

Very rare, exclusive, hadronic decays in QCD factorization

Stefan Alte, Matthias König THEP, Johannes Gutenberg-University (Mainz) EFTs for Collider Physics, Flavor Phenomena and EWSB

Eltville, 15 September, 2016

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

JGU

JGU

Extensions of the SM often involve changes to the EW sector: SUSY, nHDM, compositeness, warped extra-dimensions, ...

JG U

Extensions of the SM often involve changes to the EW sector: SUSY, nHDM, compositeness, warped extra-dimensions, ... \Rightarrow determining the properties of this sector is extremely important!

Extensions of the SM often involve changes to the EW sector: SUSY, nHDM, compositeness, warped extra-dimensions, ... \Rightarrow determining the properties of this sector is extremely important!

The premise in the search for NP nowadays is: Leave no stone unturned!

JGU

Extensions of the SM often involve changes to the EW sector: SUSY, nHDM, compositeness, warped extra-dimensions, ... \Rightarrow determining the properties of this sector is extremely important!

The premise in the search for NP nowadays is: Leave no stone unturned!

The $h \rightarrow VM$ decays have an **interesting dependence** of the quark Yukawa couplings in some cases due to an **intricate interplay between different diagram topologies**.

JG U

Extensions of the SM often involve changes to the EW sector: SUSY, nHDM, compositeness, warped extra-dimensions, ... \Rightarrow determining the properties of this sector is extremely important!

The premise in the search for NP nowadays is: Leave no stone unturned!

The $h \rightarrow VM$ decays have an **interesting dependence** of the quark Yukawa couplings in some cases due to an **intricate interplay between different diagram topologies**.

Exclusive hadronic decays can serve as probes for new physics, revealing more information when combined with "more conventional" searches!

JGU

For hard exclusive processes with individual final-state hadrons, one uses the **QCD factorization approach**.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359 Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

JG U

For hard exclusive processes with individual final-state hadrons, one uses the **QCD factorization approach**.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359 Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

JG U

It exploits that the hadron moves with a large momentum, resulting in a scale separation between the hard scattering and the hadronization.

For hard exclusive processes with individual final-state hadrons, one uses the **QCD factorization approach**.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359 Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

It exploits that the hadron moves with a large momentum, resulting in a scale separation between the hard scattering and the hadronization.

In past applications, the **scale separation was not large enough** for power corrections to be neglected.

For hard exclusive processes with individual final-state hadrons, one uses the **QCD factorization approach**.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359 Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

JG U

It exploits that the hadron moves with a large momentum, resulting in a scale separation between the hard scattering and the hadronization.

In past applications, the **scale separation was not large enough** for power corrections to be neglected.

 \rightarrow Hard to disentangle **power corrections** from **hadronic uncertainties**.

For hard exclusive processes with individual final-state hadrons, one uses the **QCD factorization approach**.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359 Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

JG U

It exploits that the hadron moves with a large momentum, resulting in a scale separation between the hard scattering and the hadronization.

In past applications, the **scale separation was not large enough** for power corrections to be neglected.

 \rightarrow Hard to disentangle **power corrections** from **hadronic uncertainties**.

Here the scale is high, set by the decaying boson: $\mu_H \sim m_Z$

 \Rightarrow Power corrections tiny $\sim \Lambda_{
m QCD}/m_Z$

For hard exclusive processes with individual final-state hadrons, one uses the **QCD factorization approach**.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359 Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97]

It exploits that the hadron moves with a large momentum, resulting in a scale separation between the hard scattering and the hadronization.

In past applications, the **scale separation was not large enough** for power corrections to be neglected.

 \rightarrow Hard to disentangle **power corrections** from **hadronic uncertainties**.

Here the scale is high, set by the decaying boson: $\mu_H \sim m_Z$

 \Rightarrow Power corrections tiny $\sim \Lambda_{
m QCD}/m_Z$

Price to pay: Very small branching ratios and difficult reconstruction!

Exclusive Radiative Decays of ${\rm W}$ and ${\rm Z}$ Bosons in QCD Factorization

Yuval Grossman, MK, Matthias Neubert

JHEP 1504 (2015) 101, arXiv:1501.06569

Exclusive Radiative Z-Boson Decays to Mesons with Flavor-Singlet Components SA, MK, Matthias Neubert

JHEP 1602 (2016) 162, arXiv:1512.09135

Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings

MK, Matthias Neubert

JHEP 1508 (2015) 012, arXiv:1505.03870

Exclusive Weak Radiative Higgs Decays in the Standard Model and Beyond SA, MK, Matthias Neubert

arXiv:160x.soon?

Outline

JGU

1 QCD-factorization

- Derivation of the factorization formula
- Light-cone distribution amplitudes
- 2 Hadronic Z-boson decays
- 3 Hadronic Higgs decays
 - Radiative hadronic Higgs decays
 - Weak radiative hadronic Higgs decays

4 Conclusions

QCD-factorization Derivation of the factorization formula

Very rare, exclusive, hadronic decays in QCD factorization

The framework of QCD factorization was originally developed by Brodsky, Efremov, Lepage and Radyushkin in the beginning of the 1980's.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Brodsky, Lepage (1980), Phys. Rev. D 22, 2157] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97] [Efremov, Radyushkin (1980), Phys. Lett. B 94, 245]

The framework of QCD factorization was originally developed by Brodsky, Efremov, Lepage and Radyushkin in the beginning of the 1980's.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Brodsky, Lepage (1980), Phys. Rev. D 22, 2157] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97] [Efremov, Radyushkin (1980), Phys. Lett. B 94, 245]

The factorization formula was **derived using light-cone perturbation theory**.

The framework of QCD factorization was originally developed by Brodsky, Efremov, Lepage and Radyushkin in the beginning of the 1980's.

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359] [Brodsky, Lepage (1980), Phys. Rev. D 22, 2157] [Efremov, Radyushkin (1980), Theor. Math. Phys. 42, 97] [Efremov, Radyushkin (1980), Phys. Lett. B 94, 245]

The factorization formula was **derived using light-cone perturbation theory**.

