Perturbative Unitarity in the **Dark Sector**

William Shepherd EFT Workshop, Eltville September 13, 2016

Stiftung/Foundation

Unterstützt von / Supported by

Based on 1412.5660, 1501.03153 and ongoing work with Matthew Cahill-Rowley, Sonia El-Hedri, and Devin Walker

The Scale of New Physics

- Historically in HEP, we've often known where we were going
 - Fermi theory of weak decays needed new bosons
 - Precision measurements pointed to the top quark
 - Heavy bosons needed symmetry breaking
- After the Higgs discovery, we have no map
 The Standard Model is stubbornly good
- Where are we going, and how far away is it?

The Scale of New Physics

Naturalness

- The Higgs mass is subject to corrections from new physics, these corrections are potentially huge
- The SM as a UV theory requires cancellations in these corrections to 1 part in $10^{\sim 30}$
- New symmetry could enforce this if it happens low enough, but bounds on scale depend on amount of tuning deemed acceptable
- New Phenomena
 - Neutrino masses need at least the Weinberg operator, but that can be at scales far beyond what we'll see
 - Dark matter is the other new particle we need experimentally

The LHC No-Lose Theorem

- The Higgs (or something else doing its job) had to be there
 - Symmetry has to break to make gauge bosons massive
- Why did it have to be within the LHC's reach?

This amplitude (missing a Higgs contribution) grows with energy, and predicts scattering probabilities greater than 1 beyond energies of about 800 GeV

Basics of Unitarity

• We start with a scattering matrix

S = 1 + iT

- Unitarity gives the optical theorem $S^{\dagger}S = I \Rightarrow \frac{1}{2}(T - T^{\dagger}) = |T_{ii}^{2}|$
- Expanding in partial waves

$$\widetilde{T}_{ij}^{J} = \frac{\lambda_i^{1/4} \lambda_f^{1/4}}{32\pi s} \int_{-1}^{1} T_{ij} P_J(\cos\theta) d\cos\theta$$

• We find that

$$\operatorname{Im} \tilde{T}_{ii} = |\tilde{T}_{ii}|^2 \Rightarrow |\operatorname{Re} \tilde{T}_{ii}| < \frac{1}{2}$$

A Picture of Unitarity

Schuessler and Zeppenfeld 0710.5175 ^{13/9/2}Aydemir, Anber, Donoghue 1203:5153erd, JGU Mainz

A Picture of Unitarity

Schuessler and Zeppenfeld 0710.5175

William Shepherd, JGU Mainz

Dark Matter

- The evidence for dark matter is myriad and well-known.
- This evidence is one of the only truly experimental signs that we must have physics beyond the Standard Model.
- Cosmological observations tell us how much dark matter is needed to match observations.
- From the particle physics perspective, we're left asking what dark matter is and how it fits into a microscopic understanding of nature.

WIMP (Thermal) Dark Matter

- One of the most attractive proposals to explain dark matter is that it is a Weakly Interacting Massive Particle.
 - WIMPs naturally lead to the correct amount of dark matter in the universe.
 - WIMPs are automatic ingredients of many models of physics beyond the Standard Model, such as supersymmetric models.
- The one thing robustly predicted by all thermal models of dark matter is the annihilation cross-section.

Unitarity and Dark Matter

 By insisting on unitarity in a general dark matter scenario, we can bound dark matter to be lighter than 120 TeV for coupling below 4π

Griest and Kamionkowski, 1990

William Shepherd, JGU Mainz

Dark Matter Models

- Here I will consider two different models of dark matter in turn
- First, a model using the 'gauge portal' of kinetic mixing between a new U(1) and hypercharge
- Second, a SUSY-type simplified model with new scalars charged under the SM

Gauge Portal Dark Matter

- This model is characterized by the Lagrangian $\mathcal{L}_{DM} \supset \mathbf{g}' \bar{\chi} \gamma^{\mu} \gamma_5 Z'_{\mu} \chi - \lambda_{\chi} \bar{\chi} \Phi \chi$ $\mathcal{L}_{gauge} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{\sin \delta}{2} Z'_{\mu\nu} B^{\mu\nu}$ $\mathcal{L}_{Higgs} \supset |D_{\mu} \Phi|^2 + V (H, \Phi; \lambda_1, \lambda_2, \lambda_3)$
- With breaking of the new symmetry by

$$\Phi = \frac{1}{\sqrt{2}} (\mathbf{u} + \phi^0)$$

Gauge Portal Dark Matter

- This gives us 6 parameters and 1 new scale: $g', \lambda_{\chi}, \lambda_1, \lambda_2, \lambda_3, \sin \delta, \mathbf{u}$
- The dimensionless couplings can be constrained directly from unitarity, but only ratios of scales can be constrained
- Here, the annihilation rate will set upper bounds on the scale of symmetry breaking

