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Introduction to Bosonic Technicolor

BTC combines technicolor and supersymmetry Dine, A.K., Samuel ’90; non-susy
version: Simmons, ’89

technicolor condensates trigger electroweak symmetry breaking

fundamental Higgs fields Hu, Hd give masses to quarks, leptons

supersymmetry stabilizes the Higgs scalar masses

Higgs VEV’s via Yukawa couplings to technifermion condensates

λU ŪRTLHu + λDD̄RTLHd ⇒ 〈Hu〉 ∼ λU
〈ŪRUL〉
m2

Hu

, 〈Hd〉 ∼ λD
〈D̄RDL〉
m2

Hd

positive Higgs mass parameters, m2
Hu

, m2
Hd

> 0 ⇒ no electroweak
symmetry breaking in absence of TC

W,Z receive masses both from technicolor condensates, HIggs VEV’s

v2W = (246 GeV)2 ≈ f2
TC + f2

u + f2
d , 〈Hu,d〉 ≡ fu,d/

√
2



-Fermion mass generation in BTC via “Higgs scalar exchange", integrated out in heavy limit

-for light Higgs, use chiral Lagrangian approach Carone, Simmons; Carone, Georgi

Minimal BTC = MSSM + SU(N)TC, with technifermion superfields

T̂L(2TC, 1C , 2L, 0), ÛR(2TC, 1C , 1L,−1/2), D̂R(2TC, 1C , 1L,+1/2),

and Yukawa superpotential

WY = λU ÛRT̂LĤu + λDD̂RT̂LĤd

- NTC = 2 is minimal choice
- NTC = 3 disfavored: stable fractionally charged technibaryons; SU(2)L anomaly
- NTC = 4 disfavored by S parameter

superpartner technigluino, technisquarks acquire masses > ΛTC, yielding a QCD-like
technicolor theory at lower scales



Linking ΛTC and msusy

BTC introduces two scales at low energies: (i) msusy , the scale of superpartner
masses; (ii) ΛTC, the scale of TC chiral symmetry breaking

potential coincidence problem since, e.g. msusy/ΛTC = O(few)

when techni-superpartners acquire masses and “decouple", technicolor beta function
becomes more negative.

more rapid increase in αTC below msusy could link the two scales
AK, Samuel ’91

most attractive scenario Azatov, Galloway, Luty ’11:
above msusy , αTC sits near a superconformal strong IR fixed point. Provides direct
link between msusy and ΛTC



appealing realization Galloway, Martin, AK:

SUSY SU(2) with nf = 2 and an adjoint matter superfield has a strong IR fixed point,
with chiral symmetry unbroken in the supersymmetric theory Elitzur, Forge, Giveon,
Rabinovici ’95

R symmetric BTC has precisely this TC field content. Can yield the following
running of αTC:

A perturbative 2-loop estimate yields α∗ ≈ 1.8



The minimal UV theory

The model: asymptotically free SU(2)TC, confining at scale Λ.
For simplicity consider the non-supersymmetric version

The technifermion (TC-fermion) content is

SU(2)TC SU(2)W U(1)Y
(

Ψ1

Ψ2

)

≡ T1,2

(

�

�

)

� 0

Ψ3 ≡ U � 1 −1/2

Ψ4 ≡ D � 1 +1/2

all fermions are treated as LH Weyl fields, transforming under the (1/2, 0)

representation of the Lorentz group SU(2)× SU(2) ∼ SO(3, 1)

With weak interactions turned off, the model possesses a global SU(4) symmetry
under which the four-component object Ψ is a fundamental, Ψ 7→ UΨ, U ∈ SU(4)

Ψ =
(

T1 T2 U D
)T



The TC-fermion condensate

〈Ψa ΨT,bǫ C−1〉 ∝ Φab

is antisymmetric in the SU(4) flavor indices a, b by Fermi-Dirac statistics, ΦT = −Φ

assume it breaks SU(4) to its maximal vectorlike subgroup Sp(4)