The derivation **can also be phrased in** the language of **soft-collinear effective theory**.

[Bauer et al. (2001), Phys. Rev. D 63, 114020]

[Bauer Pirjol, Stewart (2002), Phys. Rev. D 65, 054022]

[Beneke, Chapovsky, Diehl, Feldmann (2002), Nucl. Phys. B 643, 431]

JGU

JGU

The scale separation in the case at hand calls for an effective theory description!

JGU

Strategy: Using SCET, write down **all effective operators** from **collinear partons** that can excite the meson from the QCD vacuum.

In SCET power-counting our list of operators **starts with two collinear quarks** at leading power and contributions with **three or more particles** are **power-suppressed**.

JG U

In SCET power-counting our list of operators **starts with two collinear quarks** at leading power and contributions with **three or more particles** are **power-suppressed**.

The operators are bi-local along the light-like direction \bar{n} :

$$J \sim \bar{q}_c(x) \dots q_c(x) + \bar{q}_c(x) \dots t(\bar{n} \cdot \partial)q_c(x) + \dots$$

$$\rightarrow \bar{q}_c(x) \dots q_c(x + t\bar{n})$$

In SCET power-counting our list of operators **starts with two collinear quarks** at leading power and contributions with **three or more particles** are **power-suppressed**.

JG U

The operators are bi-local along the light-like direction \bar{n} :

$$J \sim \bar{q}_c(x) \dots q_c(x) + \bar{q}_c(x) \dots t(\bar{n} \cdot \partial)q_c(x) + \dots$$

$$\rightarrow \bar{q}_c(x) \dots q_c(x + t\bar{n})$$

Match partonic diagrams to these current operators.

In SCET power-counting our list of operators **starts with two collinear quarks** at leading power and contributions with **three or more particles** are **power-suppressed**.

JG U

The operators are bi-local along the light-like direction \bar{n} :

$$J \sim \bar{q}_c(x) \dots q_c(x) + \bar{q}_c(x) \dots t(\bar{n} \cdot \partial)q_c(x) + \dots$$

$$\rightarrow \bar{q}_c(x) \dots q_c(x + t\bar{n})$$

Match partonic diagrams to these current operators.

The non-perturbative hadronization is encoded in the matrix element of the current operators between the QCD vacuum and the hadronic final state $\langle M | J | 0 \rangle$.

$$i\mathcal{A} = \int \mathcal{C}(t,\dots) \langle M(k) | J_q(t,\dots) | 0 \rangle dt$$

$$i\mathcal{A} = \int \mathcal{C}(t,\ldots) \langle M(k) | J_q(t,\ldots) | 0 \rangle dt$$

The hadronic matrix element defines a function analogous to the decay constants. In fact, these are just the local case (t = 0) above. The generalization to our **bi-local current operator**

$$\langle M(k)| J_q(t,\dots) |0\rangle \sim f_M \int e^{i(t\bar{n})\cdot(xk)} \phi_M^q(x) dx$$

defines the light-cone distribution amplitude (LCDA), which encodes the non-perturbative physics in the exclusive hadronic final state.

$$i\mathcal{A} = \int \mathcal{C}(t,\ldots) \langle M(k) | J_q(t,\ldots) | 0 \rangle dt$$

The hadronic matrix element defines a function analogous to the decay constants. In fact, these are just the local case (t = 0) above. The generalization to our **bi-local current operator**

$$\langle M(k)| J_q(t,\dots) |0\rangle \sim f_M \int e^{i(t\bar{n})\cdot(xk)} \phi_M^q(x) dx$$

defines the light-cone distribution amplitude (LCDA), which encodes the non-perturbative physics in the exclusive hadronic final state.

The **Wilson coefficients** C contain the hard scattering processes that are integrated out at the factorization scale.

$$i\mathcal{A} = \int \mathcal{C}(t,\ldots) \langle M(k) | J_q(t,\ldots) | 0 \rangle dt$$

The hadronic matrix element defines a function analogous to the decay constants. In fact, these are just the local case (t = 0) above. The generalization to our **bi-local current operator**

$$\langle M(k)| J_q(t,\dots) |0\rangle \sim f_M \int e^{i(t\bar{n})\cdot(xk)} \phi_M^q(x) dx$$

defines the light-cone distribution amplitude (LCDA), which encodes the non-perturbative physics in the exclusive hadronic final state.

The **Wilson coefficients** C contain the hard scattering processes that are integrated out at the factorization scale.

For mesons with a **flavor-singlet** component, there is an analogous **contribution from two gluons**.

QCD-factorization Light-cone distribution amplitudes

Very rare, exclusive, hadronic decays in QCD factorization

Renormalization of the LCDAs

Remember, we are dealing with a huge scale hierarchy: m_Z vs. $\Lambda_{
m QCD}$

 \Rightarrow Large logarithms $\alpha_s \log(m_Z/\Lambda_{\rm QCD})$ need to be resummed.

Examples of corrections to the LCDAs at $\mathcal{O}(\alpha_s)$:

The LCDAs are renormalized according to:
Renormalization of the LCDAs

Remember, we are dealing with a huge scale hierarchy: m_Z vs. $\Lambda_{
m QCD}$

JGU

 \Rightarrow Large logarithms $\alpha_s \log(m_Z/\Lambda_{\rm QCD})$ need to be resummed.

Examples of corrections to the LCDAs at $\mathcal{O}(\alpha_s)$:

The LCDAs are renormalized according to:

$$\begin{pmatrix} \phi_q^{\text{ren}} \\ \phi_g^{\text{ren}} \end{pmatrix} = \begin{pmatrix} \checkmark & \checkmark \\ \checkmark & \checkmark \\ \checkmark & \checkmark \end{pmatrix} \otimes \begin{pmatrix} \phi_q^{\text{bare}} \\ \phi_g^{\text{bare}} \end{pmatrix}$$

Renormalization of the LCDAs

Remember, we are dealing with a huge scale hierarchy: m_Z vs. $\Lambda_{
m QCD}$

 \Rightarrow Large logarithms $\alpha_s \log(m_Z/\Lambda_{\rm QCD})$ need to be resummed.

