# A UV Complete Partially Composite-pNGB Higgs 

Alex Kagan<br>University of Cincinnati

Eltville, September 2016
with Jamison Galloway and Adam Martin, to appear soon

## Plan

- Introduction to Bosonic Technicolor (BTC)
- The UV theory
- Minimal BTC with $S U(4) / S p(4)$ coset
- Discrete symmetries $C P, G_{L R}$
- The vacuum (mis)alignment
- The scalar spectrum
- Higgs mass, phenomenology
- Vector resonances
- $S U(2)_{L, R}$ parity doubling and the $S$ parameter
- phenomenology


## Introduction to Bosonic Technicolor

- BTC combines technicolor and supersymmetry Dine, A.K., Samuel '90; non-susy version: Simmons, '89
- technicolor condensates trigger electroweak symmetry breaking
- fundamental Higgs fields $H_{u}, H_{d}$ give masses to quarks, leptons
- supersymmetry stabilizes the Higgs scalar masses
- Higgs VEV's via Yukawa couplings to technifermion condensates

$$
\lambda_{U} \bar{U}_{R} T_{L} H_{u}+\lambda_{D} \bar{D}_{R} T_{L} H_{d} \Rightarrow\left\langle H_{u}\right\rangle \sim \lambda_{U} \frac{\left\langle\bar{U}_{R} U_{L}\right\rangle}{m_{H_{u}}^{2}}, \quad\left\langle H_{d}\right\rangle \sim \lambda_{D} \frac{\left\langle\bar{D}_{R} D_{L}\right\rangle}{m_{H_{d}}^{2}}
$$

- positive Higgs mass parameters, $m_{H_{u}}^{2}, m_{H_{d}}^{2}>0 \Rightarrow$ no electroweak symmetry breaking in absence of TC
- $W, Z$ receive masses both from technicolor condensates, HIggs VEV's

$$
v_{W}^{2}=(246 \mathrm{GeV})^{2} \approx f_{\mathrm{TC}}^{2}+f_{u}^{2}+f_{d}^{2}, \quad\left\langle H_{u, d}\right\rangle \equiv f_{u, d} / \sqrt{2}
$$


-Fermion mass generation in BTC via "Higgs scalar exchange", integrated out in heavy limit -for light Higgs, use chiral Lagrangian approach Carone, Simmons; Carone, Georgi

- Minimal $\mathrm{BTC}=\mathrm{MSSM}+S U(N)_{\mathrm{TC}}$, with technifermion superfields

$$
\hat{T}_{L}\left(2_{\mathrm{TC}}, 1_{C}, 2_{L}, 0\right), \quad \hat{U}_{R}\left(2_{\mathrm{TC}}, 1_{C}, 1_{L},-1 / 2\right), \quad \hat{D}_{R}\left(2_{\mathrm{TC}}, 1_{C}, 1_{L},+1 / 2\right)
$$

and Yukawa superpotential

$$
W_{\mathrm{Y}}=\lambda_{U} \hat{U}_{R} \hat{T}_{L} \hat{H}_{u}+\lambda_{D} \hat{D}_{R} \hat{T}_{L} \hat{H}_{d}
$$

- $N_{\mathrm{TC}}=2$ is minimal choice
- $N_{\mathrm{TC}}=3$ disfavored: stable fractionally charged technibaryons; $S U(2)_{L}$ anomaly
- $N_{\mathrm{TC}}=4$ disfavored by $S$ parameter
- superpartner technigluino, technisquarks acquire masses $>\Lambda_{\mathrm{TC}}$, yielding a QCD-like technicolor theory at lower scales


## Linking $\Lambda_{\mathrm{TC}}$ and $m_{\text {susy }}$

- BTC introduces two scales at low energies: (i) $m_{\text {susy }}$, the scale of superpartner masses; (ii) $\Lambda_{\mathrm{TC}}$, the scale of TC chiral symmetry breaking
- potential coincidence problem since, e.g. $m_{\text {susy }} / \Lambda_{\mathrm{TC}}=O$ (few)
- when techni-superpartners acquire masses and "decouple", technicolor beta function becomes more negative.
- more rapid increase in $\alpha_{\mathrm{TC}}$ below $m_{\text {susy }}$ could link the two scales AK, Samuel '91
- most attractive scenario Azatov, Galloway, Luty '11: above $m_{\text {susy }}, \alpha_{\text {TC }}$ sits near a superconformal strong IR fixed point. Provides direct link between $m_{\text {susy }}$ and $\Lambda_{\mathrm{TC}}$
- appealing realization Galloway, Martin, AK:

SUSY $S U(2)$ with $n_{f}=2$ and an adjoint matter superfield has a strong IR fixed point, with chiral symmetry unbroken in the supersymmetric theory Elitzur, Forge, Giveon,

## Rabinovici ' 95

- $R$ symmetric BTC has precisely this TC field content. Can yield the following running of $\alpha_{\mathrm{TC}}$ :
- A perturbative 2-loop estimate yields $\alpha^{*} \approx 1.8$



## The minimal UV theory

- The model: asymptotically free $S U(2)_{\mathrm{TC}}$, confining at scale $\Lambda$. For simplicity consider the non-supersymmetric version
- The technifermion (TC-fermion) content is

|  | $S U(2)_{\mathrm{TC}}$ | $S U(2)_{W}$ | $U(1)_{Y}$ |
| :---: | :---: | :---: | :---: |
| $\binom{\Psi^{1}}{\Psi^{2}} \equiv T_{1,2}$ | $\binom{\square}{\square}$ | $\square$ | 0 |
| $\Psi^{3} \equiv U$ | $\square$ | 1 | $-1 / 2$ |
| $\Psi^{4} \equiv D$ | $\square$ | 1 | $+1 / 2$ |