13/9/2016

William Shepherd, JGU Mainz

Unitarity Constraints

• We calculate in the high-mass limit and the gauge basis the p-wave scattering matrix

 $\left(\chi_{+}\bar{\chi}_{+},\chi_{-}\bar{\chi}_{-},\chi_{+}\bar{\chi}_{-},\chi_{-}\bar{\chi}_{+},\rho\,Z',\rho\,Z,h\,Z,h\,Z'\right)$

$$\mathcal{T} = \frac{-1}{64\sqrt{2}} \begin{pmatrix} -6g'^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -6g'^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4g'^2 & 2g'^2 & \frac{16}{3}g'^2 - 4\lambda_{\chi}^2 & 0 & 0 & 0 \\ 0 & 0 & 2g'^2 & 4g'^2 & -\frac{16}{3}g'^2 + 4\lambda_{\chi}^2 & 0 & 0 & 0 \\ 0 & 0 & \frac{16}{3}g'^2 - 4\lambda_{\chi}^2 & -\frac{16}{3}g'^2 + 4\lambda_{\chi}^2 & 2\lambda_2 + 5g'^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_3 & 0 \\ \end{pmatrix}$$

Dark Matter Coupling Bounds

Additional Constraints

- Unitarity isn't the only concern in this model
 - Vacuum stability from the scalar potential $V(H,\Phi) = \lambda_1 \left(H^{\dagger}H - \frac{v^2}{2} \right)^2 + \lambda_2 \left(\Phi^{\dagger}\Phi - \frac{u^2}{2} \right)^2 + \lambda_3 \left(H^{\dagger}H - \frac{v^2}{2} \right) \left(\Phi^{\dagger}\Phi - \frac{u^2}{2} \right)$
 - Electroweak precision constraints

$$\Upsilon = \left(\frac{\tan\delta}{0.1}\right)^2 \left(\frac{250 \text{GeV}}{m_{Z_2}}\right)^2$$

- Dark Matter relic density and searches

Scalar Coupling Constraints

13/9/2016

William Shepherd, JGU Mainz

'Pure Vector' Interactions

Colored Scalars and Dark Matter

• In a SUSY-inspired model, we add

$$\tilde{u}_R = (\tilde{u}_R, \tilde{c}_R, \tilde{t}_R)$$

• And the Lagrangian terms

$$\mathcal{L} \supset \frac{1}{2} M_{\chi} \bar{\chi} \chi + \frac{1}{2} M_{\tilde{u}}^{2} \tilde{u}^{*} u + \lambda_{\text{dark}} \tilde{u}^{*} \bar{\chi} P_{R} u$$

• This introduces the new parameter and scales

$$\lambda_{\mathrm{dark}},\ M_{\chi},\ M_{\widetilde{u}}$$

Dirac Dark Matter with 'Squarks'

 $\langle \sigma v \rangle_{\mathrm{ann}}^{\nu=0} \propto rac{\lambda_{\mathrm{dark}}^4}{(M_{\chi}^2 + M_{\tilde{u}}^2)^4}$

William Shepherd, JGU Mainz

Dirac Dark Matter

Majorana Dark Matter

FCC Squark Searches

^{13/9/2016} Cohen, Golling, Hance, Henrichs, Howe, Loyal, Padhi, Wacker [arXiv:1311.6480]

New Production Mechanism

- Here we don't have the SUSY constraints on couplings, though
 - Increased DM couplings give increased production

True FCC Reach

Strong Couplings and Bound States

- All of this analysis has focused on the case of very strong couplings to get high allowed mass
- These large couplings can also lead to other effects that may be important
 - Sommerfeld enhancements
 - Dark matter bound states

Yukawa Potential Bound States

Yukawa Potential Bound States

Cosmological Rates

^{13/9/2016} William Shepherd, JGU Mainz von Harling and Petraki, 1407.7874

Bethe-Salpeter Equation

- States that are strongly bound enough to matter will have momenta high enough to require relativistic treatment
- If ladder diagrams are the dominant contribution to the binding the Bethe-Salpeter equation describes the physics

