PHENOMENOLOGY OF ENHANCED LIGHT QUARK YUKAWA COUPLINGS

Felix Yu JGU Mainz

[1609.verysoon]

ERC Workshop on EFTs for Collider Physics, Flavor Phenomena, and EWSB Burg Crass, Eltville, September 15, 2016

Introduction and Motivation

- Post-discovery precision Higgs program at LHC motivated by SM consistency test and NP expectations
 - Mass, spin/parity, couplings, total width, exotic production and decay modes
- Central role of Higgs in SM makes it a prime phenomenological target for NP models
 - Naturalness, DM, general Higgs portal, new gauge groups, flavor models
 - BSM connection to EWSB causes deviations in Higgs observables

Mass-coupling degeneracy in SM

- Test one-toone prediction
 between mass
 and Higgs
 coupling in SM
- Any deviation will signal profound new physics
- Prospects for light quark Yukawas?

Outline

- Overview of Yukawa measurement proposals
 Direct tests vs. indirect tests
- LHC W[±] h production charge asymmetry
 - Effects from nonstandard light quark Yukawas
- Collider study: same-sign leptons from $W^{\pm}h \rightarrow (I^{\pm}v) (I^{\pm}vjj)$
 - Serves as SM discovery channel of Wh associated production
- Signal strengths from enhanced light quark Yukawas
 W[±] h production, s-channel Higgs production
- Conclusions

Motivating non-standard Yukawas

• Effective operator estimate (integrate out VLQs)

$$\mathcal{L} \supset y_u \bar{Q}_L \tilde{H} u_R + y'_u \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} \tilde{H} u_R + y_d \bar{Q}_L H d_R + y'_d \frac{H^{\dagger} H}{\Lambda^2} \bar{Q} H d_R + \text{ h.c.}$$

Now diagonalize the mass combination

$$m_f = \frac{y_f v}{\sqrt{2}} + \frac{y_f' v^3}{2\sqrt{2}\Lambda^2}$$

 Resulting Yukawa interactions are not necessarily diagonal, aligned, CP-conserving

$$y_{f, \text{ eff}}/\sqrt{2} = \frac{y_f}{\sqrt{2}} + \frac{3y'_f v^2}{2\sqrt{2}\Lambda^2} = \frac{m_f}{v} + \frac{2y'_f v^2}{2\sqrt{2}\Lambda^2}$$

UV completion needed to satisfy perturbative unitarity

$$E_f \simeq \frac{8\pi v^2 \xi}{|m_f - y_f v|}$$

 $\xi=1/\sqrt{3}$ (quarks), $\xi=1$ (leptons)

,

- SM fermions are chiral, hence Yukawa deviations require new sources of SU(2)_L breaking or new fermions with vector-like masses
 - Motivates direct searches for new vector-like fermion partners – top partners are a prime example

- SM fermions are chiral, hence Yukawa deviations require new sources of SU(2)_L breaking or new fermions with vector-like masses
 - Also, search for heavy Higgses: H^0 , A, H^{\pm}
 - New Yukawa structures
 - Generally induce FCNCs

- Indirectly measure in rare decays: *e.g.* $h \rightarrow J/\psi \gamma$
 - Yukawa contribution interferes with loop-induced vertex with virtual gamma/Z
 Isidori, Manohar, Trott [1305.0663]

Kagan, Perez, Petriello, Soreq, Stoynev, Zupan [1406.1722] Bodwin, Chung, Ee, Lee, Petriello [1407.6695] Perez, Soreq, Stamou, Tobioka [1503.00290, 1505.06689] König, Neubert [1505.03870]

Fig. from König, Neubert [1505.03870]

Indirectly measure in rare decays

 $\mathcal{B}_{\rm SM}(H \to J/\psi + \gamma) = 2.79^{+0.16}_{-0.15} \times 10^{-6},$

Bodwin, et. al. [1407.6695]

$$Br(h \to J/\psi \gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{direct} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$Br(h \to \Upsilon(1S) \gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} + 1.75_{-1.21 \text{ direct}} \pm 0.22_{h \to \gamma\gamma}) \cdot 10^{-9},$$

König, Neubert [1505.03870]

- Directly measure in qq decays
 - Use bottom and charm tagging in tandem to profile over enhanced c content in Higgs decays