- all fermions are treated as LH Weyl fields, transforming under the ( $1 / 2,0$ ) representation of the Lorentz group $S U(2) \times S U(2) \sim S O(3,1)$
- With weak interactions turned off, the model possesses a global $S U(4)$ symmetry under which the four-component object $\Psi$ is a fundamental, $\Psi \mapsto U \Psi, \quad U \in S U(4)$

$$
\Psi=\left(\begin{array}{llll}
T_{1} & T_{2} & U & D
\end{array}\right)^{T}
$$

- The TC-fermion condensate

$$
\left\langle\Psi^{a} \Psi^{T, b} \epsilon C^{-1}\right\rangle \propto \Phi^{a b}
$$

is antisymmetric in the $S U(4)$ flavor indices $a, b$ by Fermi-Dirac statistics, $\Phi^{T}=-\Phi$

- assume it breaks $S U(4)$ to its maximal vectorlike subgroup $S p(4)$
$\Rightarrow S U(4) / S p(4)$ coset structure $\cong S O(6) / S O(5)$
- most general $S p(4)$ preserving condensate Galloway, Evans, Luty, Tacchi 1001.1361

$$
\Phi=\left(\begin{array}{cc}
e^{i \alpha} \epsilon \cos \theta & \mathbf{1}_{2} \sin \theta \\
-\mathbf{1}_{2} \sin \theta & -e^{-i \alpha} \epsilon \cos \theta
\end{array}\right), \quad \theta \in[0, \pi]
$$

- obtained by applying $S U(4)$ rotations to the canonical $S p(4)$ preserving vacuum

$$
\Phi=\left(\begin{array}{cc}
0 & \mathbf{1}_{2} \\
-\mathbf{1}_{2} & 0
\end{array}\right)
$$

- $\alpha$ is a $C P$ violating phase: $\Phi \rightarrow-\Phi^{\dagger}$ under CP
- $\sin \theta=0$ : electroweak (EWK) symmetry is unbroken, "EWK vacuum" $\sin \theta=1$ : the condensate is purely $S U(2)_{L}$ breaking, "TC vacuum"
- The $S p(4)$ vacuum degeneracy is lifted by the UV TC-fermion interactions
- previous BTC studies only included fundamental Higgs - technifermion Yukawa couplings, thus selecting the TC vacuum $(\theta=\pi / 2)$
- we explore the benefits of small misalignment from the EWK vacuum: small to moderate $\sin \theta$
- minimally accomplished by adding gauge singlet TC-fermion masses of $O\left(v_{W}\right)$
- they can be linked to SUSY breaking, therefore to $\Lambda_{\mathrm{TC}}$
- an appealing alternative, and a feature of RBTC: 4- technifermion operators
- Minimal UV potential $\operatorname{In} S U(4)$ notation

$$
V_{U V}=-\Psi^{T} \epsilon C^{-1}(M+\lambda) \Psi+\text { h.c. }+m_{H}^{2}|H|^{2}+\lambda_{h}|H|^{4}
$$

- $C^{-1}=\operatorname{diag}\left[i \sigma_{2}, i \sigma_{2}, i \sigma_{2}, i \sigma_{2}\right]$ acts on LH Weyl spinors in $\Psi$,
- $\epsilon$ acts on TC indices
- $H$ is SM Higgs doublet with $m_{H}^{2}>0$
- $M, \lambda$ are $4 \times 4$ matrices containing singlet masses, Yukawas: $m_{1,2}, \lambda_{U, D}$, $(M+\lambda)$ is an $S U(4)$ breaking spurion, $(M+\lambda) \mapsto U^{*}(M+\lambda) U^{T}$

$$
\begin{aligned}
M & =\frac{1}{2}\left(\begin{array}{cc}
m_{1} \epsilon & 0 \\
0 & -m_{2} \epsilon
\end{array}\right), \quad \lambda=\frac{1}{2}\left(\begin{array}{cc}
0 & -H_{\Lambda} \\
H_{\Lambda}^{T} & 0
\end{array}\right), \\
H_{\Lambda} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\lambda_{U}\left(\sigma_{h}+v^{*}-i \pi_{h}^{3}\right) & \lambda_{D}\left(-i \pi_{h}^{1}+\pi_{h}^{2}\right) \\
-\lambda_{U}\left(i \pi_{h}^{1}+\pi_{h}^{2}\right) & \lambda_{D}\left(\sigma_{h}+v+i \pi_{h}^{3}\right)
\end{array}\right) .
\end{aligned}
$$

$\sigma_{h}\left(\vec{\pi}_{h}\right)$ are the scalar (pseudoscalar) components of $H, \quad v \equiv\langle H\rangle$

- the TC-fermion masses: $m_{1} T_{2} T_{1}+m_{2} U D+m_{U} T_{1} U+m_{D} T_{2} D$

$$
m_{U}=\lambda_{U} v^{*} / \sqrt{2}, \quad m_{D}=\lambda_{D} v / \sqrt{2}
$$

- The gauge-kinetic term for $\Psi$, including EWK and TC

$$
\mathcal{L}_{\mathrm{KE}}=i \Psi^{\dagger} \bar{\sigma}^{\mu}\left(\partial_{\mu}--i \mathcal{A}_{\mu}-i G_{\mu}^{a} \tau^{a} / 21_{4}\right) \Psi, \quad \bar{\sigma}_{\mu}=\left(1,-\vec{\sigma}_{\mu}^{i}\right)
$$