Examples of corrections to the LCDAs at $\mathcal{O}(\alpha_s)$:

The LCDAs are renormalized according to:

$$\begin{pmatrix} \phi_q^{\text{ren}}(x,\mu)\\ \phi_g^{\text{ren}}(x,\mu) \end{pmatrix} = \int_0^1 \left[\mathbf{1} \cdot \delta(x-y) + \frac{\alpha_s(\mu)}{4\pi\epsilon} \begin{pmatrix} V_{qq}(x,y) & V_{qg}(x,y)\\ V_{gq}(x,y) & V_{gg}(x,y) \end{pmatrix} \right] \begin{pmatrix} \phi_q^{\text{bare}}(y)\\ \phi_g^{\text{bare}}(y) \end{pmatrix} dy$$

[Brodsky, Lepage (1979), Phys. Lett. B 87, 359]
 [Terentev (1981), Sov. J. Nucl. Phys. 33, 911]
 [Ohrndorf (1981), Nucl. Phys. B 186, 153]
 [Shifman, Vysotsky (1981), Nucl. Phys. B 186, 475]
 [Baier, Grozin (1981), Nucl.Phys. B192 476-488]

JG U

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^q(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^g(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

 $C_n^{(\alpha)}(z)$: Gegenbauer polynomials $a_n(\mu), b_n(\mu)$: Gegenbauer moments, constant dependence hadronic integration Gegenbauer moments, contain the scaledependence, hadronic input parameters

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^g(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

 $C_n^{(\alpha)}(z)$: Gegenbauer polynomials $a_n(\mu), b_n(\mu)$: Gegenbauer moments, contain the scaledependence, hadronic input parameters

At one-loop order, the scaling is governed by:

$$\left[\mu \frac{d}{d\mu} + \frac{\alpha_s(\mu)}{4\pi} \begin{pmatrix} \gamma_n^{qq} & \gamma_n^{qg} \\ \gamma_n^{gq} & \gamma_n^{gg} \end{pmatrix}\right] \begin{pmatrix} a_n^M \\ b_n^M \end{pmatrix} + \mathcal{O}(\alpha_s^2) = 0$$

The LCDAs are expanded in the eigenfunctions of the evolution Kernels:

$$\phi_M^q(x,\mu) = 6x \,\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x-1) \right]$$

$$\phi_M^g(x,\mu) = 30x^2 \bar{x}^2 \left[\sum_{n=1}^{\infty} b_n^M(\mu) C_{n-1}^{(5/2)}(2x-1) \right]$$

 $C_n^{(\alpha)}(z)$: Gegenbauer polynomials $a_n(\mu), b_n(\mu)$: Gegenbauer moments, contain the scaledependence, hadronic input parameters

At one-loop order, the scaling is governed by:

$$\begin{bmatrix} \mu \frac{d}{d\mu} + \frac{\alpha_s(\mu)}{4\pi} \begin{pmatrix} \gamma_n^{qq} & \gamma_n^{qg} \\ \gamma_n^{gq} & \gamma_n^{gg} \end{pmatrix} \end{bmatrix} \begin{pmatrix} a_n^M \\ b_n^M \end{pmatrix} + \mathcal{O}(\alpha_s^2) = 0$$

At higher orders, moments of order $n \mod n$ mix with moments of order k < n.

When scale-evolved to high scales, all Gegenbauer moments decrease:

$$\mu \to \infty \Rightarrow a_n, b_n \to 0 \Leftrightarrow \phi_q \to 6x(1-x)$$

When scale-evolved to high scales, all Gegenbauer moments decrease:

$$\mu \to \infty \Rightarrow a_n, b_n \to 0 \Leftrightarrow \phi_q \to 6x(1-x)$$

For μ at the EW scale, they are already strongly suppressed:

LCDAs for mesons at different scales, dashed lines: $\phi_M(x, \mu = \mu_0)$, solid lines: $\phi_M(x, \mu = m_Z)$, grey dotted lines: $\phi_M(x, \mu \to \infty)$

When scale-evolved to high scales, all Gegenbauer moments decrease:

$$\mu \to \infty \Rightarrow a_n, b_n \to 0 \Leftrightarrow \phi_q \to 6x(1-x)$$

For μ at the EW scale, they are already strongly suppressed:

LCDAs for mesons at different scales, dashed lines: $\phi_M(x, \mu = \mu_0)$, solid lines: $\phi_M(x, \mu = m_Z)$, grey dotted lines: $\phi_M(x, \mu \to \infty)$

At high scales compared to $\Lambda_{\rm QCD}$ (e.g. $\mu \sim m_Z$) the sensitivity to poorly-known a_n^M , b_n^M is greatly reduced!

Hadronic Z-boson decays

Very rare, exclusive, hadronic decays in QCD factorization

The $\mathbf{Z} \to \mathbf{M} \boldsymbol{\gamma}$ amplitude

JGU

The decay amplitude is governed by diagrams:

$$i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu}q^{\nu}\varepsilon_Z^{\alpha}\varepsilon_{\gamma}^{*\beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_{\gamma}^* - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_{\gamma}^*}{k \cdot q}\right) F_2^M \right]$$

The $\mathbf{Z} \to \mathbf{M} \boldsymbol{\gamma}$ amplitude

JGU

The decay amplitude is governed by diagrams:

Form factor decomposition:

singlets only!

$$i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu}q^{\nu}\varepsilon_Z^{\alpha}\varepsilon_\gamma^{*\beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_\gamma^* - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_\gamma^*}{k \cdot q}\right) F_2^M \right]$$