Relativistic Corrections

- States with binding energies of M/10 or larger require relativistic corrections to the coupling of a factor of 2 or more
- This will be an important shift in the cosmological implications of strong coupling

Rates for Relativistic States

 Rates for formation, ionization, and decay of bound states are calculated using the wavefunctions

$$\mathcal{M}_{\mathbf{k}\to n} = \sqrt{Z_{\varphi}(\mathbf{P}_{\varphi})} \int \frac{d^4p}{(2\pi)^4} \frac{d^4q}{(2\pi)^4} \frac{\tilde{\Psi}^{\star}_{\mathbf{P},n}(p)}{S(p;P)} \frac{\tilde{\Phi}_{\mathbf{K},\mathbf{k}}(q)}{S(q;K)} \times \mathcal{C}^{(5)}_{\varphi-\mathrm{amp}}(P_{\varphi},\eta_1 P + p,\eta_2 P - p; \eta_1 K + q,\eta_2 K - q)$$

- B-S equation is most easily solved in Euclidean space
 - Wick rotation gives correct on-shell results
 - Scattering, BSF involve off-shell processes

Wick Rotation

Image credit J. Carbonell

Minkowski Space B-S

• Many singularities to resolve

– DM propagators and interaction kernel, minimally

 Treating these analytically yields a problem amenable to numerical treatment

$$F_{0}(k_{0},k) = F_{0}^{B}(k_{0},k) + \frac{i\pi^{2}k_{s}}{8\varepsilon_{k_{s}}}W_{0}^{S}(k_{0},k,0,k_{s})F_{0}(0,k_{s}) \\ + \frac{\pi}{2M}\int_{0}^{\infty} \frac{dk'}{\varepsilon_{k'}(2\varepsilon_{k'}-M)} \left[k'^{2}W_{0}^{S}(k_{0},k,a_{-},k')F_{0}(|a_{-}|,k') - \frac{2k_{s}^{2}\varepsilon_{k'}}{\varepsilon_{k'}+\varepsilon_{k_{s}}}W_{0}^{S}(k_{0},k,0,k_{s})F_{0}(0,k_{s})\right] \\ - \frac{\pi}{2M}\int_{0}^{\infty} \frac{k'^{2}dk'}{\varepsilon_{k'}(2\varepsilon_{k'}+M)}W_{0}^{S}(k_{0},k,a_{+},k')F_{0}(a_{+},k') \\ + \frac{i}{2M}\int_{0}^{\infty} \frac{k'^{2}dk'}{\varepsilon_{k'}}\int_{0}^{\infty}dk'_{0}\left[\frac{W_{0}^{S}(k_{0},k,k'_{0},k')F_{0}(k'_{0},k') - W_{0}^{S}(k_{0},k,a_{-},k')F_{0}(|a_{-}|,k')}{k'_{0}^{2}-a_{-}^{2}}\right] \\ - \frac{i}{2M}\int_{0}^{\infty} \frac{k'^{2}dk'}{\varepsilon_{k'}}\int_{0}^{\infty}dk'_{0}\left[\frac{W_{0}^{S}(k_{0},k,k'_{0},k')F_{0}(k'_{0},k') - W_{0}^{S}(k_{0},k,a_{+},k')F_{0}(a_{+},k')}{k'_{0}^{2}-a_{+}^{2}}\right]$$
(28)

William Shepherd, JGU Mainz Carbonell and Karmanov, 1408.3761

Beyond Yukawa Potentials

• Constraining to consider just a pure pseudoscalar, the leading potential is

 $V(r) = V_S(r)\sigma_1 \sigma_2 + V_T(r)S_{12}(\hat{r})$

$$\begin{split} V_S &= \frac{\alpha_A}{12} \left(\frac{m_\phi}{m_\chi}\right)^2 \frac{e^{-m_\phi r}}{r} \\ V_T &= \frac{\alpha_A}{12} \left(\frac{m_\phi}{m_\chi}\right)^2 \left(1 + \frac{3}{m_\phi r} + \frac{3}{(m_\phi r)^2}\right) \frac{e^{-m_\phi r}}{r} \end{split}$$

- This gives very different states from the Yukawa or Coulomb ansätze
 - Rates will also be affected by mediator mass

Outlook

- Perturbativity arguments can be made fully rigorous through unitarity considerations
- These unitarity bounds provide strong constraints on dark matter dynamics
- Combined with collider searches we will be able to place strong limits on WIMPs
- Models with strong coupling like these may already be affected by new phenomena due to bound state formation
 - Investigations of cosmological impact of bound state dynamics are in progress