A UV Complete Partially Composite-pNGB Higgs

Alex Kagan University of Cincinnati

Eltville, September 2016

with Jamison Galloway and Adam Martin, to appear soon

Plan

- Introduction to Bosonic Technicolor (BTC)
- The UV theory
 - Minimal BTC with SU(4)/Sp(4) coset
 - **Discrete symmetries** CP, G_{LR}
- The vacuum (mis)alignment
- The scalar spectrum
 - Higgs mass, phenomenology
- Vector resonances
 - $SU(2)_{L,R}$ parity doubling and the S parameter
 - phenomenology

Introduction to Bosonic Technicolor

- BTC combines technicolor and supersymmetry Dine, A.K., Samuel '90; non-susy version: Simmons, '89
- technicolor condensates trigger electroweak symmetry breaking
- fundamental Higgs fields H_u , H_d give masses to quarks, leptons
- supersymmetry stabilizes the Higgs scalar masses
- Higgs VEV's via Yukawa couplings to technifermion condensates

$$\lambda_U \bar{U}_R T_L H_u + \lambda_D \bar{D}_R T_L H_d \implies \langle H_u \rangle \sim \lambda_U \frac{\langle \bar{U}_R U_L \rangle}{m_{H_u}^2}, \quad \langle H_d \rangle \sim \lambda_D \frac{\langle \bar{D}_R D_L \rangle}{m_{H_d}^2}$$

- positive Higgs mass parameters, $m_{H_u}^2$, $m_{H_d}^2 > 0 \Rightarrow$ no electroweak symmetry breaking in absence of TC
- \blacksquare W, Z receive masses both from technicolor condensates, HIggs VEV's

$$v_W^2 = (246 \text{ GeV})^2 \approx f_{\text{TC}}^2 + f_u^2 + f_d^2, \qquad \langle H_{u,d} \rangle \equiv f_{u,d} / \sqrt{2}$$

-Fermion mass generation in BTC via "Higgs scalar exchange", integrated out in heavy limit -for light Higgs, use chiral Lagrangian approach Carone, Simmons; Carone, Georgi

Minimal BTC = MSSM + $SU(N)_{TC}$, with technifermion superfields

$$\hat{T}_L(2_{\mathrm{TC}}, 1_C, 2_L, 0), \quad \hat{U}_R(2_{\mathrm{TC}}, 1_C, 1_L, -1/2), \quad \hat{D}_R(2_{\mathrm{TC}}, 1_C, 1_L, +1/2),$$

and Yukawa superpotential

$$W_{\rm Y} = \lambda_U \hat{U}_R \hat{T}_L \hat{H}_u + \lambda_D \hat{D}_R \hat{T}_L \hat{H}_d$$

- $N_{\rm TC} = 2$ is minimal choice
- $N_{\rm TC} = 3$ disfavored: stable fractionally charged technibaryons; $SU(2)_L$ anomaly
- $N_{\rm TC} = 4$ disfavored by S parameter
- superpartner technigluino, technisquarks acquire masses $> \Lambda_{TC}$, yielding a QCD-like technicolor theory at lower scales

Linking $\Lambda_{\rm TC}$ and $m_{\rm susy}$

- BTC introduces two scales at low energies: (i) m_{susy} , the scale of superpartner masses; (ii) Λ_{TC} , the scale of TC chiral symmetry breaking
- **potential coincidence problem since, e.g.** $m_{susy}/\Lambda_{TC} = O(few)$
- when techni-superpartners acquire masses and "decouple", technicolor beta function becomes more negative.
 - Improve more rapid increase in $\alpha_{\rm TC}$ below $m_{\rm susy}$ could link the two scales AK, Samuel '91
- most attractive scenario Azatov, Galloway, Luty '11: above m_{susy} , α_{TC} sits near a superconformal strong IR fixed point. Provides direct link between m_{susy} and Λ_{TC}

appealing realization Galloway, Martin, AK:

SUSY SU(2) with $n_f = 2$ and an adjoint matter superfield has a strong IR fixed point, with chiral symmetry unbroken in the supersymmetric theory Elitzur, Forge, Giveon, Rabinovici '95

Solution R symmetric BTC has precisely this TC field content. Can yield the following running of α_{TC} :

■ A perturbative 2-loop estimate yields $\alpha^* \approx 1.8$

The minimal UV theory

The model: asymptotically free $SU(2)_{TC}$, confining at scale Λ . For simplicity consider the non-supersymmetric version