⇒ SU(4)/Sp(4) coset structure ∼= SO(6)/SO(5)

most general Sp(4) preserving condensate Galloway, Evans, Luty, Tacchi 1001.1361

Φ =





eiα ǫ cos θ 12 sin θ

−12 sin θ −e−iαǫ cos θ



 , θ ∈ [0, π]

obtained by applying SU(4) rotations to the canonical Sp(4) preserving vacuum

Φ =





0 12

−12 0



 ,

α is a CP violating phase: Φ → −Φ† under CP



sin θ = 0: electroweak (EWK) symmetry is unbroken, "EWK vacuum"
sin θ = 1: the condensate is purely SU(2)L breaking, "TC vacuum"

The Sp(4) vacuum degeneracy is lifted by the UV TC-fermion interactions

previous BTC studies only included fundamental Higgs - technifermion Yukawa
couplings, thus selecting the TC vacuum (θ = π/2)

we explore the benefits of small misalignment from the EWK vacuum:
small to moderate sin θ

minimally accomplished by adding gauge singlet TC-fermion masses of O(vW )

they can be linked to SUSY breaking, therefore to ΛTC

an appealing alternative, and a feature of RBTC: 4- technifermion operators



Minimal UV potential In SU(4) notation

VUV = −ΨT ǫC−1(M + λ)Ψ + h.c.+m2
H |H|2 + λh|H|4

C−1 = diag[iσ2, iσ2, iσ2, iσ2] acts on LH Weyl spinors in Ψ,

ǫ acts on TC indices

H is SM Higgs doublet with m2
H > 0

M , λ are 4× 4 matrices containing singlet masses, Yukawas: m1,2, λU,D ,
(M + λ) is an SU(4) breaking spurion, (M + λ) 7→ U∗(M + λ)UT

M =
1

2





m1 ǫ 0

0 −m2 ǫ



 , λ =
1

2





0 −HΛ

HT
Λ 0



 ,

HΛ =
1√
2





λU (σh + v∗ − iπ3
h
) λD(−iπ1

h
+ π2

h
)

−λU (iπ1
h
+ π2

h
) λD(σh + v + iπ3

h
)



 .

σh (~πh) are the scalar (pseudoscalar) components of H, v ≡ 〈H〉



the TC-fermion masses: m1T2T1 +m2UD +mUT1U +mDT2D

mU = λUv∗/
√
2, mD = λDv/

√
2

The gauge-kinetic term for Ψ, including EWK and TC

LKE = iΨ† σ̄µ(∂µ −−iAµ − iGa
µτ

a/2 14)Ψ, σ̄µ = (1,−~σi
µ)

EWK gauge interaction embedding in SU(4)

Aµ =





g2 Wa
µ

1
2
τa 0

0 −g1Bµ
1
2
τ3







Discrete symmetries in the UV: CP

CP is the only discrete symmetry of the TC interactions lying outside of SU(4)

CP : Ψ(xµ) 7→ i ǫ C−1 Ψ∗(xµ) .

pseudoreality of the SU(2)TC fundamental ⇒P and C are separately
unphysical, only being defined up to arbitrary SU(4) rotations

fundamental d.o.f. are the four LH Weyl spinors in Ψ. A true discrete symmetry
must rotate among them.

for a single LH Weyl fermion, P exchanges (1/2, 0) ↔ (0, 1/2), which
proceeds via conjugation to construct the RH field, bringing in C to recover the
LH one

For simplicity, assume CP-invariant VUV ⇒ m1,2, λUD are real

checked, to O(p4), that minimizing the IR potential then yields
α = arg(v) = 0, which we assume holds to all orders (no spontaneous CPV)

CP invariance of the EWK interactions ⇒Aµ 7→ AT
µ (usual gauge boson

transformations)



GLR: SU(2)L ↔ SU(2)R interchange

GLR-parity interchanges the generators of SU(2)L and SU(2)R
(also see Franzosi, et al. 1605.01363)

it resides in SU(4), and the left-over Sp(4) symmetry
(it has nothing to do with spacetime parity)

Ψ 7→ GLRΨ where, up to an overall phase

GLR = −





0 σ2

σ2 0





To see this, extend to the left-right symmetric gauge group, and require that GLR

exchanges top and bottom components of Ψ and g2LWL ↔ g2RWR

under GLR ∈ SU(4), M + λ → GT
LR (M + λ)GLR

⇒ m1 (2) → m2 (1), mU (D) → mD (U), λU (D)h → λD (U)h, .....