- EWK gauge interaction embedding in $S U(4)$

$$
\mathcal{A}_{\mu}=\left(\begin{array}{cc}
g_{2} W_{\mu}^{a} \frac{1}{2} \tau^{a} & 0 \\
0 & -g_{1} B_{\mu} \frac{1}{2} \tau^{3}
\end{array}\right)
$$

## Discrete symmetries in the UV: $C P$

- CP is the only discrete symmetry of the TC interactions lying outside of $S U(4)$

$$
C P: \Psi\left(x^{\mu}\right) \mapsto i \epsilon C^{-1} \Psi^{*}\left(x_{\mu}\right)
$$

- pseudoreality of the $S U(2)_{\mathrm{TC}}$ fundamental $\Rightarrow P$ and $C$ are separately unphysical, only being defined up to arbitrary $S U(4)$ rotations
- fundamental d.o.f. are the four LH Weyl spinors in $\Psi$. A true discrete symmetry must rotate among them.

』 for a single LH Weyl fermion, $P$ exchanges $(1 / 2,0) \leftrightarrow(0,1 / 2)$, which proceeds via conjugation to construct the RH field, bringing in $C$ to recover the LH one

- For simplicity, assume CP-invariant $V_{U V} \Rightarrow m_{1,2}, \lambda_{U D}$ are real
- checked, to $O\left(p^{4}\right)$, that minimizing the IR potential then yields $\alpha=\arg (v)=0$, which we assume holds to all orders (no spontaneous CPV)
- CP invariance of the EWK interactions $\Rightarrow \mathcal{A}_{\mu} \mapsto \mathcal{A}_{\mu}^{T}$ (usual gauge boson transformations)


## $G_{L R}: \quad S U(2)_{L} \leftrightarrow S U(2)_{R}$ interchange

- $G_{L R}$-parity interchanges the generators of $S U(2)_{L}$ and $S U(2)_{R}$ (also see Franzosi, et al. 1605.01363)
- it resides in $S U(4)$, and the left-over $S p(4)$ symmetry (it has nothing to do with spacetime parity)
- $\Psi \mapsto \mathcal{G}_{L R} \Psi$ where, up to an overall phase

$$
\mathcal{G}_{L R}=-\left(\begin{array}{cc}
0 & \sigma_{2} \\
\sigma_{2} & 0
\end{array}\right)
$$

- To see this, extend to the left-right symmetric gauge group, and require that $G_{L R}$ exchanges top and bottom components of $\Psi$ and $g_{2 L} W_{L} \leftrightarrow g_{2 R} W_{R}$
- under $G_{L R} \in S U(4), \quad M+\lambda \rightarrow \mathcal{G}_{L R}^{T}(M+\lambda) \mathcal{G}_{L R}$

$$
\Rightarrow m_{1(2)} \rightarrow m_{2_{(1)}}, \quad m_{U(D)} \rightarrow m_{D(U)}, \quad \lambda_{U(D)} h \rightarrow \lambda_{D(U)} h, \ldots \ldots
$$

Thus, $G_{L R}$ invariance of $V_{U V}$ would require $m_{1}=m_{2}, \lambda_{U}=\lambda_{D}$

- the isospin rotation in $\mathcal{G}_{L R}$ is reminsicent of $G$-parity


## The $S U(4) / S p(4)$ coset for arbitrary $\theta \quad$ Galloway et al.

- 5 broken $S U(4)$ generators, $X^{i}$, in 5 of $S p(4) \cong S O(5)$, satisfying $X \Phi-\Phi X^{T}=0$ $s \equiv \sin \theta, c \equiv \cos \theta$

$$
\begin{aligned}
& X^{1}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
s \sigma_{1} & -c \sigma_{3} \\
-c \sigma_{3} & s \sigma_{1}
\end{array}\right), X^{2}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
s \sigma_{2} & i c 1_{2} \\
-i c 1_{2} & -s \sigma_{2}
\end{array}\right), X^{3}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
s \sigma_{3} & c \sigma_{1} \\
c \sigma_{1} & s \sigma_{3}
\end{array}\right), \\
& X^{4}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & \sigma_{2} \\
\sigma_{2} & 0
\end{array}\right), X^{5}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
c 1_{2} & -s \epsilon \\
s \epsilon & -c 1_{2}
\end{array}\right)
\end{aligned}
$$

- 10 unbroken $S p(4)$ generators, $T^{i}$, in 10 (adjoint) of $S p(4)$, satisfying $T \Phi+\Phi T^{T}=0$

$$
\begin{aligned}
T^{1} & =\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & -\sigma_{1}
\end{array}\right), T^{2}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
\sigma_{2} & 0 \\
0 & \sigma_{2}
\end{array}\right), T^{3}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & -\sigma_{3}
\end{array}\right), \\
T^{4} & =\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
c \sigma_{1} & s \sigma_{3} \\
s \sigma_{3} & c \sigma_{1}
\end{array}\right), T^{5}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
c \sigma_{2} & -i s 1_{2} \\
i s 1_{2} & -c \sigma_{2}
\end{array}\right), T^{6}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
c \sigma_{3} & -s \sigma_{1} \\
-s \sigma_{1} & c \sigma_{3}
\end{array}\right), \ldots
\end{aligned}
$$

