt̄ rate of about 0.7 pb at

p
s =

8TeV [30] yields �(pp ! S ! tt̄) < 3.2 pb at 13TeV
under the assumption of gluon-initiated production. Re-
lation (17) then implies �(pp ! S ! Zh)top < 1.2 fb.

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (15) much larger
than the mass of the resonance S, i.e. m2

t � m2
S . In this

case the parameter integral yields F = 1 + O(m2
S/m

2
t ).

The fermion is a very heavy particle, which should be
integrated out from the low-energy theory. The contri-
bution (14) then corresponds to a matching contribution
to the Wilson coe�cient of a local dimension-5 opera-
tor, suppressed by only a single power of M . Close in-
spection shows that the leading term corresponds to a
matching contribution to the operator O5 in (6). The
non-polynomial structure arises because the particle in-
tegrated out (the hypothetical heavy fermion) receives its
mass from electroweak symmetry breaking, so it is heavy
only in the broken phase of the theory. The equivalent
form of the operator shown in (7) can readily be mapped
onto the structure of the parameter integral in (15). Con-
sider, as an illustration, a sequential fourth generation of
heavy leptons, and assume that the heavy charged state
L has mass mL > mS/2 and a coupling c̃LL to the pseu-
doscalar resonance defined in analogy to (3). Integrating
out this heavy lepton generates the contribution

C5 =
y2L c̃LL

16⇡2
=

m2
L c̃LL

8⇡2v2
> 0.03 c̃LL (18)

to the Wilson coe�cient of the operator O5. Comparison
with (13) indicates that, for c̃LL = O(1) of natural size, it
would be possible in this case to obtain a S ! Zh decay
rate close to the present experimental upper bound.

There is an interesting subtlety related to the calcu-
lation of F worth pointing out. We have obtained the

result (14) using the naive definition of �5, such that
{�µ, �5} = 0. It is well know that this scheme is not
consistent beyond tree level. We have thus repeated the
calculation using the ‘tHooft-Veltman (HV) scheme [31],
in which �5 anticommutes with �µ for µ = 0, 1, 2, 3, while
it commutes with the remaining (d� 4) �µ matrices. We
then find an additional, gauge-dependent contribution to
F given by

�FHV = �1� 2

3

6m2
t �m2

S

m2
S � ⇠m2

Z

. (19)

Note the peculiar feature that in unitary gauge (⇠ = 1)
this contribution would have the e↵ect of subtracting
the leading asymptotic contribution to F in the limit
m2

t � m2
S , leaving a result which formally corresponds

to the matrix element of a dimension-7 operator. This
seems to contradict the conclusion drawn above. How-
ever, it is well known that the HV scheme (like any other
consistent scheme for implementing �5 in dimensional
regularization) violates the chiral Ward identities of the
electroweak theory [32]. In our case, the relevant Ward
identity takes the form

kµ�
µ(k) = �imZ �(k) , (20)

where �µ(k) is the proper vertex function of an on-shell S
decaying to an on-shell Higgs boson and a Z-boson cur-
rent with momentum k, while �(k) is the corresponding
proper vertex function with the current replaced by the
Goldstone boson '3. The Ward identity must be restored
by means of appropriate counterterms. We find that,
when this is done consistently, the counterterm contribu-
tion to the S ! Zh decay amplitude precisely cancels the
extra term in (19), so that we recover the result obtained
using the naive definition of �5. This finding should not
come as a surprise. In [33] a consistent scheme for imple-
menting �5 in dimensional regularization was proposed,
which for traces involving an even number of �5 matri-
ces yields results identical to those obtained in the naive
scheme with anticommuting �5.

III. HEAVY VECTOR-LIKE FERMIONS

It is instructive to illustrate our findings with a con-
crete new-physics model, which generates the e↵ective
interactions of the scalar resonance with SM particles via
loop diagrams involving heavy vector-like fermions that
are mixed with the SM fermions. Such a scenario is real-
ized, e.g., in models of partial compositeness or warped
extra dimension [34–36]. We consider an SU(2)L dou-
blet  = (T B)T of vector-like quarks with hypercharge
Y = 1

6 , which mixes with the third-generation quark
doublet of the SM. The most general Lagrangian is

L =  ̄ (i /D �M) + Q̄L i /DQL + t̄R i /D tR + b̄R i /D bR

� yt
�
Q̄L�̃ tR + h.c.