Thus, GLR invariance of VUV would require m1 = m2, λU = λD

the isospin rotation in GLR is reminsicent of G-parity



The SU(4)/Sp(4) coset for arbitrary θ Galloway et al.

5 broken SU(4) generators, Xi, in 5 of Sp(4) ∼= SO(5), satisfying XΦ− ΦXT = 0

s ≡ sin θ, c ≡ cos θ

X1 =
1

2
√
2





sσ1 −cσ3

−cσ3 sσ1



 , X2 =
1

2
√
2





sσ2 ic12

−ic12 −sσ2



 , X3 =
1

2
√
2





sσ3 cσ1

cσ1 sσ3



 ,

X4 =
1

2
√
2





0 σ2

σ2 0



 , X5 =
1

2
√
2





c12 −sǫ

sǫ −c12





10 unbroken Sp(4) generators, T i, in 10 (adjoint) of Sp(4), satisfying TΦ +ΦTT = 0

T 1 =
1

2
√
2





σ1 0

0 −σ1



 , T 2 =
1

2
√
2





σ2 0

0 σ2



 , T 3 =
1

2
√
2





σ3 0

0 −σ3



 ,

T 4 =
1

2
√
2





cσ1 sσ3

sσ3 cσ1



 , T 5 =
1

2
√
2





cσ2 −is12

is12 −cσ2



 , T 6 =
1

2
√
2





cσ3 −sσ1

−sσ1 cσ3



 , ...



subgroup structure: Sp(4) ⊃ SU(2)1 × SU(2)2,

SU(2)1,2 identified with generaotrs (Ta ± Ta+3)/
√
2, a = 1, 2, 3

reduce to SU(2)L,R in θ → 0 limit

isospin group SU(2)V = SU(2)L+R = SU(2)1+2, with generators T 1,2,3

under SU(2)1 × SU(2)2

5 = (2, 2) + (1, 1)

10 = (3, 1) + (1, 3) + (2, 2)



we follow the CCWZ prescription, arranging the 5 NGBs into

ξ = exp(
√
2i ~π · ~X/f) 7→ UξV †,

where the transformation applies to global rotations with U ∈ SU(4) and V ∈ Sp(4)

⇒ V ΦV T = Φ

The transformations of the pions under CP , GLR obtained by considering the
transformations of the corresponding vector currents, Ψ†σ̄µ XaΨ

The eaten NGB’s are linear combinations of the CP -odd π1,2,3 and π1,2,3
h

π4 is the CP -even component of a composite SU(2)L Higgs doublet

1√
2





π1 + iπ2

π4 + iπ3





π5 is a CP -odd isosinglet

π1,2,3,5, π1,2,3
h

are GLR odd; π4, σh are GLR even



Chiral Lagrangian for scalars and vacuum alignment

kinetic terms expressed in terms of Cµ = iξ†Dµξ (following composite Higgs
notation, e.g. Contino et al., Panico and Wulzer)

project onto broken and unbroken directions (Cµ = dµ + Eµ)

dµ = 2tr(CµX
a)Xa 7→ V dµV

† (5−plet),

Eµ = 2tr(CµT
a)Ta 7→ V (Eµ + ∂µ)V

† (10−plet), ,

spurion building blocks

χ± = ξT (M + λ)ξΦ±H.c., χ± 7→ V χ±V †

O(p2) Lagrangian

L(2) =
f2

2
tr(dµ dµ) + 4πf3Z2 tr(χ+),

Z2 ≈ 1.47, from Nc = nf = 2 lattice study Pica et al. 1602 .06559



TC and fundamental Higgs H gauge kinetic terms yield EWK scale

v2W = (246 GeV)2 = f2 sin2 θ + v2 .

associate f sin θ with VEV of composite pNGB Higgs π4

The O(p2) potential

V
(2)
eff = 8πf3Z2(m12 cos θ − λUDv sin θ/

√
2) +m2

Hv2/2

m12 ≡ m1 +m2, δm12 ≡ m1 −m2, etc.