- subgroup structure: $S p(4) \supset S U(2)_{1} \times S U(2)_{2}$,
- $S U(2)_{1,2}$ identified with generaotrs $\left(T^{a} \pm T^{a+3}\right) / \sqrt{2}, a=1,2,3$
- reduce to $S U(2)_{L, R}$ in $\theta \rightarrow 0$ limit
- isospin group $S U(2)_{V}=S U(2)_{L+R}=S U(2)_{1+2}$, with generators $T^{1,2,3}$
- under $S U(2)_{1} \times S U(2)_{2}$

$$
\begin{aligned}
5 & =(2,2)+(1,1) \\
10 & =(3,1)+(1,3)+(2,2)
\end{aligned}
$$

- we follow the CCWZ prescription, arranging the 5 NGBs into

$$
\xi=\exp (\sqrt{2} i \vec{\pi} \cdot \vec{X} / f) \mapsto U \xi V^{\dagger}
$$

where the transformation applies to global rotations with $U \in S U(4)$ and $V \in S p(4)$ $\Rightarrow V \Phi V^{T}=\Phi$

- The transformations of the pions under $C P, G_{L R}$ obtained by considering the transformations of the corresponding vector currents, $\Psi^{\dagger} \bar{\sigma}_{\mu} X^{a} \Psi$
- The eaten NGB's are linear combinations of the $C P$-odd $\pi^{1,2,3}$ and $\pi_{h}^{1,2,3}$
- $\pi^{4}$ is the $C P$-even component of a composite $S U(2)_{L}$ Higgs doublet

$$
\frac{1}{\sqrt{2}}\binom{\pi^{1}+i \pi^{2}}{\pi^{4}+i \pi^{3}}
$$

- $\pi^{5}$ is a $C P$-odd isosinglet
- $\pi^{1,2,3,5}, \pi_{h}^{1,2,3}$ are $G_{L R}$ odd; $\pi^{4}, \sigma_{h}$ are $G_{L R}$ even


## Chiral Lagrangian for scalars and vacuum alignment

- kinetic terms expressed in terms of $C_{\mu}=i \xi^{\dagger} D_{\mu} \xi \quad$ (following composite Higgs notation, e.g. Contino et al., Panico and Wulzer)
- project onto broken and unbroken directions $\left(C_{\mu}=d_{\mu}+E_{\mu}\right)$

$$
\begin{aligned}
d_{\mu} & =2 \operatorname{tr}\left(C_{\mu} X^{a}\right) X^{a} \mapsto V d_{\mu} V^{\dagger} \quad(5-\mathrm{plet}) \\
E_{\mu} & =2 \operatorname{tr}\left(C_{\mu} T^{a}\right) T^{a} \mapsto V\left(E_{\mu}+\partial_{\mu}\right) V^{\dagger} \quad(10-\mathrm{plet}),
\end{aligned}
$$

- spurion building blocks

$$
\chi_{ \pm}=\xi^{T}(M+\lambda) \xi \Phi \pm \text { H.c., } \quad \chi_{ \pm} \mapsto V \chi_{ \pm} V^{\dagger}
$$

- $O\left(p^{2}\right)$ Lagrangian

$$
\mathcal{L}^{(2)}=\frac{f^{2}}{2} \operatorname{tr}\left(d_{\mu} d^{\mu}\right)+4 \pi f^{3} Z_{2} \operatorname{tr}\left(\chi_{+}\right),
$$

- $Z_{2} \approx 1.47, \quad$ from $N_{c}=n_{f}=2$ lattice study Pica et al. 1602.06559
- TC and fundamental Higgs $H$ gauge kinetic terms yield EWK scale

$$
v_{W}^{2}=(246 \mathrm{GeV})^{2}=f^{2} \sin ^{2} \theta+v^{2}
$$

e associate $f \sin \theta$ with VEV of composite pNGB Higgs $\pi^{4}$

- The $O\left(p^{2}\right)$ potential

$$
\begin{aligned}
& V_{\mathrm{eff}}^{(2)}=8 \pi f^{3} Z_{2}\left(m_{12} \cos \theta-\lambda_{U D} v \sin \theta / \sqrt{2}\right)+m_{H}^{2} v^{2} / 2 \\
& m_{12} \equiv m_{1}+m_{2}, \quad \delta m_{12} \equiv m_{1}-m_{2}, \quad \text { etc. }
\end{aligned}
$$

- For simplicity, ignore quartic - also motivated by SUSY where it is a small perturbation
- EWK, top Yukawa loop effects, usually considered in composite Higgs models, are a negligible perturbation
- minimizing $V_{\text {eff }}^{(2)}$ obtain vacuum solution $\left(m_{U D}, m_{12}>0, \quad \theta \in[\pi / 2, \pi]\right)$

$$
\begin{aligned}
\tan \theta & =-\frac{m_{U D}}{m_{12}}, \quad v=\frac{4 \sqrt{2} \lambda_{U D} \sin \theta f^{3} \pi Z_{2}}{m_{H}^{2}} \\
& \Rightarrow \sin \theta=\sqrt{1-\frac{m_{12}^{2}}{\lambda_{U D}^{4}} \frac{m_{H}^{4}}{16 \pi^{2} f^{6} Z_{2}^{2}}} .
\end{aligned}
$$

- can show $\tan \theta=-m_{U D} / m_{12}$ to all orders
- for given $f$ or $\Lambda_{\mathrm{TC}}$, largest tuning of $\sin \theta$ due to variation of $\lambda_{U D}$

$$
\left|d \log (\sin \theta) / d \log \left(\lambda_{U D}\right)\right|=2 \cot ^{2} \theta
$$

- For example, $\sin \theta \sim 1 / 3-1 / 2$ is tuned at $\sim 6 \%-17 \%$ (moderate $\sin \theta$ is fine phenomenologically e.g. Higgs, precision EWK)
- in principle, $f$ more tuned, but $f$ could be linked to $m_{H}$ or $m_{12}$ in SUSY theory
- 4-technifermion operators, e.g. due to exchange of TC-adjoint scalar with mass $m_{A} \gtrsim \Lambda_{\mathrm{TC}}$, offer an alternative in which $m_{1,2} \propto\left\langle\Psi \Psi^{T}\right\rangle \propto f^{3}$, like $v$.