M _H = 125 GeV	BR	Rel. error	Higgs XSWG [1307.1347
H→bb	5.77E-1	+/- 3%	
H→cc	2.91E-2	+/- 12%	
H→ss	2.46E-4	+/- 5%	
Н→μμ	2.19E-4	+/- 6%	

$$\mu_{b} \equiv \frac{\sigma_{h} BR_{b\bar{b}}}{\sigma_{h}^{SM} BR_{b\bar{b}}^{SM}} \rightarrow \frac{\sigma_{h} BR_{b\bar{b}} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{h} BR_{c\bar{c}} \epsilon_{c_{1}} \epsilon_{c_{2}}}{\sigma_{h}^{SM} BR_{b\bar{b}}^{SM} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma_{h}^{SM} BR_{c\bar{c}}^{SM} \epsilon_{c_{1}} \epsilon_{c_{2}}}$$

Perez, et. al. [1505.06689]

- Directly measure in qq decays
 - Use bottom and charm tagging in

	ϵ_b	ϵ_c	ϵ_l
b-tagging	70%	20%	1.25%
c-tagging I	13%	19%	0.5%
c-tagging II	20%	30%	0.5%
c-tagging III	20%	50%	0.5%

tandem, profile over enhanced c content in Higgs decays

Perez, et. al. [1505.06689]

 Charm Yukawa: Measure in h+c production, use h→γγ decay (fixed to SM BR)

2

- $p_{T}(j) > 20 \text{ GeV}$
- charm tag = 40%, gluon fake rate = 1%, b fake rate = 30%

			Ŭ	0.10	0.0 0		_				_	J
		S	874	877	885 8	399	917	941	973	1008	1052	
				1	1							-
κ_c	2.	25	2.5	2.75	3	3.2	5 3	3.5	3.75	4	4.25	4.5
S	10	97	1148	1206	1276	135	0 1	424	1504	1590	1683	1786

 $|\kappa_{\alpha}| = 0 = |0.25| |0.5| |0.75| = 1 = |1.25| |1.5| |1.75|$

TABLE I. Number of Signal events $S(\kappa_c)$ in dependence on the charm-quark Yukawa coupling. See text for details.

- Direct Higgs width measurements
 - Generally expect large Yukawas to rapidly increase Higgs width

• Indirect Higgs width measurements

Importance of direct probes

- Combined fit for Higgs couplings can and do give the best sensitivity to nonstandard Yukawas
 - Caveat: need model-dependent assumptions to overdetermine system of constraints
 - At LHC, total Higgs width is not (expected to be) directly measurable

$$N_{\text{events}} = \mathcal{L}\sigma \times B \propto \frac{g_p^2 g_d^2}{\Gamma_{\text{tot}}} \sim \frac{g_p^2 g_d^2}{\sum_i \Gamma_{i,\text{vis}} + \Gamma_{\text{unobs}}}$$

- Cannot go beyond self-consistency test without assumptions about nature of NP
 FY [1404.2924]
 - New exotic production modes of the Higgs readily break κcoupling framework, Higgs EFT, well-motivated by NP

Importance of direct probes

- Many indirect tests:
 - Searches for fermion partners, heavy Higgses
 - Rare decays, e.g. $h \rightarrow J/\psi \gamma$: SM expectation very small
 - Indirect width measurement: many caveats to NP interpretation
 - Combined fit: best sensitivity, requires assumptions
- Few (semi-)direct tests
 - $h \rightarrow bb$, cc: only possible for charm
 - h+c production, $h \rightarrow \gamma \gamma$: many backgrounds, only for charm
 - Direct width measurement: GeV resolution
- Direct tests needed most
 - Especially for up, down, strange quarks

New feature: W[±]h charge asymmetry

- W[±]h production asymmetric at LHC
 - Asymmetry driven by proton PDFs
 - Consider W⁺h:
 - Unitarity violation requires NP completion

u, c d, s Insensitive to Yukawas

u, c $\overline{d}, \overline{s}$ u, c $\overline{d}, \overline{s}$ $\overline{d}, \overline{s}$ $\overline{$

New feature: W[±]h charge asymmetry

- W[±]h production asymmetric at LHC
 - Asymmetry driven by proton PDFs
 - Consider W[–]h:
 - Unitarity violation requires NP completion