The technifermion (TC-fermion) content is

- all fermions are treated as LH Weyl fields, transforming under the (1/2, 0)representation of the Lorentz group $SU(2) \times SU(2) \sim SO(3, 1)$
- With weak interactions turned off, the model possesses a global SU(4) symmetry under which the four-component object Ψ is a fundamental, $\Psi \mapsto U\Psi$, $U \in SU(4)$

$$\Psi = \begin{pmatrix} T_1 & T_2 & U & D \end{pmatrix}^T$$

The TC-fermion condensate

$$\langle \Psi^a \, \Psi^{T,b} \epsilon \, C^{-1} \rangle \propto \Phi^{ab}$$

is antisymmetric in the SU(4) flavor indices a, b by Fermi-Dirac statistics, $\Phi^T = -\Phi$

assume it breaks SU(4) to its maximal vectorlike subgroup Sp(4) $\Rightarrow SU(4)/Sp(4)$ coset structure $\cong SO(6)/SO(5)$

p most general Sp(4) preserving condensate Galloway, Evans, Luty, Tacchi 1001.1361

$$\Phi = \begin{pmatrix} e^{i\alpha} \epsilon \cos \theta & \mathbf{1}_2 \sin \theta \\ -\mathbf{1}_2 \sin \theta & -e^{-i\alpha} \epsilon \cos \theta \end{pmatrix}, \quad \theta \in [0, \pi]$$

• obtained by applying SU(4) rotations to the canonical Sp(4) preserving vacuum

$$\Phi = egin{pmatrix} 0 & \mathbf{1}_2 \ -\mathbf{1}_2 & 0 \end{pmatrix},$$

• α is a *CP* violating phase: $\Phi \rightarrow -\Phi^{\dagger}$ under CP

- Sin $\theta = 0$: electroweak (EWK) symmetry is unbroken, "EWK vacuum" sin $\theta = 1$: the condensate is purely $SU(2)_L$ breaking, "TC vacuum"
- **D** The Sp(4) vacuum degeneracy is lifted by the UV TC-fermion interactions
- previous BTC studies only included fundamental Higgs technifermion Yukawa couplings, thus selecting the TC vacuum ($\theta = \pi/2$)
- we explore the benefits of small misalignment from the EWK vacuum: small to moderate $\sin \theta$
 - Iminimally accomplished by adding gauge singlet TC-fermion masses of $O(v_W)$
 - they can be linked to SUSY breaking, therefore to Λ_{TC}
 - an appealing alternative, and a feature of RBTC: 4- technifermion operators

Minimal UV potential In SU(4) notation

$$V_{UV} = -\Psi^T \,\epsilon \, C^{-1}(M+\lambda) \,\Psi + h.c. + m_H^2 |H|^2 + \lambda_h |H|^4$$

- $C^{-1} = \text{diag}[i\sigma_2, i\sigma_2, i\sigma_2, i\sigma_2]$ acts on LH Weyl spinors in Ψ ,
- \bullet acts on TC indices
- *H* is SM Higgs doublet with $m_H^2 > 0$

M, λ are 4×4 matrices containing singlet masses, Yukawas: $m_{1,2}$, $\lambda_{U,D}$, $(M + \lambda)$ is an SU(4) breaking spurion, $(M + \lambda) \mapsto U^*(M + \lambda)U^T$

$$M = \frac{1}{2} \begin{pmatrix} m_1 \epsilon & 0 \\ 0 & -m_2 \epsilon \end{pmatrix}, \quad \lambda = \frac{1}{2} \begin{pmatrix} 0 & -H_\Lambda \\ H_\Lambda^T & 0 \end{pmatrix},$$

$$H_{\Lambda} = \frac{1}{\sqrt{2}} \begin{pmatrix} \lambda_U(\sigma_h + v^* - i\pi_h^3) & \lambda_D(-i\pi_h^1 + \pi_h^2) \\ -\lambda_U(i\pi_h^1 + \pi_h^2) & \lambda_D(\sigma_h + v + i\pi_h^3) \end{pmatrix}$$

 σ_h ($\vec{\pi}_h$) are the scalar (pseudoscalar) components of H, $v \equiv \langle H \rangle$

the TC-fermion masses:

$$m_1 T_2 T_1 + m_2 UD + m_U T_1 U + m_D T_2 D$$
$$m_U = \lambda_U v^* / \sqrt{2}, \quad m_D = \lambda_D v / \sqrt{2}$$

The gauge-kinetic term for Ψ , including EWK and TC

$$\mathcal{L}_{\rm KE} = i\Psi^{\dagger} \,\bar{\sigma}^{\mu} (\partial_{\mu} - -i\mathcal{A}_{\mu} - iG^{a}_{\mu}\tau^{a}/2 \,\,\mathbf{1}_{4}) \,\Psi, \qquad \bar{\sigma}_{\mu} = (1, -\vec{\sigma}^{i}_{\mu})$$

• EWK gauge interaction embedding in SU(4)

$$\mathcal{A}_{\mu} = \begin{pmatrix} g_2 W^a_{\mu} \frac{1}{2} \tau^a & 0\\ 0 & -g_1 B_{\mu} \frac{1}{2} \tau^3 \end{pmatrix}$$

Discrete symmetries in the UV: *CP*

CP is the only discrete symmetry of the TC interactions lying outside of SU(4)