## Vacuum misalignment and scalar spectrum

- To elucidate the structure of the vacuum and scalar spectrum, it is useful to project $(M+\lambda)$ onto the $S p(4)$ singlet ( $\propto \Phi$ ) and vector directions, for vacuum rotation $\theta$

$$
(M+\lambda)=-\frac{1}{2}\left(\hat{m}+\frac{\lambda_{U D} \sigma_{h}+i \delta \lambda_{U D} \pi_{h}^{3}}{2 \sqrt{2}} s_{\theta}\right) \Phi+\frac{i}{2} \Phi\left(\lambda_{U D} \chi_{\theta}^{a}+i \delta \lambda_{U D} \chi_{\theta}^{\prime a}\right) X^{a}
$$

- the fermion mass $\hat{m}$ and $S p(4) \cong S O(5)$ vectors $\chi_{\theta}, \chi_{\theta}^{\prime}$ are

$$
\begin{aligned}
\hat{m} & \equiv \frac{1}{2}\left(-m_{12} c_{\theta}+m_{U D} s_{\theta}\right)=\frac{1}{2}\left(m_{12}^{2}+m_{U D}^{2}\right)=2 \pi f^{3} Z_{2} \lambda_{U D}^{2} /\left.m_{H}^{2}\right|_{\theta<\pi} \\
\vec{\chi}_{\theta} & =\left(\pi_{h}^{1}, \pi_{h}^{2}, \pi_{h}^{3}, \sigma_{h} c_{\theta}+v c_{\theta}+\sqrt{2} m_{12} s_{\theta} / \lambda_{U D}, 0\right)=\left(\pi_{h}^{1}, \pi_{h}^{2}, \pi_{h}^{3}, \sigma_{h} c_{\theta}, 0\right) \\
\vec{\chi}_{\theta}^{\prime} & =\left(-\pi_{h}^{2}, \pi_{h}^{1}, \sigma_{h}+v, \pi_{h}^{3} c_{\theta}, \delta m_{12} / \delta \lambda_{U D}\right)
\end{aligned}
$$

- the $O(4)$ components of $\vec{\chi}_{\theta}, \vec{\chi}_{\theta}^{\prime}$ have opposite $C P$, generalizing the $O(4)$ vectors of Gasser and Leutwyler (Ann Phys) for the $S U(2) \times S U(2) / S U(2)$ coset
- constant term in $\chi_{\theta}^{4} \supset v c_{\theta}+\sqrt{2} m_{12} s_{\theta} / \lambda_{U D}$ must cancel to avoid terms in $V_{\text {eff }}$ of form constant $\times \pi^{4}$ from operators $\propto \vec{\chi}_{\theta} \cdot \vec{\pi} \Rightarrow \tan \theta=-m_{U D} / m_{12}$ to all orders
- compare the $O(4) \subset S p(4)$ vectors for the rotated vacuum $(\theta \neq 0)$

$$
\vec{\pi}=\left(\pi^{1}, \pi^{2}, \pi^{3}, \pi^{4}\right), \quad \vec{\chi}_{\theta}=\left(\pi_{h}^{1}, \pi_{h}^{2}, \pi_{h}^{3}, \sigma_{h} c_{\theta}\right)
$$

- after EWK symmetry breaking, the fundamental and composite $O(3)$ vectors $\left(\pi_{h}^{1}, \pi_{h}^{2}, \pi_{h}^{3}\right)$ and $\left(\pi^{1}, \pi^{2}, \pi^{3}\right)$ remain aligned
- $S U(2)_{1+2}(\theta \neq 0)=S U(2)_{1+2}(\theta=0)=S U(2)_{L+R}=O(3)$
- the composite Higgs $\pi^{4}$ is rotated by by $\theta$ relative to $\sigma_{h}$ [and $\pi^{4}(\theta=0)$, as in composite Higgs]
- $\sigma_{h}$ in $(M+\lambda): \propto \sigma_{h}\left(-s_{\theta} \mathbf{1}_{4}+i c_{\theta} 2 \sqrt{2} X^{4}\right)$, i.e. it is rotated by $\theta$ in the $S p(4)$ singlet direction
- in terms of $S U(4)$ matrix representations (expand $\xi \Phi \xi^{T} \Rightarrow \pi^{i} \propto X^{i} \Phi$ )

$$
\pi^{i}=\pi_{h}^{i}=\frac{1}{2}\left(\begin{array}{cc}
0 & i \sigma^{i} \\
-i \sigma^{i T} & 0
\end{array}\right) ; \pi^{4}=\frac{1}{2}\left(\begin{array}{cc}
i \sigma^{2} \sin \theta & -\cos \theta \mathbf{1}_{\mathbf{2}} \\
\cos \theta \mathbf{1}_{\mathbf{2}} & -i \sigma^{2} \sin \theta
\end{array}\right) ; \quad \sigma_{h}=\frac{1}{2}\left(\begin{array}{cc}
0 & -\mathbf{1}_{\mathbf{2}} \\
\mathbf{1}_{\mathbf{2}} & 0
\end{array}\right)
$$

- the fundamental Higgs doublet mass decomposes as

$$
m_{H}^{2}|H|^{2}=m_{H}^{2} \vec{\chi}_{0} \cdot \vec{\chi}_{0}=m_{H}^{2}\left[\vec{\chi}_{\theta} \cdot \vec{\chi}_{\theta}+\left(\sigma_{h} s_{\theta}\right)^{2}\right]
$$