The form factors contain the convolution integrals:

$$F^{M} \sim \int_{0}^{1} dx H(x,\mu)\phi_{M}(x,\mu) = \sum_{n} C_{2n}(\mu)a_{2n}^{M}(\mu)$$
$$C_{n}(\mu) = 1 + \frac{C_{F}\alpha_{s}(\mu)}{4\pi} \left\{ 3\log\frac{m_{Z}^{2}}{\mu^{2}} + \dots \right\}$$

The $\mathbf{Z} ightarrow \mathbf{M} \gamma$ amplitude

JGU

The decay amplitude is governed by diagrams:

 $Z \sim \left(\begin{array}{c} z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \\ z \\ z \\ z \end{array}\right) \left(\begin{array}{c} z \end{array}\right) \left(\begin{array}{c} z \\ z \end{array}\right) \left(\begin{array}{c} z \end{array}\right) \left(\begin{array}{c} z \\ z \end{array}\right) \left(\begin{array}{c} z \end{array}\right$

Form factor decomposition:

singlets only!

$$i\mathcal{A} = \pm \frac{egf_M}{2\cos\theta_W} \left[i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu}q^{\nu}\varepsilon_Z^{\alpha}\varepsilon_\gamma^{*\beta}}{k \cdot q} F_1^M - \left(\varepsilon_Z \cdot \varepsilon_\gamma^* - \frac{q \cdot \varepsilon_Z k \cdot \varepsilon_\gamma^*}{k \cdot q}\right) F_2^M \right]$$

The form factors contain the convolution integrals:

$$F^{M} \sim \int_{0}^{1} dx \, H(x,\mu) \phi_{M}(x,\mu) = \sum_{n} C_{2n}(\mu) a_{2n}^{M}(\mu)$$
$$C_{n}(\mu) = 1 + \frac{C_{F} \alpha_{s}(\mu)}{4\pi} \left\{ 3 \log \frac{m_{Z}^{2}}{\mu^{2}} + \dots \right\}$$

Evaluating the hard function at $\mu = m_Z$ and evolving it down to μ_{hadr} resums large logarithms $\left[\alpha_s \log(m_Z^2/\mu^2)\right]^n$.

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

Let us define one Wilson coefficient $C_q^{(f)}$ per flavor. The procedure is:

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

JG U

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

Let us define one Wilson coefficient $\mathcal{C}_q^{(f)}$ per flavor. The procedure is:

$$m_Z \stackrel{f}{=} \underbrace{\mathcal{C}_g}_{q} \underbrace{\mathcal{C}_q^{(u)}}_{q} \underbrace{\mathcal{C}_q^{(d)}}_{q} \underbrace{\mathcal{C}_q^{(s)}}_{q} \underbrace{\mathcal{C}_q^{(c)}}_{q} \underbrace{\mathcal{C}_q^{(b)}}_{q} \underbrace{\mathcal{C}_q^{(b)}}_{\text{at high scale}}$$

HRC

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

JG U

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

Let us define one Wilson coefficient $C_q^{(f)}$ per flavor. The procedure is:

HDC

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

Let us define one Wilson coefficient $C_q^{(f)}$ per flavor. The procedure is:

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

JGU

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

Let us define one Wilson coefficient $C_q^{(f)}$ per flavor. The procedure is:

The "singlet" in $\eta^{(\prime)}$ means $(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle)/\sqrt{3}$. However, at the factorization scale $\mu \approx m_Z$, a flavor singlet is rather

$$\frac{1}{\sqrt{5}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle + |c\bar{c}\rangle + |b\bar{b}\rangle \right).$$

 \Rightarrow Have to rearrange operators at each threshold scale into singlet and non-singlet combinations, which are different for every $n_f.$

Let us define one Wilson coefficient $C_q^{(f)}$ per flavor. The procedure is:

Very rare, exclusive, hadronic decays in QCD factorization

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \dots$	Branching ratio	asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 - 0.14 \mu \pm 0.03 f \pm 0.61 a_2 \pm 0.82 a_4) \cdot 10^{-12}$	7.71	14.67
$\eta\gamma$	$(2.36 + 0.02 - 0.04 \mu \pm 1.19_f \pm 0.04_{\phi}) \cdot 10^{-10}$		
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu \pm 0.49_f \pm 0.12_{\phi}) \cdot 10^{-9}$		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu \pm 0.16 f \pm 0.24 a_2 \pm 0.37 a_4) \cdot 10^{-9}$	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 - 0.13 \mu \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}) \cdot 10^{-9}$	7.12	12.31
$\omega\gamma$	$(2.89 + 0.03 - 0.05 \mu \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$	2.54	3.84
$J/\psi\gamma$	$(8.02 + 0.14 + 0.20_f + 0.39 - 0.36 \sigma) $ $\cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S)\gamma$	$(5.39 + 0.10 - 0.08_{f} + 0.08_{f} + 0.08_{f} - 0.08_{\sigma})$ $\cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)\gamma$	$(1.22 + 0.02 + 0.02 + 0.13_f) + 0.02 - 0.02 \sigma) \cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 - 0.19 \mu \pm 0.09 f + 0.20 - 0.15 \sigma) \cdot 10^{-8}$	13.96	7.59