�� �
gt ̄ �̃ tR + gb ̄ � bR + h.c.

�

� c1S  ̄ i�5  � ic2S
�
Q̄L �  ̄QL

�
, (21)
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Non-polynomial operators
❖ When one integrates out particles whose mass arises 

from electroweak symmetry breaking, then non-
polynomial operators in the Higgs field can arise in the 
effective Lagrangian!

❖ In our case, the relevant operator is: 

❖ This operator gives the dominant contribution to the 
decay h → Z+A in the heavy-top limit!

3

tween the S ! Zh and S ! tt̄ rates, which reads

�(S ! Zh)D=5

�(S ! tt̄)
=

3y2t
16⇡2

⇣mS

4⇡v

⌘
2

|F |2 �3/2(1, xh, xZ)p
1� 4xt

.

(9)
This ratio evaluates to 3.6 · 10�4 for mS = 750GeV and
1.8 · 10�4 for mS = 1.5TeV. The present experimen-
tal upper bounds on the corresponding S ! tt̄ rates of
about 0.7 pb and 65 fb at

p
s = 8TeV [15] yield �(pp !

S
750

! tt̄) < 3.2 pb and �(pp ! S
1500

! tt̄) < 0.6 pb
at

p
s = 13TeV under the assumption of gluon-initiated

production. Relation (9) then implies the bounds �(pp !
S
750

! Zh)D=5

< 1.1 fb and �(pp ! S
1500

! Zh)D=5

<
0.1 fb. These are two orders of magnitude smaller than
the present direct experimental upper limits �(pp !
S
750

! Zh) < 123 fb and �(pp ! S
1500

! Zh) < 40 fb
at

p
s = 13TeV [10].

B. D = 7 operator analysis of S ! Zh decay

The dominance of the loop-induced dimension-5 con-
tribution to the S ! Zh decay rate is far from guaran-
teed. This contribution can be very small if the CP-odd
coupling c̃tt of S to top quarks is suppressed. Also, as
we have seen, the one-loop matrix element in (6) is sup-
pressed by a factor m2

t/m
2

S . If mS is not much smaller
than the new-physics scale M , the loop contributions
arising at dimension 7 can give rise to similar e↵ects.
Moreover, at dimension 7 there exists a unique operator
giving rise to a tree-level contribution to the S ! Zh
amplitude. It reads

O
7

= (@µS)
�
�†iDµ �+ h.c.

�
�†�

=̂ � S
�
�†iDµ �+ h.c.

�
@µ(�†�)

! g

2cw
S Zµ (v + h)3 @µh ,

(10)

where in the second step we have used an integration by
parts and the equations of motion for the Higgs field,
neglecting the fermionic terms in (4), which do not con-
tribute to S ! Zh decay at tree level. The expression in
the third line, valid in unitary gauge, gives rise to non-
vanishing S ! Zh and S ! Zhh matrix elements.

At one-loop order there exist several dimension-7 op-
erators contributing to the decay S ! Zh. Those which
mix with O

7

under renormalization are

LD=7

e↵

=
C

7

M3

O
7

+
ct
6

M2

t̄R �̃†i /D �̃ tR

+
ct
7a

M3

h
iS Q̄Li /D i /D �̃ tR + h.c.

i

+
ct
7b

M3

(@µS) t̄R �̃†�µ�̃ tR + . . . ,

(11)

plus analogous operators containing the right-handed
bottom quark. The dimension-6 operator proportional
to ct

6

contributes in conjunction with the operator in (5)
to give a contribution of order 1/M3.

Let us focus for a moment on the potentially dominant
tree-level contribution from the operator O

7

, which yields
the decay rate

�(S ! Zh) ⇡ m3

S

16⇡M2

����C
top

5

+
v2

2M2

C
7

����
2

�3/2(1, xh, xZ) .

(12)
With C

7

= 1 and M = 1TeV this partial width is about
7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in
this case. If we assume for simplicity that the resonance
is produced in gluon fusion, and that its dominant decay
is into dijets (S ! gg), the current experimental upper
bounds on the pp ! S ! Zh rates quoted above trans-
late into |C

7

| < 1.3 (M/TeV)3 for mS = 750GeV and
|C

7

| < 2.5 (M/TeV)3 for mS = 1.5TeV. The coupling
c̃gg in (2) cancels out in this case [3]. These estimates
show that S ! Zh rates close to the present experimen-
tal bounds are possible for reasonable parameter choices.