## The scalar mass matrices

- for given $m_{12}$, if $\lambda_{U D}>\lambda_{U D}^{*} \Rightarrow \theta \neq 0$, and

$$
\begin{gathered}
M_{\pi^{+}}^{2}=m_{H}^{2}\left(\begin{array}{cc}
1 & -t_{\beta} \\
-t_{\beta} & t_{\beta}^{2}
\end{array}\right) \\
M_{h}^{2}=m_{H}^{2}\left(\begin{array}{cc}
c_{\theta}^{2} & -c_{\theta} t_{\beta} \\
-c_{\theta} t_{\beta} & t_{\beta}^{2}
\end{array}\right)+\left(\begin{array}{cc}
m_{H}^{2} s_{\theta}^{2} & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

in the bases $\left(\pi_{h}^{+}, \pi^{+}\right)$and $\left(h, \pi^{4}\right), \quad t_{\beta} \equiv \tan \beta=v /(f \sin \theta)$

- (22) entries are the GMOR relation for fermion mass $\hat{m}$ :

$$
m_{\pi}^{2}=m_{H}^{2} t_{\beta}^{2}=16 \pi f Z_{2} \hat{m}
$$

- $M_{\pi^{+}}^{2}$ and first matrix in $M_{h}^{2}$ are related by $S p(4)$ invariance:
(11), (12), (22) entries $\propto \vec{\chi}_{\theta} \cdot \vec{\chi}_{\theta}, \quad \vec{\chi}_{\theta} \cdot \vec{\pi}, \quad \vec{\pi} \cdot \vec{\pi}$
- therefore, both have massless eigenstates: the "eaten" NGB's and would-be Higgs $h$
- the Higgs mass is lifted by the second matrix in $M_{h}^{2}$, corresponding to the $S p(4)$ singlet's mass, $m_{H}^{2}\left(\sigma_{h} s_{\theta}\right)^{2}$
- charged pion $(a= \pm)$ and Higgs mass eigenstates: $\tan 2 \alpha=\cos \theta \tan 2 \beta$

$$
\begin{aligned}
G^{a} & =s_{\beta} \pi_{h}^{a}+c_{\beta} \pi^{a}, \quad \tilde{\pi}^{a}=-c_{\beta} \pi_{h}^{a}+s_{\beta} \pi^{a}, \\
h & =c_{\alpha} h-s_{\alpha} \pi^{4}, \quad \mathcal{H}=s_{\alpha} h+c_{\alpha} \pi^{4}
\end{aligned}
$$

- non-zero masses

$$
m_{\tilde{\pi}}^{2}=m_{H}^{2} / c_{\beta}^{2}, \quad m_{h, \mathcal{H}}^{2}=m_{H}^{2}\left(1 \mp \sqrt{1-s_{\theta}^{2} s_{2 \beta}^{2}}\right) / 2 c_{\beta}^{2} .
$$

- in limit $s_{\theta}^{2} c_{\beta}^{2} \ll 1$ the light Higgs mass is (up to small quartic shift $\approx \lambda_{h} v^{2}$ )

$$
m_{h}^{2}=m_{H}^{2} \sin ^{2} \theta
$$

- Higgs is dominantly fundamental, with admixture of composite pNGB $\pi^{4}$
- Higgs mass is associated with misalignment $\propto \sin \theta$, as in composite Higgs
- small $\sin \theta$ offers opportunity to raise the fundamental Higgs mass $m_{H}^{2}$, or SUSY scale
- the $S p(4)$ singlet radial $\sigma$ mode's mass mixing with $\sigma_{h}$ is $\sim m_{H}^{2} \sin \theta \tan \beta$, thus Higgs mass $\sin ^{2} \theta$ suppression persists; same true of higher orders in the chiral expansion


## Higgs phenomenology

- $h V V\left(V=W^{ \pm}, Z\right)$ and $h \bar{f} f$ couplings normalized to SM: $\kappa_{V}$ and $\kappa_{F}$, and $s_{\theta}^{2} \ll 1$ limits

$$
\begin{aligned}
& \kappa_{V}=c_{\alpha} s_{\beta}-s_{\alpha} c_{\beta} c_{\theta} \mapsto 1-c_{\beta}^{2} s_{\theta}^{2} / 2, \\
& \kappa_{F}=c_{\alpha} / s_{\beta} \mapsto 1-c_{2 \beta} c_{\beta}^{2} s_{\theta}^{2} / 2 .
\end{aligned}
$$

- small percent level deviations from SM
- note additional $c_{\beta}^{2}$ in deviations compared to composite Higgs
- For $h \gamma \gamma, h \gamma Z$ and vector resonance discussion introduce $S p(4)$ covariant field strengths Galloway etal

$$
\mathcal{D}_{\mu \nu}=\nabla_{[\mu} d_{\nu]}, \quad \mathcal{F}_{\mu \nu}=-i\left[\nabla_{\mu}, \nabla_{\nu}\right] .
$$

$\nabla_{\mu}$ is $S p(4)$ covariant derivative

- $\mathcal{D}_{\mu \nu}, \mathcal{F}_{\mu \nu}$ tranform homogeneously under $S p(4)$
- $\mathcal{F}_{\mu \nu}$ is a 10 of $S p(4), \quad \mathcal{D}_{\mu \nu}$ is a 5 of $S p(4)$
- effective operator for $h \gamma \gamma$

$$
\mathcal{L}_{\chi \mathcal{F F}}=\frac{\lambda_{\chi} \sec \beta \sin \theta}{64 \pi^{3} v_{W}} \operatorname{tr}\left(\chi^{+} \mathcal{F}_{\mu \nu} \mathcal{F}^{\mu \nu}\right), \quad \lambda_{\chi}=O(1) \text { in NDA }
$$