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \ldots$	Branching ratio	asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 + 0.03_{f} \pm 0.03_{f} \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$	7.71	14.67
$\eta\gamma$	$(2.36 + 0.02 + 0.04 \mu) \pm 1.19_f \pm 0.04_{\phi}) \cdot 10^{-10}$		
$\eta'\gamma$	$(6.68 + 0.08 + 0.011 \mu) \pm 0.49_f \pm 0.12_{\phi}) \cdot 10^{-9}$		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu) \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 + 0.013 \mu) \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}) \cdot 10^{-9}$	7.12	12.31
$\omega\gamma$	$(2.89 + 0.03 + 0.05 \mu) \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$	2.54	3.84
$J/\psi\gamma$	$(8.02 + 0.14 + 0.20_f + 0.39 - 0.36 \sigma) + 10^{-8}$	10.48	6.55
$\Upsilon(1S) \gamma$	$(5.39 + 0.10 - 0.10 \mu) \pm 0.08_f + 0.11 - 0.08 \sigma) \cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S) \gamma$	$(1.22 + 0.02 - 0.02 \mu) \pm 0.13_f + 0.02 - 0.02 \sigma) \cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 - 0.19 \mu) \pm 0.09_f + 0.20 - 0.15 \sigma) + 10^{-8}$	13.96	7.59
	1		

scale dependence

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \ldots$	Branching ratio		asym.	LO			
$\pi^0\gamma$	$(9.80 + 0.09 + 0.03_f) \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-10}$	-12	7.71	14.67			
$\eta\gamma$	$(2.36 + 0.02 + 0.04 \mu) \pm 1.19_f \pm 0.04_{\phi}) \cdot 10^{\circ}$	-10					
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu) \pm 0.49_f \pm 0.12_{\phi}) \cdot 10^{\circ}$	-9					
$ ho^0\gamma$	$\left[(4.19 + 0.04 - 0.06 \mu) \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4} \right] \cdot 10^{-10}$	-9	3.63	5.68			
$\phi\gamma$	$\left (8.63 + 0.08 - 0.13 \mu) \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4} \right \cdot 10^{-10}$	-9	7.12	12.31			
$\omega\gamma$	$(2.89 + 0.03 - 0.05 \mu) \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-1}$	-8	2.54	3.84			
$J/\psi\gamma$	$(8.02 + 0.14 + 0.20_f) + 0.20_f + 0.39 - 0.36 \sigma) \cdot 10^{\circ}$	-8	10.48	6.55			
$\Upsilon(1S)\gamma$	$(5.39 + 0.10 - 0.10 \mu) \pm 0.08_f + 0.11 - 0.08 \sigma) \cdot 10^{\circ}$	-8	7.55	4.11			
$\Upsilon(4S)\gamma$	$(1.22 + 0.02 \mu) \pm 0.13_f + 0.02 \sigma) \cdot 10^{\circ}$	-8	1.71	0.93			
$\Upsilon(nS) \gamma$	$(9.96 + 0.18 - 0.19 \mu) \pm 0.09 f$ $(9.96 + 0.18 - 0.15 \sigma) + 0.09 f$ $(9.96 + 0.18 - 0.15 \sigma)$ (10°)	-8	13.96	7.59			
	\uparrow \uparrow						
scale d	scale dependence						

decay constant

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \dots$		Brand	ching ratio		asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 - 0.14 \mu)$	$\pm 0.03_{f}$	$\pm 0.61_{a_2} \pm 0.82_{a_4}$	$\cdot 10^{-12}$	7.71	14.67
$\eta\gamma$	$(2.36 + 0.02 + 0.04 \mu)$	$\pm 1.19_{f}$	$\pm 0.04_{\phi})$	$\cdot 10^{-10}$		
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu)$	$\pm 0.49_{f}$	$\pm 0.12_{\phi})$	$\cdot 10^{-9}$		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu)$	$\pm 0.16_{f}$	$\pm 0.24_{a_2} \pm 0.37_{a_4}$	$\cdot 10^{-9}$	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 - 0.13 \mu)$	$\pm 0.41_{f}$	$\pm 0.55_{a_2} \pm 0.74_{a_4}$	$\cdot 10^{-9}$	7.12	12.31
$\omega\gamma$	$(2.89 + 0.03 - 0.05 \mu)$	$\pm 0.15_{f}$	$\pm 0.29_{a_2} \pm 0.25_{a_4}$	$\cdot 10^{-8}$	2.54	3.84
$J/\psi \gamma$	$(8.02 + 0.14)_{-0.15 \mu}$	$\pm 0.20_{f}$	$^{+0.39}_{-0.36\sigma})$	$\cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S)\gamma$	$(5.39 + 0.10 \mu)$	$\pm 0.08_{f}$	$^{+0.11}_{-0.08\sigma}$)	$\cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)\gamma$	$(1.22 + 0.02 \mu)^{+ 0.02 \mu}$	$\pm 0.13_{f}$	$(+0.02 - 0.02 \sigma)$	$\cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 - 0.19 \mu)$	$\pm 0.09_{f}$	$^{+\ 0.20}_{-\ 0.15\ \sigma})$	$\cdot 10^{-8}$	13.96	7.59
$\uparrow \uparrow \uparrow$						
scale dependence LCDA shape						
	decay constant					

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \dots$	Branching ratio	asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 - 0.14 \mu \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$	7.71	14.67
$\eta\gamma$	$(2.36 + 0.02 - 0.04 \mu \pm 1.19_f \pm 0.04_{\phi}) \cdot 10^{-10}$		
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu \pm 0.49_f \pm 0.12_{\phi}) \cdot 10^{-9}$		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu \pm 0.16 \pm 0.24 a_2 \pm 0.37 a_4) \cdot 10^{-9}$	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 - 0.13 \mu \pm 0.41 f \pm 0.55 a_2 \pm 0.74 a_4) \cdot 10^{-9}$	7.12	12.31
$\omega\gamma$	$(2.89 + 0.03 + 0.03 + 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$	2.54	3.84
$J/\psi \gamma$	$(8.02 + 0.14 + 0.20_f) + 0.20_f + 0.39 - 0.36 \sigma) \cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S) \gamma$	$(5.39 + 0.10 + 0.08_f) + 0.08_f + 0.11 - 0.08 \sigma) \cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)\gamma$	$(1.22 + 0.02 - 0.02 \mu \pm 0.13_f + 0.02 - 0.02 \sigma) \cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 + 0.09_f + 0.20 - 0.15 \sigma) + 10^{-8}$	13.96	7.59
		1	