 $CP: \Psi(x^{\mu}) \mapsto i \epsilon C^{-1} \Psi^*(x_{\mu}).$

- pseudoreality of the $SU(2)_{TC}$ fundamental $\Rightarrow P$ and C are separately unphysical, only being defined up to arbitrary SU(4) rotations
- fundamental d.o.f. are the four LH Weyl spinors in Ψ . A true discrete symmetry must rotate among them.
 - ✓ for a single LH Weyl fermion, P exchanges $(1/2, 0) \leftrightarrow (0, 1/2)$, which proceeds via conjugation to construct the RH field, bringing in C to recover the LH one
- For simplicity, assume CP-invariant $V_{UV} \Rightarrow m_{1,2}$, λ_{UD} are real
 - checked, to $O(p^4)$, that minimizing the IR potential then yields $\alpha = \arg(v) = 0$, which we assume holds to all orders (no spontaneous CPV)
- CP invariance of the EWK interactions $\Rightarrow A_{\mu} \mapsto A_{\mu}^{T}$ (usual gauge boson transformations)

G_{LR} : $SU(2)_L \leftrightarrow SU(2)_R$ interchange

- G_{LR}-parity interchanges the generators of $SU(2)_L$ and $SU(2)_R$ (also see Franzosi, et al. 1605.01363)
- It resides in SU(4), and the left-over Sp(4) symmetry (it has nothing to do with spacetime parity)
- $\Psi \mapsto \mathcal{G}_{LR} \Psi$ where, up to an overall phase

$$\mathcal{G}_{LR} = - \begin{pmatrix} 0 & \sigma_2 \\ \sigma_2 & 0 \end{pmatrix}$$

- To see this, extend to the left-right symmetric gauge group, and require that G_{LR} exchanges top and bottom components of Ψ and $g_{2L}W_L \leftrightarrow g_{2R}W_R$
- under $G_{LR} \in SU(4)$, $M + \lambda \to \mathcal{G}_{LR}^T (M + \lambda) \mathcal{G}_{LR}$

$$\Rightarrow m_{1\,(2)} \rightarrow m_{2\,(1)}, \ m_{U\,(D)} \rightarrow m_{D\,(U)}, \ \lambda_{U\,(D)}h \rightarrow \lambda_{D\,(U)}h, \dots$$

Thus, G_{LR} invariance of V_{UV} would require $m_1 = m_2$, $\lambda_U = \lambda_D$

• the isospin rotation in \mathcal{G}_{LR} is reminsicent of G-parity

The SU(4)/Sp(4) coset for arbitrary θ Galloway et al.

5 broken SU(4) generators, X^i , in **5** of $Sp(4) \cong SO(5)$, satisfying $X\Phi - \Phi X^T = 0$ $s \equiv \sin \theta$, $c \equiv \cos \theta$

$$\begin{aligned} X^{1} &= \frac{1}{2\sqrt{2}} \begin{pmatrix} s\sigma_{1} & -c\sigma_{3} \\ -c\sigma_{3} & s\sigma_{1} \end{pmatrix}, X^{2} &= \frac{1}{2\sqrt{2}} \begin{pmatrix} s\sigma_{2} & ic1_{2} \\ -ic1_{2} & -s\sigma_{2} \end{pmatrix}, X^{3} &= \frac{1}{2\sqrt{2}} \begin{pmatrix} s\sigma_{3} & c\sigma_{1} \\ c\sigma_{1} & s\sigma_{3} \end{pmatrix}, \\ X^{4} &= \frac{1}{2\sqrt{2}} \begin{pmatrix} 0 & \sigma_{2} \\ \sigma_{2} & 0 \end{pmatrix}, X^{5} &= \frac{1}{2\sqrt{2}} \begin{pmatrix} c1_{2} & -s\epsilon \\ s\epsilon & -c1_{2} \end{pmatrix} \end{aligned}$$

10 unbroken Sp(4) generators, T^i , in 10 (adjoint) of Sp(4), satisfying $T\Phi + \Phi T^T = 0$

$$T^{1} = \frac{1}{2\sqrt{2}} \begin{pmatrix} \sigma_{1} & 0\\ 0 & -\sigma_{1} \end{pmatrix}, \ T^{2} = \frac{1}{2\sqrt{2}} \begin{pmatrix} \sigma_{2} & 0\\ 0 & \sigma_{2} \end{pmatrix}, \\ T^{3} = \frac{1}{2\sqrt{2}} \begin{pmatrix} \sigma_{3} & 0\\ 0 & -\sigma_{3} \end{pmatrix},$$
$$T^{4} = \frac{1}{2\sqrt{2}} \begin{pmatrix} c\sigma_{1} & s\sigma_{3}\\ s\sigma_{3} & c\sigma_{1} \end{pmatrix}, \\ T^{5} = \frac{1}{2\sqrt{2}} \begin{pmatrix} c\sigma_{2} & -is1_{2}\\ is1_{2} & -c\sigma_{2} \end{pmatrix}, \\ T^{6} = \frac{1}{2\sqrt{2}} \begin{pmatrix} c\sigma_{3} & -s\sigma_{1}\\ -s\sigma_{1} & c\sigma_{3} \end{pmatrix}, ...$$