C. Non-polynomial operators

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (7) much larger
than the mass of the resonance S. Then the parameter
integral yields F = 1+O(m2

S/m
2

t ). The fermion is a very
heavy particle, which can be integrated out from the low-
energy theory. The contribution (6) then corresponds to
a one-loop matching contribution to the Wilson coe�-
cient of a local dimension-5 operator with a tree-level
S ! Zh matrix element. Our operator analysis in Sec-
tion IIA did not reveal the existence of such an operator.
However, in extensions of the SM containing heavy par-

ticles whose masses arise (or receive their dominant con-
tributions) from electroweak symmetry breaking, opera-
tors with a non-polynomial dependence on the Higgs field
can arise [16]. The non-polynomial structure appears be-
cause the particle integrated out (the hypothetical heavy
fermion) receives its mass from electroweak symmetry
breaking, so it is heavy only in the broken phase of the
theory. In our case, the relevant operator reads

O
5

= (@µS)
�
�†iDµ �+ h.c.

�
ln

�†�

µ2

=̂ � S
�
�†iDµ �+ h.c.

� @µ(�†�)

�†�
,

(13)

where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).
Consider, as an illustration, a sequential fourth genera-

tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the
pseudoscalar resonance defined in analogy to (5). Inte-
grating out this heavy lepton generates the contribution

C
5

=
y2L c̃LL

16⇡2

=
m2

L c̃LL

8⇡2v2
& m2

S c̃LL

32⇡2v2
(14)
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7MeV for mS = 750GeV and 60MeV for mS = 1.5TeV.
The contribution from Ctop

5

can be safely neglected in
this case. If we assume for simplicity that the resonance
is produced in gluon fusion, and that its dominant decay
is into dijets (S ! gg), the current experimental upper
bounds on the pp ! S ! Zh rates quoted above trans-
late into |C

7

| < 1.3 (M/TeV)3 for mS = 750GeV and
|C

7

| < 2.5 (M/TeV)3 for mS = 1.5TeV. The coupling
c̃gg in (2) cancels out in this case [3]. These estimates
show that S ! Zh rates close to the present experimen-
tal bounds are possible for reasonable parameter choices.

C. Non-polynomial operators

It is interesting to consider the hypothetical limit
where one takes the fermion mass mt in (7) much larger
than the mass of the resonance S. Then the parameter
integral yields F = 1+O(m2

S/m
2

t ). The fermion is a very
heavy particle, which can be integrated out from the low-
energy theory. The contribution (6) then corresponds to
a one-loop matching contribution to the Wilson coe�-
cient of a local dimension-5 operator with a tree-level
S ! Zh matrix element. Our operator analysis in Sec-
tion IIA did not reveal the existence of such an operator.
However, in extensions of the SM containing heavy par-

ticles whose masses arise (or receive their dominant con-
tributions) from electroweak symmetry breaking, opera-
tors with a non-polynomial dependence on the Higgs field
can arise [16]. The non-polynomial structure appears be-
cause the particle integrated out (the hypothetical heavy
fermion) receives its mass from electroweak symmetry
breaking, so it is heavy only in the broken phase of the
theory. In our case, the relevant operator reads

O
5

= (@µS)
�
�†iDµ �+ h.c.

�
ln

�†�

µ2

=̂ � S
�
�†iDµ �+ h.c.

� @µ(�†�)

�†�
,

(13)

where in the second step we have again used an inte-
gration by parts and neglected fermionic currents. The
latter expression has a one-to-one map onto the structure
of the parameter integral (7).
Consider, as an illustration, a sequential fourth genera-

tion of heavy leptons, and assume that the heavy charged
state L has a mass mL & mS/2 and a coupling c̃LL to the
pseudoscalar resonance defined in analogy to (5). Inte-
grating out this heavy lepton generates the contribution

C
5

=
y2L c̃LL

16⇡2

=
m2

L c̃LL

8⇡2v2
& m2

S c̃LL

32⇡2v2
(14)

[Pierce, Thaler, Wang 2006]

[Bauer, MN, Thamm (in prep.)]



Conclusions

❖ Novel way for probing the CP properties of a new, 
heavy, SM-singlet spin-0 boson

❖ Interesting and non-trivial application of effective field 
theory, with some subtleties

❖ Motivates continued experimental searches for S → Z+h 
decay in LHC Run-2