obtained when using only asymptotic form of LCDA

 $\phi_{\mathbf{M}}(\mathbf{x}) = \mathbf{6}\mathbf{x}(\mathbf{1} - \mathbf{x})$

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \ldots$	Branching ratio	asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 - 0.14 \mu \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$	7.71	14.67
$\eta\gamma$	$(2.36 + 0.02 - 0.04 \mu \pm 1.19_f \pm 0.04_{\phi}) \cdot 10^{-10}$		
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu \pm 0.49_f \pm 0.12_{\phi}) \cdot 10^{-9}$		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 + 0.013 \mu \pm 0.41 f \pm 0.55 a_2 \pm 0.74 a_4) \cdot 10^{-9}$	7.12	12.31
$\omega\gamma$	(2.89 + 0.03 + 0.03 + 0.15 + 0.15 + 0.29 + 0.25 + 0.25 + 0.15 + 0.05 +	2.54	3.84
$J/\psi \gamma$	$(8.02 + 0.14 + 0.20_f) + 0.20_f + 0.39 - 0.36 \sigma) \cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S) \gamma$	$(5.39 + 0.10 + 0.08_f + 0.08_f + 0.11 - 0.08 \sigma) \cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)\gamma$	$(1.22 + 0.02 + 0.02 + 0.13_f + 0.02 - 0.02 \sigma) \cdot 10^{-8}$	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 + 0.09_{f} + 0.09_{f} + 0.09_{f} - 0.15 \sigma) \cdot 10^{-8}$	13.96	7.59

obtained when using only LO hard functions

For the branching ratios $BR(Z \to M\gamma)$ we find:

$Z \rightarrow \dots$	Branching ratio	asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 - 0.14 \mu \pm 0.03 f \pm 0.61 a_2 \pm 0.82 a_4) \cdot 10^{-12}$	7.71	14.67
$\eta\gamma$	$(2.36 + 0.02 - 0.04 \mu \pm 1.19_f \pm 0.04_{\phi}) \cdot 10^{-10}$		
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu \pm 0.49_f \pm 0.12_{\phi}) \cdot 10^{-9}$		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu \pm 0.16 f \pm 0.24 a_2 \pm 0.37 a_4) \cdot 10^{-9}$	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 + 0.03)_{-0.13 \mu} \pm 0.41_{f} \pm 0.55_{a_2} \pm 0.74_{a_4}) \cdot 10^{-9}$	7.12	12.31
$\omega\gamma$	$(2.89 + 0.03 - 0.05 \mu \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$	2.54	3.84
$J/\psi \gamma$	$(8.02 + 0.14 + 0.20_f) + 0.20_f + 0.39 - 0.36 \sigma) \cdot 10^{-8}$	10.48	6.55
$\Upsilon(1S)\gamma$	$(5.39 + 0.10 - 0.10 \mu \pm 0.08_f + 0.11 - 0.08 \sigma) \cdot 10^{-8}$	7.55	4.11
$\Upsilon(4S)\gamma$	$(1.22 + 0.02 + 0.02 + 0.13_f) = (1.002 - 0.02 \sigma) = (10^{-8})$	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 - 0.19 \mu \pm 0.09_f + 0.20 - 0.15 \sigma) \cdot 10^{-8}$	13.96	7.59

The form factors become:

$$\operatorname{Re} F_1^M = \mathcal{Q}_M \left[0.94 + 1.05 \, a_2^M(m_Z) + 1.15 \, a_4^M(m_Z) + 1.22 \, a_6^M(m_Z) + \ldots \right] \\ = \mathcal{Q}_M \left[0.94 + 0.41 \, a_2^M(\mu_h) + 0.29 \, a_4^M(\mu_h) + 0.23 \, a_6^M(\mu_h) + \ldots \right]$$

For the branching ratios $BR(Z \rightarrow M\gamma)$ we find:

$Z \rightarrow \dots$	Branching ratio		asym.	LO
$\pi^0\gamma$	$(9.80 + 0.09 - 0.14 \mu \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4})$	10^{-12}	7.71	14.67
$\eta\gamma$	$(2.36 \ ^{+0.02}_{-0.04 \ \mu} \ \pm 1.19_f \ \pm 0.04_{\phi})$	10^{-10}		
$\eta'\gamma$	$(6.68 + 0.08 - 0.11 \mu \pm 0.49_f \pm 0.12_{\phi})$	10^{-9}		
$ ho^0\gamma$	$(4.19 + 0.04 - 0.06 \mu \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4})$	10^{-9}	3.63	5.68
$\phi\gamma$	$(8.63 + 0.08 - 0.13 \mu \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4})$	10^{-9}	7.12	12.31
$\omega\gamma$	$(2.89 + 0.03 - 0.05 \mu \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4})$	10^{-8}	2.54	3.84
$J/\psi\gamma$	$(8.02 + 0.14 - 0.15 \mu \pm 0.20_f + 0.39 - 0.36 \sigma)$ \cdot	10^{-8}	10.48	6.55
$\Upsilon(1S)\gamma$	$(5.39 \ {}^{+0.10}_{-0.10 \ \mu} \ \pm 0.08_f \ {}^{+0.11}_{-0.08 \ \sigma})$	10^{-8}	7.55	4.11
$\Upsilon(4S) \gamma$	$(1.22 + 0.02 - 0.02 \mu \pm 0.13_f + 0.02 - 0.02 \sigma)$	10^{-8}	1.71	0.93
$\Upsilon(nS)\gamma$	$(9.96 + 0.18 - 0.19 \mu \pm 0.09_f + 0.20 - 0.15 \sigma)$ $(9.96 + 0.18 - 0.19 \mu \pm 0.09_f - 0.15 \sigma)$	10^{-8}	13.96	7.59

The form factors become:

$$\operatorname{Re} F_1^M = \mathcal{Q}_M \left[0.94 + 1.05 \, a_2^M(m_Z) + 1.15 \, a_4^M(m_Z) + 1.22 \, a_6^M(m_Z) + \ldots \right] \\ = \mathcal{Q}_M \left[0.94 + 0.41 \, a_2^M(\mu_h) + 0.29 \, a_4^M(\mu_h) + 0.23 \, a_6^M(\mu_h) + \ldots \right]$$

 \rightarrow RGE from high to low scale reduces sensitivity to a_n^M !