- induced $h \gamma \gamma$ coupling

$$
\mathcal{L}=c_{\gamma}^{\mathrm{TC}} \frac{\alpha}{\pi v_{W}} h A_{\mu \nu} A^{\mu \nu}, \quad c_{\gamma}^{\mathrm{TC}}=\frac{\lambda_{\chi} \lambda_{U D} c_{\alpha}}{32 \sqrt{2} \pi c_{\beta}} s_{\theta}^{2}
$$

compared to $c_{\gamma}^{\mathrm{SM}} \simeq .23$.

- Including modified Higgs couplings to $t, W$

$$
\Gamma_{\gamma \gamma} / \Gamma_{\gamma \gamma}^{S M} \simeq 1.52\left|\kappa_{F} c_{\gamma}^{\mathrm{SM}}-1.04 \kappa_{V}+c_{\gamma}^{\mathrm{TC}}\right|^{2} .
$$

$\Rightarrow \mathrm{TC}$ shifts in $\Gamma_{\gamma \gamma, V V, \bar{f} f}$ are suppressed by $s_{\theta}^{2}$, deviations are small, percent level.

## The vector resonances

- all resonances appear in representations of the unbroken subgroup, $S p(4)$
- consider the lowest lying 10- and 5-plet vectors (also see Franzosi et al. 1605.01363)

$$
\hat{R}_{10}=R_{10}^{a} T^{a}, \quad \hat{R}_{5}=R_{5}^{a} X^{a}, \quad \hat{R} \mapsto V \hat{R} V^{\dagger}
$$

- $R_{10}^{a}, R_{10}^{a+3}, R_{5}^{a}, a=1,2,3$ are triplets of $S U(2)_{V}$
- $R_{10}^{1 . .3}$ are $G_{L R}$ even; $R_{10}^{4 . .6}, R_{5}^{1 . .3}$ are $G_{L R}$ odd
- $R_{10}^{a \pm}=\left(R_{10}^{a} \pm R_{10}^{a+3}\right) / \sqrt{2}, a=1 . .3$ are triplets of $S U(2)_{1,2}$, interchanged under $G_{L R}$
- based on the vector currents $\Psi^{\dagger} \bar{\sigma}_{\mu} T^{a} \Psi$ at $\theta=\pi / 2$, $\hat{R}_{10}$ and $\hat{R}_{5}$ generalize the QCD $\vec{\rho}$ and $\vec{a}_{1}$ triplets, respectively
- however, $R_{10}^{a}$ and $R_{10}^{a+3}, a=1 . .3$, are the $G_{L R}$ "parity doubling partners"


## Vector Lagrangian

- employ antisymmetric tensor formalism Gasser and Leutwyler; Ecker etal
- The kinetic terms are ( $M_{R}^{2}$ is the mass in the chiral limit)

$$
\mathcal{L}_{\text {kin }}=-\frac{1}{2} \operatorname{tr}\left(\nabla^{\lambda} \hat{R}_{\lambda \mu} \nabla_{\nu} \hat{R}^{\nu \mu}-\frac{1}{2} M_{R}^{2} \hat{R}_{\mu \nu} \hat{R}^{\mu \nu}\right),
$$

- A related object, $\quad R_{\mu}=-M_{R}^{-1} \nabla^{\nu} R_{\nu \mu}$ satisfies Proca equation for massive vector field
- Most general $O\left(p^{2}\right)$ interaction Lagrangian, linear in $R_{5,10}$

$$
\mathcal{L}_{R}^{(2)}=\operatorname{tr}\left(i G_{10} \hat{R}_{10, \mu \nu} d^{\mu} d^{\nu}+\frac{F_{10}}{\sqrt{2}} \hat{R}_{10, \mu \nu} \mathcal{F}^{\mu \nu}+\frac{F_{5}}{\sqrt{2}} \hat{R}_{5, \mu \nu} \mathcal{D}^{\mu \nu}\right)
$$

- $F_{10,5}$ are the vector decay constants,

$$
\left\langle R_{10(5)}^{a}\right| \Psi^{\dagger} \bar{\sigma}_{\mu} T^{a}\left(X^{a}\right) \Psi|0\rangle=-i F_{10(5)} M_{10(5)} \epsilon_{\mu}^{*}
$$

- $G_{10}=-2 \sqrt{2} f^{2} / F_{10}$ in vector meson dominance (VMD) approximation (VMD $\rho \pi \pi$ coupling, $g_{\rho \pi \pi}=-m_{\rho} / f_{\rho}$, is $16 \%$ below exp.; $\phi K K$ is within a few \%)
- $\quad \mathcal{L}_{R}^{(2)}$ yields the bilinears $(a=1,2,3)$

$$
\mathcal{L}_{\text {bilinear }}=-\frac{1}{4} F_{10} R_{10}^{a}\left(g_{2} W^{a}+g_{1} B \delta^{a 3}\right)-\frac{1}{4}\left(F_{10} c_{\theta} R_{10}^{a+3}-F_{5} s_{\theta} R_{5}^{a}\right)\left(g_{2} W^{a}-g_{1} B \delta^{a 3}\right)
$$