- subgroup structure: $Sp(4) \supset SU(2)_1 \times SU(2)_2$,
 - $SU(2)_{1,2}$ identified with generaotrs $(T^a \pm T^{a+3})/\sqrt{2}$, a = 1, 2, 3
 - reduce to $SU(2)_{L,R}$ in $\theta \to 0$ limit
- Isospin group $SU(2)_V = SU(2)_{L+R} = SU(2)_{1+2}$, with generators $T^{1,2,3}$

5 = (2, 2) + (1, 1)10 = (3, 1) + (1, 3) + (2, 2) we follow the CCWZ prescription, arranging the 5 NGBs into

$$\xi = \exp(\sqrt{2}i\,\vec{\pi}\cdot\vec{X}/f) \mapsto U\xi V^{\dagger},$$

where the transformation applies to global rotations with $U \in SU(4)$ and $V \in Sp(4)$ $\Rightarrow V \Phi V^T = \Phi$

- The transformations of the pions under CP, G_{LR} obtained by considering the transformations of the corresponding vector currents, $\Psi^{\dagger}\bar{\sigma}_{\mu} X^{a}\Psi$
- The eaten NGB's are linear combinations of the *CP*-odd $\pi^{1,2,3}$ and $\pi^{1,2,3}_h$
- \blacksquare π^4 is the CP-even component of a composite $SU(2)_L$ Higgs doublet

$$\frac{1}{\sqrt{2}} \begin{pmatrix} \pi^1 + i\pi^2 \\ \pi^4 + i\pi^3 \end{pmatrix}$$

- \bullet π^5 is a CP-odd isosinglet
- ${}$ $\pi^{1,2,3,5}$, $\pi^{1,2,3}_h$ are G_{LR} odd; π^4 , σ_h are G_{LR} even

Chiral Lagrangian for scalars and vacuum alignment

- kinetic terms expressed in terms of $C_{\mu} = i\xi^{\dagger}D_{\mu}\xi$ (following composite Higgs notation, e.g. Contino et al., Panico and Wulzer)
 - project onto broken and unbroken directions ($C_{\mu} = d_{\mu} + E_{\mu}$)

$$d_{\mu} = 2 \operatorname{tr}(C_{\mu} X^{a}) X^{a} \mapsto V d_{\mu} V^{\dagger} \qquad (5 - \operatorname{plet}),$$
$$E_{\mu} = 2 \operatorname{tr}(C_{\mu} T^{a}) T^{a} \mapsto V (E_{\mu} + \partial_{\mu}) V^{\dagger} \qquad (10 - \operatorname{plet}), ,$$

spurion building blocks

$$\chi_{\pm} = \xi^T (M + \lambda) \xi \Phi \pm \text{H.c.}, \qquad \chi_{\pm} \mapsto V \chi_{\pm} V^{\dagger}$$

 $O(p^2)$ Lagrangian

$$\mathcal{L}^{(2)} = \frac{f^2}{2} \operatorname{tr}(d_\mu \, d^\mu) + 4\pi f^3 Z_2 \operatorname{tr}(\chi_+),$$

• $Z_2 \approx 1.47$, from $N_c = n_f = 2$ lattice study Pica et al. 1602 .06559

P TC and fundamental Higgs H gauge kinetic terms yield EWK scale

$$v_W^2 = (246 \text{ GeV})^2 = f^2 \sin^2 \theta + v^2$$
.

■ associate $f \sin \theta$ with VEV of composite pNGB Higgs π^4

The $O(p^2)$ potential

$$V_{\text{eff}}^{(2)} = 8\pi f^3 Z_2(m_{12}\cos\theta - \lambda_{UD}v\sin\theta/\sqrt{2}) + m_H^2 v^2/2$$

$$m_{12} \equiv m_1 + m_2$$
, $\delta m_{12} \equiv m_1 - m_2$, etc.

- For simplicity, ignore quartic also motivated by SUSY where it is a small perturbation
- EWK, top Yukawa loop effects, usually considered in composite Higgs models, are a negligible perturbation

P minimizing $V_{ ext{eff}}^{(2)}$ obtain vacuum solution ($m_{UD}, m_{12} > 0, \quad heta \in [\pi/2, \pi]$)

$$\tan \theta = -\frac{m_{UD}}{m_{12}}, \quad v = \frac{4\sqrt{2}\,\lambda_{UD}\,\sin\theta\,f^3\pi Z_2}{m_H^2}$$
$$\Rightarrow \quad \sin \theta = \sqrt{1 - \frac{m_{12}^2}{\lambda_{UD}^4}\,\frac{m_H^4}{16\pi^2 f^6 Z_2^2}}.$$

• can show $\tan \theta = -m_{UD}/m_{12}$ to all orders

for given f or Λ_{TC} , largest tuning of $\sin \theta$ due to variation of λ_{UD}

 $|d\log(\sin\theta)/d\log(\lambda_{UD})| = 2\cot^2\theta$

- For example, $\sin \theta \sim 1/3 1/2$ is tuned at $\sim 6\% 17\%$ (moderate $\sin \theta$ is fine phenomenologically e.g. Higgs, precision EWK)
- In principle, f more tuned, but f could be linked to m_H or m_{12} in SUSY theory
- 4-technifermion operators, e.g. due to exchange of TC-adjoint scalar with mass $m_A \gtrsim \Lambda_{\rm TC}$, offer an alternative in which $m_{1,2} \propto \langle \Psi \Psi^T \rangle \propto f^3$, like v.