Insensitive to Yukawas

Higgs XSWG

 $A = \frac{\sigma \left(W^+ h \right) - \sigma \left(W^- h \right)}{\sigma \left(W^+ h \right) + \sigma \left(W^- h \right)}$

Inclusive charge asymmetry

PDF behavior

- In SM, net positive asymmetry driven by ud, mitigated by cs (neglect Cabibbo angle)
 - For enhanced y_d or y_u, charge-asymmetric PDFs take over
 - For enhanced y_s or y_c, charge-symmetric PDFs dominate
 - Important, subleading corrections from Cabibbo angle

Measuring W⁺h, W⁻h rates

PRELIMINARY

 Survey all possible final states that can give clean lepton asymmetry measurement

Using Standard Model BRs, include e, μ decays of W, # events for 14 TeV LHC

Mode	Luminosity	H→bb	Η→ττ	Н→үү	H → I+I- I+I- (I=e,µ)	Η → l+ l- νl νl (l=e or μ, ν=any)	H → l+ l- q q (l=e or µ, q=udcsb)	H → l+ vl q q (l=e or µ, q=udcsb)
W+h	300 fb ⁻¹	35742	3916	142	8	659	155	1970
W⁻h	300 fb ⁻¹	22939	2513	91	5	423	99	1265

Focus on same-sign dilepton signature

- Inherits charge asymmetry from production
- Perform consistency test

- Signal
 - W[±] h → (l[±]v) (l[±]vjj): Final state is two same-sign leptons, one or two resolved jets, some missing transverse energy
- Backgrounds
 - $W^{\pm}W^{\pm}jj$
 - W[±]Z, Z decays leptonically (and OS lepton lost)
 - W⁺W[–] with charge mis-identification rates:
 - electrons: 0.16% for 0 < $|\eta|$ < 1.479, 0.3% for 1.479 < $|\eta|$ < 3
 - muons: negligible

CMS-DP-2015-035

PRELIMINARY

- Initial efficiencies already account for leptonic BRs
- Reduce W⁺W⁻ by same charge requirement
- Reduce $W^{\pm}W^{\pm}jj$ by 60 < m_{ii} < 100 GeV cut

Also cut on transverse mass differences

Cut, survival efficiency	$\mathbf{SM} \ W^{\pm}h$	$W^{\pm}W^{\pm}jj$	W^+Z	W^-Z	W^+W^-	
Exactly two leptons, $p_T > 15 \text{ GeV}$	59.4%	29.0%	33.4%	32.9%	40.7%	
Same-charge leptons	59.1%	28.4%	6.5%	6.5%	0.059%	
Either one or two jets, $p_T > 25 \text{ GeV}$	38.5%	20.1%	3.1%	3.3%	0.030%	
$60 \text{ GeV} < m_{jj} < 100 \text{ GeV}$	31.4%	10.4%	2.4%	2.6%	0.020%	
$m_{T, \text{ subleading } \ell j j} < 150 \text{ GeV}$	21.9%	2.4%	1.5%	1.6%	0.010%	
Number of events	425 + 277	516 + 307	2790 + 8	6 + 2068	144 + 115	
Statistical significance, 300 fb ⁻¹ , $S/\sqrt{S+B}$	$6.82\sigma, 5.26\sigma \Rightarrow 8.61\sigma$					

PRELIMINARY

• Each contribution is unit-normalized

PRELIMINARY

• Each contribution is unit-normalized

25

PRELIMINARY

 Discovery sensitivity for *each* W⁺h and W⁻h production with 300 fb⁻¹ luminosity

Cut, survival efficiency	$\mathbf{SM} \ W^{\pm}h$	$W^{\pm}W^{\pm}jj$	W^+Z	W^-Z	W^+W^-	
Exactly two leptons, $p_T > 15 \text{ GeV}$	59.4%	29.0%	33.4%	32.9%	40.7%	
Same-charge leptons	59.1%	28.4%	6.5%	6.5%	0.059%	
Either one or two jets, $p_T > 25 \text{ GeV}$	38.5%	20.1%	3.1%	3.3%	0.030%	
$60 \text{ GeV} < m_{jj} < 100 \text{ GeV}$	31.4%	10.4%	2.4%	2.6%	0.020%	
$m_{T, \text{ subleading } \ell jj} < 150 \text{ GeV}$	21.9%	2.4%	1.5%	1.6%	0.010%	
Number of events	425 + 277	516 + 307	2790 + 8	6 + 2068	144 + 115	
Statistical significance, 300 fb ⁻¹ , $S/\sqrt{S+B}$	$6.82\sigma, 5.26\sigma \Rightarrow 8.61\sigma$					