Hadronic Higgs decays Radiative hadronic Higgs decays

Very rare, exclusive, hadronic decays in QCD factorization

Idea: Use hadronic Higgs decays to probe non-standard Higgs couplings.

[Isidori, Manohar, Trott (2014), Phys. Lett. B 728, 131]

[Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003]

[Bodwin et al. (2014), Phys.Rev. D90 113010]

[Kagan et al. (2015), Phys.Rev.Lett. 114 101802]

Light quark Yukawa couplings could **differ significantly from the SM** prediction, this is still **compatible with observation**!

Idea: Use hadronic Higgs decays to probe non-standard Higgs couplings.

[Isidori, Manohar, Trott (2014), Phys. Lett. B 728, 131]

[Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003]

[Bodwin et al. (2014), Phys.Rev. D90 113010]

[Kagan et al. (2015), Phys.Rev.Lett. 114 101802]

Light quark Yukawa couplings could **differ significantly from the SM** prediction, this is still **compatible with observation**! Work with the effective Lagrangian:

$$\begin{aligned} \mathcal{L}_{\text{eff}}^{\text{Higgs}} &= \kappa_W \frac{2m_W^2}{v} h W_{\mu}^+ W^{-\mu} + \kappa_Z \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} h \bar{f} \left(\kappa_f + i \tilde{\kappa}_f \gamma_5\right) f \\ &+ \frac{\alpha}{4\pi v} \left(\kappa_{\gamma\gamma} h F_{\mu\nu} F^{\mu\nu} - \tilde{\kappa}_{\gamma\gamma} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2\kappa_{\gamma Z}}{s_W c_W} h F_{\mu\nu} Z^{\mu\nu} - \frac{2\tilde{\kappa}_{\gamma Z}}{s_W c_W} h F_{\mu\nu} \tilde{Z}^{\mu\nu} \right) \end{aligned}$$

blue terms: $\rightarrow 1$ in SM, **red terms**: $\rightarrow 0$ in SM!

Idea: Use hadronic Higgs decays to probe non-standard Higgs couplings.

[Isidori, Manohar, Trott (2014), Phys. Lett. B 728, 131]

[Bodwin, Petriello, Stoynev, Velasco (2013), Phys. Rev. D 88, no. 5, 053003]

[Bodwin et al. (2014), Phys.Rev. D90 113010]

[Kagan et al. (2015), Phys.Rev.Lett. 114 101802]

Light quark Yukawa couplings could **differ significantly from the SM** prediction, this is still **compatible with observation**! Work with the effective Lagrangian:

$$\begin{aligned} \mathcal{L}_{\text{eff}}^{\text{Higgs}} &= \kappa_W \frac{2m_W^2}{v} h W_{\mu}^+ W^{-\mu} + \kappa_Z \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} h \bar{f} \left(\kappa_f + i\tilde{\kappa}_f \gamma_5\right) f \\ &+ \frac{\alpha}{4\pi v} \left(\kappa_{\gamma\gamma} h F_{\mu\nu} F^{\mu\nu} - \tilde{\kappa}_{\gamma\gamma} h F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2\kappa_{\gamma Z}}{s_W c_W} h F_{\mu\nu} Z^{\mu\nu} - \frac{2\tilde{\kappa}_{\gamma Z}}{s_W c_W} h F_{\mu\nu} \tilde{Z}^{\mu\nu}\right) \end{aligned}$$

blue terms: $\rightarrow 1$ in SM, **red terms**: $\rightarrow 0$ in SM!

 \rightarrow Provides a model-independent analysis of NP effects in $h \rightarrow V \gamma$ decays!

Very rare, exclusive, hadronic decays in QCD factorization

The $h \to V \gamma$ decays

Several different diagram topologies:

The $h \to V\gamma$ decays

Several different diagram topologies:

directly proportional to κ_q and $\tilde{\kappa}_q$

JGU

The $h \to V\gamma$ decays

Several different diagram topologies:

JGU

The $h \rightarrow V \gamma$ decays

Several different diagram topologies:

JGU
The $h \to V \gamma$ decays

JGU

Form factor decomposition:

$$i\mathcal{A}\left(h\to V\gamma\right) = -\frac{ef_{V}}{2} \left[\left(\varepsilon_{V}^{*} \cdot \varepsilon_{\gamma}^{*} - \frac{q \cdot \varepsilon_{V}^{*} k \cdot \varepsilon_{\gamma}^{*}}{k \cdot q} \right) F_{1}^{V} - i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu} q^{\nu} \varepsilon_{V}^{*\alpha} \varepsilon_{\gamma}^{*\beta}}{k \cdot q} F_{2}^{V} \right]$$

Contributions from both diagram topologies, the **direct** contributions $(h \to (q\bar{q} \to V)\gamma)$ and the **indirect** contributions $(h \to (Z/\gamma \to M)\gamma)$.

The $h \to V \gamma$ decays

Form factor decomposition:

$$i\mathcal{A}\left(h\to V\gamma\right) = -\frac{ef_{V}}{2} \left[\left(\varepsilon_{V}^{*}\cdot\varepsilon_{\gamma}^{*} - \frac{q\cdot\varepsilon_{V}^{*}k\cdot\varepsilon_{\gamma}^{*}}{k\cdot q}\right)F_{1}^{V} - i\epsilon_{\mu\nu\alpha\beta}\frac{k^{\mu}q^{\nu}\varepsilon_{V}^{*\alpha}\varepsilon_{\gamma}^{*\beta}}{k\cdot q}F_{2}^{V} \right]$$

Contributions from both diagram topologies, the **direct** contributions $(h \rightarrow (q\bar{q} \rightarrow V)\gamma)$ and the **indirect** contributions $(h \rightarrow (Z/\gamma \rightarrow M)\gamma)$.