Vacuum misalignment and scalar spectrum

To elucidate the structure of the vacuum and scalar spectrum, it is useful to project $(M + \lambda)$ onto the Sp(4) singlet ($\propto \Phi$) and vector directions, for vacuum rotation θ

$$(M+\lambda) = -\frac{1}{2} \left(\hat{m} + \frac{\lambda_{UD}\sigma_h + i\,\delta\lambda_{UD}\,\pi_h^3}{2\sqrt{2}} s_\theta \right) \Phi + \frac{i}{2} \Phi \left(\lambda_{UD}\,\chi_\theta^a + i\delta\lambda_{UD}\,\chi_\theta^{\prime a} \right) X^a$$

▶ the fermion mass \hat{m} and $Sp(4) \cong SO(5)$ vectors χ_{θ} , χ'_{θ} are

$$\hat{m} \equiv \frac{1}{2} (-m_{12} c_{\theta} + m_{UD} s_{\theta}) = \frac{1}{2} (m_{12}^2 + m_{UD}^2) = 2\pi f^3 Z_2 \lambda_{UD}^2 / m_H^2 |_{\theta < \pi}$$

$$\vec{\chi}_{\theta} = (\pi_h^1, \pi_h^2, \pi_h^3, \sigma_h c_{\theta} + v c_{\theta} + \sqrt{2} m_{12} s_{\theta} / \lambda_{UD}, 0) = (\pi_h^1, \pi_h^2, \pi_h^3, \sigma_h c_{\theta}, 0)$$

$$\vec{\chi}_{\theta}' = (-\pi_h^2, \pi_h^1, \sigma_h + v, \pi_h^3 c_{\theta}, \delta m_{12} / \delta \lambda_{UD}),$$

- the O(4) components of $\vec{\chi}_{\theta}$, $\vec{\chi}'_{\theta}$ have opposite CP, generalizing the O(4) vectors of Gasser and Leutwyler (Ann Phys) for the $SU(2) \times SU(2)/SU(2)$ coset
- constant term in $\chi_{\theta}^4 \supset v c_{\theta} + \sqrt{2} m_{12} s_{\theta} / \lambda_{UD}$ must cancel to avoid terms in V_{eff} of form constant $\times \pi^4$ from operators $\propto \vec{\chi}_{\theta} \cdot \vec{\pi} \Rightarrow \tan \theta = -m_{UD}/m_{12}$ to all orders

compare the $O(4) \subset Sp(4)$ vectors for the rotated vacuum ($\theta \neq 0$)

$$\vec{\pi} = (\pi^1, \pi^2, \pi^3, \pi^4), \quad \vec{\chi}_{\theta} = (\pi_h^1, \pi_h^2, \pi_h^3, \sigma_h c_{\theta})$$

■ after EWK symmetry breaking, the fundamental and composite O(3) vectors $(\pi_h^1, \pi_h^2, \pi_h^3)$ and (π^1, π^2, π^3) remain aligned

$$SU(2)_{1+2}(\theta \neq 0) = SU(2)_{1+2}(\theta = 0) = SU(2)_{L+R} = O(3)$$

• the composite Higgs π^4 is rotated by by θ relative to σ_h [and $\pi^4(\theta = 0)$, as in composite Higgs]

In terms of SU(4) matrix representations (expand $\xi \Phi \xi^T \Rightarrow \pi^i \propto X^i \Phi$)

$$\pi^{i} = \pi_{h}^{i} = \frac{1}{2} \begin{pmatrix} 0 & i\sigma^{i} \\ -i\sigma^{i}^{T} & 0 \end{pmatrix}; \ \pi^{4} = \frac{1}{2} \begin{pmatrix} i\sigma^{2}\sin\theta & -\cos\theta \mathbf{1}_{2} \\ \cos\theta \mathbf{1}_{2} & -i\sigma^{2}\sin\theta \end{pmatrix}; \ \sigma_{h} = \frac{1}{2} \begin{pmatrix} 0 & -\mathbf{1}_{2} \\ \mathbf{1}_{2} & 0 \end{pmatrix}$$

the fundamental Higgs doublet mass decomposes as

$$m_{H}^{2}|H|^{2} = m_{H}^{2}\vec{\chi_{0}}\cdot\vec{\chi_{0}} = m_{H}^{2}[\vec{\chi_{\theta}}\cdot\vec{\chi_{\theta}} + (\sigma_{h}s_{\theta})^{2}]$$