For simplicity, ignore quartic - also motivated by SUSY where it is a small
perturbation

EWK, top Yukawa loop effects, usually considered in composite Higgs models,
are a negligible perturbation



minimizing V
(2)
eff obtain vacuum solution (mUD,m12 > 0, θ ∈ [π/2, π])

tan θ = −mUD

m12
, v =

4
√
2λUD sin θ f3πZ2

m2
H

⇒ sin θ =

√

1− m2
12

λ4
UD

m4
H

16π2f6Z2
2

.

can show tan θ = −mUD/m12 to all orders

for given f or ΛTC, largest tuning of sin θ due to variation of λUD

|d log(sin θ)/d log(λUD)| = 2 cot2 θ

For example, sin θ ∼ 1/3− 1/2 is tuned at ∼ 6%− 17%

(moderate sin θ is fine phenomenologically e.g. Higgs, precision EWK)

in principle, f more tuned, but f could be linked to mH or m12 in SUSY theory

4-technifermion operators, e.g. due to exchange of TC-adjoint scalar with mass
mA & ΛTC, offer an alternative in which m1,2 ∝ 〈ΨΨT 〉 ∝ f3, like v.



Vacuum misalignment and scalar spectrum

To elucidate the structure of the vacuum and scalar spectrum, it is useful to project
(M + λ) onto the Sp(4) singlet (∝ Φ) and vector directions, for vacuum rotation θ

(M+λ) = −1

2

(

m̂+
λUDσh + i δλUD π3

h

2
√
2

sθ

)

Φ+
i

2
Φ
(

λUD χa
θ + iδλUD χ ′a

θ

)

Xa

the fermion mass m̂ and Sp(4) ∼= SO(5) vectors χθ , χ′
θ

are

m̂ ≡ 1

2
(−m12 cθ +mUD sθ) =

1

2
(m2

12 +m2
UD) = 2πf3Z2λ

2
UD/m2

H |
θ<π

~χθ = (π1
h, π

2
h, π

3
h, σhcθ + v cθ +

√
2m12sθ/λUD , 0) = (π1

h, π
2
h, π

3
h, σhcθ, 0)

~χ ′
θ = (−π2

h, π
1
h, σh + v, π3

h cθ, δm12/δλUD),

the O(4) components of ~χθ , ~χ ′
θ

have opposite CP , generalizing the O(4) vectors
of Gasser and Leutwyler (Ann Phys) for the SU(2)× SU(2)/SU(2) coset

constant term in χ4
θ
⊃ v cθ +

√
2m12sθ/λUD

must cancel to avoid terms in Veff of form constant ×π4

from operators ∝ ~χθ · ~π ⇒ tan θ = −mUD/m12 to all orders



compare the O(4) ⊂ Sp(4) vectors for the rotated vacuum (θ 6= 0)

~π = (π1, π2, π3, π4), ~χθ = (π1
h, π

2
h, π

3
h, σhcθ)

after EWK symmetry breaking, the fundamental and composite O(3) vectors
(π1

h
, π2

h
, π3

h
) and (π1, π2, π3) remain aligned

SU(2)1+2(θ 6= 0) = SU(2)1+2(θ = 0) = SU(2)L+R = O(3)

the composite Higgs π4 is rotated by by θ relative to σh [and π4(θ = 0), as in
composite Higgs]

σh in (M + λ): ∝ σh(−sθ14 + icθ2
√
2X4), i.e. it is rotated by θ in the Sp(4)

singlet direction

in terms of SU(4) matrix representations (expand ξΦξT ⇒πi ∝ XiΦ)

πi = πi
h =

1

2





0 iσi

−iσiT 0



 ; π4 =
1

2





iσ2 sin θ −cos θ 12

cos θ 12 −iσ2 sin θ



 ; σh =
1

2





0 −12

12 0





the fundamental Higgs doublet mass decomposes as

m2
H |H|2 = m2

H ~χ0 · ~χ0 = m2
H [~χθ · ~χθ + (σhsθ)

2]



The scalar mass matrices

for given m12, if λUD > λ∗
UD ⇒ θ 6= 0, and

M2
π+ = m2

H





1 −tβ

−tβ t2
β



 ,

M2
h =m2

H





c2
θ

−cθtβ

−cθtβ t2β



+





m2
Hs2

θ
0

0 0





in the bases (π+
h
, π+) and (h, π4), tβ ≡ tan β = v/(f sin θ)

(22) entries are the GMOR relation for fermion mass m̂:
m2

π = m2
H t2

β
= 16πfZ2 m̂

M2
π+ and first matrix in M2

h
are related by Sp(4) invariance:

(11), (12), (22) entries ∝ ~χθ · ~χθ , ~χθ · ~π, ~π · ~π

therefore, both have massless eigenstates: the “eaten" NGB’s and would-be
Higgs h

the Higgs mass is lifted by the second matrix in M2
h

, corresponding to the Sp(4)

singlet’s mass, m2
H(σhsθ)

2



charged pion (a = ±) and Higgs mass eigenstates: tan 2α = cos θ tan 2β

Ga = sβ πa
h + cβ πa, π̃a = −cβ πa

h + sβ πa,

h = cα h− sα π4, H = sα h+ cα π4,

non-zero masses

m2
π̃ = m2

H/c2β , m2
h,H = m2

H

(

1∓
√

1− s2
θ
s22β

)

/2c2β .

in limit s2
θ
c2
β
<< 1 the light Higgs mass is (up to small quartic shift ≈ λhv

2)

m2
h = m2

H sin2 θ

Higgs is dominantly fundamental, with admixture of composite pNGB π4

Higgs mass is associated with misalignment ∝ sin θ, as in composite Higgs

small sin θ offers opportunity to raise the fundamental Higgs mass m2
H ,

or SUSY scale

the Sp(4) singlet radial σ mode’s mass mixing with σh is ∼ m2
H sin θ tan β, thus Higgs

mass sin2 θ suppression persists; same true of higher orders in the chiral expansion



Higgs phenomenology

hV V (V = W±, Z) and hf̄f couplings normalized to SM: κV and κF , and s2
θ
<< 1

limits

κV = cαsβ − sα cβ cθ 7→ 1− c2β s2θ /2,

κF = cα/sβ 7→ 1− c2β c2β s2θ /2 .

small percent level deviations from SM

note additional c2
β

in deviations compared to composite Higgs

For hγγ, hγZ and vector resonance discussion introduce Sp(4) covariant field
strengths Galloway etal

Dµν = ∇[µdν], Fµν = −i[∇µ,∇ν ] .

∇µ is Sp(4) covariant derivative

Dµν , Fµν tranform homogeneously under Sp(4)

Fµν is a 10 of Sp(4), Dµν is a 5 of Sp(4)



effective operator for hγγ

LχFF =
λχ secβ sin θ

64π3vW
tr(χ+ Fµν Fµν), λχ = O(1)in NDA

induced hγγ coupling

L = cTC
γ

α

πvW
hAµνA

µν , cTC
γ =

λχ λUD cα

32
√
2πcβ

s2θ ,

compared to cSMγ ≃ .23.

Including modified Higgs couplings to t,W

Γγγ/Γ
SM
γγ ≃ 1.52 |κF cSMγ − 1.04κV + cTC

γ |2 .

⇒ TC shifts in Γγγ,V V,f̄f are suppressed by s2
θ
, deviations are small, percent level.



The vector resonances

all resonances appear in representations of the unbroken subgroup, Sp(4)

consider the lowest lying 10- and 5-plet vectors (also see Franzosi et al. 1605.01363)

R̂10 = Ra
10T

a, R̂5 = Ra
5X

a , R̂ 7→ V R̂V †

Ra
10, Ra+3

10 , Ra
5 , a = 1, 2, 3 are triplets of SU(2)V

R1..3
10 are GLR even; R4..6

10 , R1..3
5 are GLR odd

Ra±
10 = (Ra

10 ± Ra+3
10 )/

√
2, a=1..3 are triplets of SU(2)1,2,

interchanged under GLR

based on the vector currents Ψ†σ̄µTaΨ at θ = π/2,
R̂10 and R̂5 generalize the QCD ~ρ and ~a1 triplets, respectively

however, Ra
10 and Ra+3

10 , a=1..3, are the GLR “parity doubling partners"



Vector Lagrangian

employ antisymmetric tensor formalism Gasser and Leutwyler; Ecker etal

The kinetic terms are (M2
R is the mass in the chiral limit )

Lkin = −1

2
tr(∇λR̂λµ∇νR̂

νµ − 1

2
M2

RR̂µν R̂
µν) ,

A related object, Rµ = −M−1
R

∇νRνµ

satisfies Proca equation for massive vector field

Most general O(p2) interaction Lagrangian, linear in R5,10

L(2)
R

= tr

(

iG10R̂10,µνd
µdν +

F10√
2
R̂10,µνFµν +

F5√
2
R̂5,µνDµν

)