PRELIMINARY

- Discovery sensitivity for *each* W⁺h and W⁻h production with 300 fb⁻¹ luminosity
- Scaling to 3 ab⁻¹, statistical sensitivity is ≈0.4%
 - However, effective BR for h \rightarrow l[±]vjj decreases as Higgs width increases from large Yukawas
 - Strong Yukawa sensitivity arises only in aggressive NP models with enhanced Higgs-vector couplings (or if SM contributions to Higgs width are not present)
 - Also requires dedicated studies of PDF uncertainties at Higgs scale

Effective signal strengths from large

Yukawas

- Individually rescale light quark Yukawas
- Width increase partially mitigated by new production modes
 - W[±]h associated production

$$\mu_{Wh} = \frac{\left(\sigma_{Wh}^{\rm NP}\right)}{\left(\sigma_{Wh}^{\rm SM}\right)} \times \frac{\Gamma(h \to X)^{\rm NP} / \Gamma_{\rm tot}^{\rm NP}}{\Gamma(h \to X)^{\rm SM} / \Gamma_{\rm tot}^{\rm SM}}$$

- Gluon fusion and quark-initiated s-channel production

$$\mu_{gg} = \frac{\left(\sigma_{gg}^{\rm NP} + \sigma_{qq}^{\rm NP}\right)}{\left(\sigma_{gg}^{\rm SM}\right)} \times \frac{\Gamma(h \to X)^{\rm NP} / \Gamma_{\rm tot}^{\rm NP}}{\Gamma(h \to X)^{\rm SM} / \Gamma_{\rm tot}^{\rm SM}}$$

Wh signal strength

gg signal strength

Effective signal strengths from large

Yukawas

- Extra colored states (new vector-like quarks to induce large Yukawas for light quarks) can easily bring gg signal strength back to SM expectation
 - Possibilities to disentangle s-channel Higgs via quark annihilation vs. gluon fusion [1606.09253], [1606.09621], [1608.04376] CEPC study [1608.01746]
- More difficult for Wh signal strength
 - Careful balance between hVV coupling and Yukawa
 - Large y_d, y_u deviations possible with little observable effect
- Same-sign lepton and charge asymmetry study still useful self-consistency test of Higgs
 - On same footing as indirect width test

Conclusions

- New same-sign dilepton channel for testing Higgs properties
 - Different systematics and experimental challenges than charm tagging and rare decays – easily extrapolated to HL-LHC
 - Theoretical uncertainty on charge asymmetry mainly from PDFs, QCD corrections cancel
 - For models with enhanced hVV coupling or decreased SM partial widths (*e.g.* hbb), charge asymmetry probe can cover same range as other techniques
 - Need UV completion to fully determine nonstandard Yukawa prospects
- Same-sign lepton channel also useful probe for Higgs coupling to vectors
 - No immediate test to disentangle many simultaneous Yukawa deviations
 - Important (and straightfoward) consistency test that is yet to be performed using LHC data

Atomic force probes

- Analogous to DM direct detection scattering, consider short-range Higgs force in isotope shifts of atomic physics enhanced by Yukawas
 - Delaunay, Ozeri, Perez, Soreq [1601.05087]
 - Frugiuele, Fuchs, Perez, Schlaffer [1602.04822]
 - Delaunay, Soreq [1602.04838]
 - Needs electron Yukawa, strong bounds possible

$$V_{\rm Higgs}(r) = -\frac{y_e y_A}{4\pi} \frac{e^{-rm_h}}{r}$$

$$y_n \simeq 7.7y_u + 9.4y_d + 0.75y_s + 2.6 \times 10^{-4}c_g, y_p \simeq 11y_u + 6.5y_d + 0.75y_s + 2.6 \times 10^{-4}c_g,$$