- they induce the couplings to SM fermions responsible for vector Drell-Yan production, via the substitutions

$$
\begin{aligned}
W_{\mu}^{a} & \rightarrow W_{\mu}^{a}-\frac{g_{2} F_{10}}{2 M_{10}}\left(R_{10, \mu}^{a}+R_{10, \mu}^{a+3} c_{\theta}\right)+\frac{g_{2} F_{5}}{2 M_{5}} R_{5, \mu}^{a} s_{\theta} \\
B_{\mu} & \rightarrow B_{\mu}-\frac{g_{1} F_{10}}{2 M_{10}}\left(R_{10, \mu}^{3}-R_{10, \mu}^{6} c_{\theta}\right)-\frac{g_{1} F_{5}}{2 M_{5}} R_{5, \mu}^{3} s_{\theta}
\end{aligned}
$$

- leading $R_{10}$ decays originate from the trilinears

$$
-\frac{G_{10} M_{10}}{2 \sqrt{2} f^{2}}\left(\epsilon^{a b c} R_{10, \mu}^{a} \pi^{b} \partial^{\mu} \pi^{c}+R_{10, \mu}^{a+3}\left[\pi^{5} \partial^{\mu} \pi^{a}-\pi^{a} \partial^{\mu} \pi^{5}\right]\right)+\ldots . .
$$

- typically, we are far form the chiral limit, $\hat{m} \lesssim f$, closing the decay channels $R_{10}^{1 . .3,(4 . .6)} \rightarrow \tilde{\pi} \tilde{\pi},(H \tilde{\pi})$.
- Therefore $R_{10}^{1 . .3,(4 . .6)} \rightarrow \tilde{\pi} W_{L} / Z_{L},\left(\tilde{\pi} h, H W_{L} / Z_{L}\right)$ dominate


## $S$-parameter

- tree-level $R_{10}^{3,6}, R_{5}^{3}$ exchange yields

$$
\Delta S_{\text {tree }}=4 \pi\left(F_{10}^{2} / M_{10}^{2}-F_{5}^{2} / M_{5}^{2}\right) \sin ^{2} \theta
$$

- $s_{\theta}^{2}$ suppression is a general feature of misalignment in composite Higgs Barbieri, Bellazzini et al; Contino et al; Panic, Wulzer...
- here the origin of $s_{\theta}^{2}$ in $\Delta S_{\text {tree }}$ is explicit: $R_{10}^{3,6}$ parity doubling cancelation $\propto 1-c_{\theta}^{2}$; and $s_{\theta}$ suppression of the $R_{5}^{3}$ couplings
- To estimate $\Delta S_{\text {tree }}$ we use the $N_{c}=n_{f}=2$ lattice results for $M_{10}, f_{\pi}$ (full decay constant) away from the chiral limit
- estimate $F_{10} / f_{\pi}$ by fitting to $f_{V} / f_{P}$ vs $m_{q}$ in QCD
- bound the contribution of $R_{5}$ via approximate upper and lower bounds, $M_{5}<M_{10} m_{a_{1}} / m_{\rho}$ and $F_{5}>f_{a_{1}} f / f_{\pi}^{\text {qcd }}$
- Take $f_{a_{1}}=152 \mathrm{MeV}$ based on a phenomenological determination using $\operatorname{Br}\left(\tau^{+} \rightarrow \nu_{\tau} \pi^{+} \pi^{+} \pi^{-}\right)$
- obtain $\Delta S_{\text {tree }} / s_{\theta}^{2}<[0.11,0.09]\left([0.19,0.13]\right.$ for $\left.R_{10}\right)$ for $\hat{m}_{\theta} / f=[0,1.5]$
- exhibits an expected (especially for $R_{10}$ ) decrease away from the chiral limit
- implies $\Delta S \subset 0.10 \pm 0.08$ [Rome], $0.00 \pm 0.08$ [PDG] ( $1 \sigma$ ) is reasonable
- scalar loops in $S$ are log divergent, due to $c_{\theta}$ factor in the $\pi^{4}$ gauge couplings Barbieri, Bellazzini et al 0706.0432. After SM Higgs subtraction

$$
\Delta S_{\text {loop }}=\frac{1}{24 \pi}\left(s_{\theta}^{2}\left[s_{\alpha}^{2} \log \frac{\Lambda^{2}}{m_{h}^{2}}+c_{\alpha}^{2} \log \frac{\Lambda^{2}}{m_{\mathcal{H}}^{2}}\right]+F_{\text {fin }}\right),
$$

where $F_{\text {fin }}$ is a lengthy expression from finite loop contributions

- the large log (1st term) is additionally suppressed by $s_{\alpha}^{2}$ relative to the usual composite Higgs, from projection of $\pi^{4}$ onto $h$
- for cut-off $\Lambda<8 \pi f$ find $\Delta S_{\text {loop }}<0.01$ in our examples


## $T$ parameter

At one loop, $T$ mainly arises from

- scalar loops with isospin breaking entering via $\tilde{\pi}^{3}-\pi^{4}$, and $\tilde{\pi}^{3}-\eta$ mixings, and $\tilde{\pi}^{3}-\tilde{\pi}^{+}$ mass splitting
- these loops vanish in the limit $\left(\lambda_{U}-\lambda_{D}\right) \rightarrow 0$, so their size can be controlled
- $G^{+}$wave function renormalization via $B-R_{5,10}^{1,2,4,5}$ loops.
- non-trivial to estimate rychkov; kamenik; pich. however, $G^{+}$is dominantly fundamental $\Rightarrow$ projection of the vertices onto $G^{+}$ suppresses these effects by $c_{\beta}^{2}$, or $O(10)$
- so we conclude that misaligned BTC should reasonably live within the ( $S, T$ ) plane's allowed $1 \sigma$ ellipse