The scalar mass matrices

for given m_{12} , if $\lambda_{UD} > \lambda_{UD}^* \Rightarrow \theta \neq 0$, and

$$M_{\pi^+}^2 = m_H^2 \begin{pmatrix} 1 & -t_\beta \\ -t_\beta & t_\beta^2 \end{pmatrix},$$
$$M_h^2 = m_H^2 \begin{pmatrix} c_\theta^2 & -c_\theta t_\beta \\ -c_\theta t_\beta & t_\beta^2 \end{pmatrix} + \begin{pmatrix} m_H^2 s_\theta^2 & 0 \\ 0 & 0 \end{pmatrix}$$

in the bases (π_h^+, π^+) and (h, π^4) , $t_\beta \equiv \tan \beta = v/(f \sin \theta)$

- (22) entries are the GMOR relation for fermion mass \hat{m} : $m_{\pi}^2 = m_H^2 t_{\beta}^2 = 16\pi f Z_2 \hat{m}$
- M²_{π^+} and first matrix in M^2_h are related by Sp(4) invariance: (11), (12), (22) entries $\propto \vec{\chi}_{\theta} \cdot \vec{\chi}_{\theta}$, $\vec{\chi}_{\theta} \cdot \vec{\pi}$, $\vec{\pi} \cdot \vec{\pi}$
 - therefore, both have massless eigenstates: the "eaten" NGB's and would-be Higgs h
 - the Higgs mass is lifted by the second matrix in M_h^2 , corresponding to the Sp(4) singlet's mass, $m_H^2(\sigma_h s_\theta)^2$

• charged pion ($a = \pm$) and Higgs mass eigenstates: $\tan 2\alpha = \cos \theta \tan 2\beta$

$$G^{a} = s_{\beta} \pi^{a}_{h} + c_{\beta} \pi^{a}, \quad \tilde{\pi}^{a} = -c_{\beta} \pi^{a}_{h} + s_{\beta} \pi^{a},$$
$$h = c_{\alpha} h - s_{\alpha} \pi^{4}, \quad \mathcal{H} = s_{\alpha} h + c_{\alpha} \pi^{4},$$

non-zero masses

$$m_{\tilde{\pi}}^2 = m_H^2/c_{\beta}^2, \quad m_{h,\mathcal{H}}^2 = m_H^2 \left(1 \mp \sqrt{1 - s_{\theta}^2 s_{2\beta}^2}\right)/2c_{\beta}^2.$$

• in limit $s_{\theta}^2 c_{\beta}^2 << 1$ the light Higgs mass is (up to small quartic shift $\approx \lambda_h v^2$)

$$m_h^2 = m_H^2 \sin^2 \theta$$

- In the second secon
- Images mass is associated with misalignment $\propto \sin \theta$, as in composite Higgs
- small $\sin \theta$ offers opportunity to raise the fundamental Higgs mass m_H^2 , or SUSY scale
- the Sp(4) singlet radial σ mode's mass mixing with σ_h is $\sim m_H^2 \sin \theta \tan \beta$, thus Higgs mass $\sin^2 \theta$ suppression persists; same true of higher orders in the chiral expansion

Higgs phenomenology

• hVV ($V = W^{\pm}, Z$) and $h\bar{f}f$ couplings normalized to SM: κ_V and κ_F , and $s_{\theta}^2 << 1$ limits

$$\kappa_V = c_{\alpha} s_{\beta} - s_{\alpha} c_{\beta} c_{\theta} \mapsto 1 - c_{\beta}^2 s_{\theta}^2 / 2,$$

$$\kappa_F = c_{\alpha} / s_{\beta} \mapsto 1 - c_{2\beta} c_{\beta}^2 s_{\theta}^2 / 2.$$

- small percent level deviations from SM
- In note additional c_{β}^2 in deviations compared to composite Higgs

For $h\gamma\gamma$, $h\gamma Z$ and vector resonance discussion introduce Sp(4) covariant field strengths Galloway etal

$$\mathcal{D}_{\mu\nu} = \nabla_{[\mu} d_{\nu]}, \quad \mathcal{F}_{\mu\nu} = -i [\nabla_{\mu}, \nabla_{\nu}].$$

 ∇_{μ} is Sp(4) covariant derivative

- $\mathcal{D}_{\mu\nu}, \ \mathcal{F}_{\mu\nu}$ tranform homogeneously under Sp(4)
- $\mathcal{F}_{\mu\nu}$ is a 10 of Sp(4), $\mathcal{D}_{\mu\nu}$ is a 5 of Sp(4)

$$\mathcal{L}_{\chi \mathcal{F} \mathcal{F}} = \frac{\lambda_{\chi} \sec \beta \sin \theta}{64\pi^3 v_W} \operatorname{tr}(\chi^+ \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}), \quad \lambda_{\chi} = O(1) \operatorname{in} \operatorname{NDA}$$

9 induced $h\gamma\gamma$ coupling

$$\mathcal{L} = c_{\gamma}^{\mathrm{TC}} \frac{\alpha}{\pi v_{W}} h A_{\mu\nu} A^{\mu\nu}, \ c_{\gamma}^{\mathrm{TC}} = \frac{\lambda_{\chi} \lambda_{UD} c_{\alpha}}{32\sqrt{2\pi}c_{\beta}} s_{\theta}^{2},$$

compared to $c_{\gamma}^{\rm SM} \simeq .23$.