F10,5 are the vector decay constants,

〈Ra
10(5)|Ψ† σ̄µ Ta(Xa)Ψ|0〉 = −iF10(5)M10(5)ǫ

∗
µ

G10 = −2
√
2f2/F10 in vector meson dominance (VMD) approximation

(VMD ρππ coupling, gρππ = −mρ/fρ, is 16% below exp.; φKK is within a few %)



L(2)
R

yields the bilinears (a = 1, 2, 3)

Lbilinear = −1

4
F10 R

a
10

(

g2W
a+g1B δa3

)

−1

4

(

F10 cθ R
a+3
10 −F5 sθ R

a
5

)(

g2W
a−g1B δa3

)

they induce the couplings to SM fermions responsible for vector Drell-Yan
production, via the substitutions

Wa
µ → Wa

µ − g2F10

2M10

(

Ra
10,µ +Ra+3

10,µcθ

)

+
g2F5

2M5
Ra

5,µsθ

Bµ → Bµ − g1F10

2M10

(

R3
10,µ − R6

10,µcθ
)

− g1F5

2M5
R3

5,µsθ .

leading R10 decays originate from the trilinears

−G10M10

2
√
2f2

(

ǫabcRa
10,µπ

b∂µπc +Ra+3
10,µ

[

π5∂µπa − πa∂µπ5
] )

+ .....,

typically, we are far form the chiral limit, m̂ . f , closing the decay channels

R
1..3,(4..6)
10 → π̃π̃, (Hπ̃).

Therefore R
1..3,(4..6)
10 → π̃WL/ZL, (π̃h,HWL/ZL) dominate



S-parameter

tree-level R3,6
10 , R3

5 exchange yields

∆Stree = 4π
(

F 2
10/M

2
10 − F 2

5 /M
2
5

)

sin2 θ

s2θ suppression is a general feature of misalignment in composite Higgs
Barbieri, Bellazzini et al; Contino et al; Panic, Wulzer...

here the origin of s2
θ

in ∆Stree is explicit: R3,6
10 parity doubling cancelation

∝ 1− c2
θ
; and sθ suppression of the R3

5 couplings

To estimate ∆Stree we use the Nc = nf = 2 lattice results for M10, fπ (full decay
constant) away from the chiral limit

estimate F10/fπ by fitting to fV /fP vs mq in QCD

bound the contribution of R5 via approximate upper and lower bounds,
M5 < M10 ma1

/mρ and F5 > fa1
f/fqcd

π

Take fa1
= 152 MeV based on a phenomenological determination using

Br(τ+ → ντπ+π+π−)



obtain ∆Stree/s2θ < [0.11, 0.09] ([0.19, 0.13] for R10) for m̂θ/f = [0, 1.5]

exhibits an expected (especially for R10) decrease away from the chiral limit

implies ∆S ⊂ 0.10± 0.08 [Rome], 0.00± 0.08 [PDG] (1σ) is reasonable

scalar loops in S are log divergent, due to cθ factor in the π4 gauge couplings
Barbieri, Bellazzini et al 0706.0432. After SM Higgs subtraction

∆Sloop =
1

24π

(

s2θ

[

s2α log
Λ2

m2
h

+ c2α log
Λ2

m2
H

]

+ Ffin

)

,

where Ffin is a lengthy expression from finite loop contributions

the large log (1st term) is additionally suppressed by s2α relative to the usual
composite Higgs, from projection of π4 onto h

for cut-off Λ < 8πf find ∆Sloop < 0.01 in our examples



T parameter

At one loop, T mainly arises from

scalar loops with isospin breaking entering via π̃3−π4, and π̃3−η mixings, and π̃3−π̃+

mass splitting

these loops vanish in the limit (λU − λD) → 0, so their size can be controlled

G+ wave function renormalization via B−R1,2,4,5
5,10 loops.

non-trivial to estimate rychkov; kamenik; pich.
however, G+ is dominantly fundamental ⇒ projection of the vertices onto G+

suppresses these effects by c2
β

, or O(10)

so we conclude that misaligned BTC should reasonably live within the (S, T ) plane’s
allowed 1σ ellipse
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