Including modified Higgs couplings to t, W

$$\Gamma_{\gamma\gamma}/\Gamma_{\gamma\gamma}^{SM} \simeq 1.52 \, |\kappa_F c_{\gamma}^{\rm SM} - 1.04 \kappa_V + c_{\gamma}^{\rm TC}|^2$$

 \Rightarrow TC shifts in $\Gamma_{\gamma\gamma,VV,\bar{f}f}$ are suppressed by s_{θ}^2 , deviations are small, percent level.

The vector resonances

all resonances appear in representations of the unbroken subgroup, Sp(4)

consider the lowest lying 10- and 5-plet vectors (also see Franzosi et al. 1605.01363)

$$\hat{R}_{10} = R_{10}^a T^a, \quad \hat{R}_5 = R_5^a X^a, \quad \hat{R} \mapsto V \hat{R} V^{\dagger}$$

•
$$R_{10}^a$$
, R_{10}^{a+3} , R_5^a , $a = 1, 2, 3$ are triplets of $SU(2)_V$

- $R_{10}^{1..3}$ are G_{LR} even; $R_{10}^{4..6}$, $R_5^{1..3}$ are G_{LR} odd
- $R_{10}^{a\pm} = (R_{10}^a \pm R_{10}^{a+3})/\sqrt{2}$, *a*=1..3 are triplets of $SU(2)_{1,2}$, interchanged under G_{LR}
- based on the vector currents $\Psi^{\dagger} \bar{\sigma}_{\mu} T^{a} \Psi$ at $\theta = \pi/2$, \hat{R}_{10} and \hat{R}_{5} generalize the QCD $\vec{\rho}$ and \vec{a}_{1} triplets, respectively
- ▶ however, R_{10}^a and R_{10}^{a+3} , a=1..3, are the G_{LR} "parity doubling partners"

Vector Lagrangian

- employ antisymmetric tensor formalism Gasser and Leutwyler; Ecker etal
- \checkmark The kinetic terms are (M_R^2 is the mass in the chiral limit)

$$\mathcal{L}_{\rm kin} = -\frac{1}{2} \operatorname{tr} (\nabla^{\lambda} \hat{R}_{\lambda\mu} \nabla_{\nu} \hat{R}^{\nu\mu} - \frac{1}{2} M_R^2 \hat{R}_{\mu\nu} \hat{R}^{\mu\nu}) \,,$$

- A related object, $R_{\mu} = -M_R^{-1} \nabla^{\nu} R_{\nu\mu}$ satisfies Proca equation for massive vector field
- Most general $O(p^2)$ interaction Lagrangian, linear in $R_{5,10}$

$$\mathcal{L}_{R}^{(2)} = \operatorname{tr}\left(i\,G_{10}\hat{R}_{10,\mu\nu}d^{\mu}d^{\nu} + \frac{F_{10}}{\sqrt{2}}\hat{R}_{10,\mu\nu}\mathcal{F}^{\mu\nu} + \frac{F_{5}}{\sqrt{2}}\hat{R}_{5,\mu\nu}\mathcal{D}^{\mu\nu}\right)$$

• $F_{10,5}$ are the vector decay constants,

$$\langle R^a_{10(5)} | \Psi^{\dagger} \,\bar{\sigma}_{\mu} \, T^a(X^a) \,\Psi | 0 \rangle = -i F_{10(5)} M_{10(5)} \epsilon^*_{\mu}$$

• $G_{10} = -2\sqrt{2}f^2/F_{10}$ in vector meson dominance (VMD) approximation (VMD $\rho\pi\pi$ coupling, $g_{\rho\pi\pi} = -m_{\rho}/f_{\rho}$, is 16% below exp.; ϕKK is within a few %) ${}$ ${\cal L}^{(2)}_R$ yields the bilinears (a=1,2,3)

$$\mathcal{L}_{\text{bilinear}} = -\frac{1}{4} F_{10} \, R_{10}^{a} \left(g_{2} W^{a} + g_{1} B \, \delta^{a3} \right) - \frac{1}{4} \left(F_{10} \, c_{\theta} \, R_{10}^{a+3} - F_{5} \, s_{\theta} \, R_{5}^{a} \right) \left(g_{2} W^{a} - g_{1} B \, \delta^{a3} \right)$$

they induce the couplings to SM fermions responsible for vector Drell-Yan production, via the substitutions

$$\begin{split} W^a_{\mu} &\to W^a_{\mu} - \frac{g_2 F_{10}}{2M_{10}} \left(R^a_{10,\mu} + R^{a+3}_{10,\mu} c_{\theta} \right) + \frac{g_2 F_5}{2M_5} R^a_{5,\mu} s_{\theta} \\ B_{\mu} &\to B_{\mu} - \frac{g_1 F_{10}}{2M_{10}} \left(R^3_{10,\mu} - R^6_{10,\mu} c_{\theta} \right) - \frac{g_1 F_5}{2M_5} R^3_{5,\mu} s_{\theta} \,. \end{split}$$

leading R_{10} decays originate from the trilinears

$$-\frac{G_{10}M_{10}}{2\sqrt{2}f^2} \left(\epsilon^{abc} R^a_{10,\mu} \pi^b \partial^\mu \pi^c + R^{a+3}_{10,\mu} \left[\pi^5 \partial^\mu \pi^a - \pi^a \partial^\mu \pi^5 \right] \right) + \dots,$$

• typically, we are far form the chiral limit, $\hat{m} \lesssim f$, closing the decay channels $R_{10}^{1..3,(4..6)} \rightarrow \tilde{\pi}\tilde{\pi}, (H\tilde{\pi}).$

• Therefore
$$R_{10}^{1..3,(4..6)} \rightarrow \tilde{\pi} W_L/Z_L, (\tilde{\pi}h, HW_L/Z_L)$$
 dominate

S-parameter

tree-level $R_{10}^{3,6}$, R_5^3 exchange yields

$$\Delta S_{\text{tree}} = 4\pi \left(F_{10}^2 / M_{10}^2 - F_5^2 / M_5^2 \right) \sin^2 \theta$$

- s_{\u03c0} suppression is a general feature of misalignment in composite Higgs Barbieri, Bellazzini et al; Contino et al; Panic, Wulzer...
- ▶ here the origin of s_{θ}^2 in ΔS_{tree} is explicit: $R_{10}^{3,6}$ parity doubling cancelation $\propto 1 c_{\theta}^2$; and s_{θ} suppression of the R_5^3 couplings
- To estimate ΔS_{tree} we use the $N_c = n_f = 2$ lattice results for M_{10} , f_{π} (full decay constant) away from the chiral limit
 - estimate F_{10}/f_{π} by fitting to f_V/f_P vs m_q in QCD
 - ▶ bound the contribution of R_5 via approximate upper and lower bounds, $M_5 < M_{10} m_{a_1}/m_{\rho}$ and $F_5 > f_{a_1} f/f_{\pi}^{\text{qcd}}$
 - Take $f_{a_1} = 152$ MeV based on a phenomenological determination using Br($\tau^+ \rightarrow \nu_\tau \pi^+ \pi^+ \pi^-$)

- obtain $\Delta S_{\text{tree}}/s_{\theta}^2 < [0.11, 0.09]$ ([0.19, 0.13] for R_{10}) for $\hat{m}_{\theta}/f = [0, 1.5]$
 - exhibits an expected (especially for R_{10}) decrease away from the chiral limit
 - Implies $\Delta S \subset 0.10 \pm 0.08$ [Rome], 0.00 ± 0.08 [PDG] (1 σ) is reasonable
- Scalar loops in S are log divergent, due to c_{θ} factor in the π^4 gauge couplings Barbieri, Bellazzini et al 0706.0432. After SM Higgs subtraction

$$\Delta S_{\text{loop}} = \frac{1}{24\pi} \left(s_{\theta}^2 \left[s_{\alpha}^2 \log \frac{\Lambda^2}{m_h^2} + c_{\alpha}^2 \log \frac{\Lambda^2}{m_{\mathcal{H}}^2} \right] + F_{\text{fin}} \right),$$

where F_{fin} is a lengthy expression from finite loop contributions

- the large log (1st term) is additionally suppressed by s_{α}^2 relative to the usual composite Higgs, from projection of π^4 onto h
- for cut-off $\Lambda < 8\pi f$ find $\Delta S_{\text{loop}} < 0.01$ in our examples

T parameter

At one loop, T mainly arises from

- scalar loops with isospin breaking entering via $\tilde{\pi}^3 \pi^4$, and $\tilde{\pi}^3 \eta$ mixings, and $\tilde{\pi}^3 \tilde{\pi}^+$ mass splitting
 - these loops vanish in the limit $(\lambda_U \lambda_D) \rightarrow 0$, so their size can be controlled
 - G^+ wave function renormalization via $B R_{5,10}^{1,2,4,5}$ loops.
 - non-trivial to estimate rychkov; kamenik; pich. however, G⁺ is dominantly fundamental ⇒ projection of the vertices onto G⁺ suppresses these effects by c_{β}^2 , or O(10)
- so we conclude that misaligned BTC should reasonably live within the (S, T) plane's allowed 1σ ellipse