The **direct** form factors are proportional to:

$$F_{1,\text{direct}}^{V} \propto \kappa_{q} \frac{f_{V}^{\perp}(\mu)}{f_{V}} \left[1 - \frac{C_{F}\alpha_{s}(\mu)}{\pi} \log \frac{m_{h}^{2}}{\mu^{2}} \right] \left(\sum_{n=0}^{\infty} C_{2n}(m_{h},\mu) a_{2n}^{V_{\perp}}(\mu) \right)$$

The $h \to V\gamma$ decays

Form factor decomposition:

$$i\mathcal{A}\left(h\to V\gamma\right) = -\frac{ef_{V}}{2} \left[\left(\varepsilon_{V}^{*} \cdot \varepsilon_{\gamma}^{*} - \frac{q \cdot \varepsilon_{V}^{*} k \cdot \varepsilon_{\gamma}^{*}}{k \cdot q}\right) F_{1}^{V} - i\epsilon_{\mu\nu\alpha\beta} \frac{k^{\mu}q^{\nu}\varepsilon_{V}^{*\alpha}\varepsilon_{\gamma}^{*\beta}}{k \cdot q} F_{2}^{V} \right]$$

Contributions from both diagram topologies, the **direct** contributions $(h \to (q\bar{q} \to V)\gamma)$ and the **indirect** contributions $(h \to (Z/\gamma \to M)\gamma)$.

The direct form factors are proportional to:

$$F_{1,\text{direct}}^{V} \propto \kappa_{q} \frac{f_{V}^{\perp}(\mu)}{f_{V}} \left[1 - \frac{C_{F}\alpha_{s}(\mu)}{\pi} \log \frac{m_{h}^{2}}{\mu^{2}} \right] \left(\sum_{n=0}^{\infty} C_{2n}(m_{h},\mu) a_{2n}^{V_{\perp}}(\mu) \right)$$

The **indirect** form factors however, are proportional to all κ_X in the Lagrangian!

There could be NP in **any** of these contributions leading to deviations from the SM prediction for our amplitudes!

JG U

JG U

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

To reduce the theoretical uncertainty, we **normalize the branching** ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

 $\frac{{\rm BR}(h\to V\gamma)}{{\rm BR}(h\to \gamma\gamma)} =$

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

To reduce the theoretical uncertainty, we **normalize the branching** ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

 $\frac{\Gamma(h\to V\gamma)}{\Gamma(h\to \gamma\gamma)} =$

Very rare, exclusive, hadronic decays in QCD factorization

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

To reduce the theoretical uncertainty, we **normalize the branching** ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

$$\frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 |1 - \kappa_q \Delta_V - \delta_V|^2$$

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

To reduce the theoretical uncertainty, we **normalize the branching** ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

$$\frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 |1 - \frac{\kappa_q \Delta_V}{\int} - \delta_V|^2$$

this contains the direct amplitude!

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

To reduce the theoretical uncertainty, we **normalize the branching** ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

$$\frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 |1 - \frac{\kappa_a \Delta_V}{f} - \frac{\delta_V}{\delta_V}|^2$$
this contains the direct amplitude!
corrections from the indirect contributions due to off-shellness

JG U

In fact, in most cases, **these contributions will totally dominate** the direct contributions due to the small couplings of the Higgs to light quarks.

To reduce the theoretical uncertainty, we **normalize the branching** ratio to the $h \rightarrow \gamma \gamma$ branching ratio, which also makes our prediction insensitive to the total Higgs width:

$$\frac{\Gamma(h \to V\gamma)}{\Gamma(h \to \gamma\gamma)} = \frac{8\pi\alpha^2(m_V)}{\alpha} \frac{Q_V^2 f_V^2}{m_V^2} \left(1 - \frac{m_V^2}{m_h^2}\right)^2 \left|1 - \kappa_q \Delta_V - \delta_V\right|^2$$

 \rightarrow only very weak sensitivity to the indirect contributions!

Assuming SM couplings of all particles, we find:

$$\begin{aligned} & \mathrm{BR}(h \to \rho^{0} \gamma) = (1.68 \pm 0.02_{f} \pm 0.08_{h \to \gamma \gamma}) \cdot 10^{-5} \\ & \mathrm{BR}(h \to \omega \gamma) = (1.48 \pm 0.03_{f} \pm 0.07_{h \to \gamma \gamma}) \cdot 10^{-6} \\ & \mathrm{BR}(h \to \phi \gamma) = (2.31 \pm 0.03_{f} \pm 0.11_{h \to \gamma \gamma}) \cdot 10^{-6} \\ & \mathrm{BR}(h \to J/\psi \gamma) = (2.95 \pm 0.07_{f} \pm 0.06_{\mathrm{direct}} \pm 0.14_{h \to \gamma \gamma}) \cdot 10^{-6} \\ & \mathrm{BR}(h \to \Upsilon(1S)\gamma) = \left(4.61 \pm 0.06_{f} ^{+1.75}_{-1.21\,\mathrm{direct}} \pm 0.22_{h \to \gamma \gamma}\right) \cdot 10^{-9} \\ & \mathrm{BR}(h \to \Upsilon(2S)\gamma) = \left(2.34 \pm 0.04_{f} ^{+0.75}_{-0.99\,\mathrm{direct}} \pm 0.11_{h \to \gamma \gamma}\right) \cdot 10^{-9} \\ & \mathrm{BR}(h \to \Upsilon(3S)\gamma) = \left(2.13 \pm 0.04_{f} ^{+0.75}_{-1.12\,\mathrm{direct}} \pm 0.10_{h \to \gamma \gamma}\right) \cdot 10^{-9} \end{aligned}$$

A general feature: $h \rightarrow V\gamma$ decays are rare.

Assuming SM couplings of all particles, we find:

$$BR(h \to \rho^{0}\gamma) = (1.68 \pm 0.02_{f} \pm 0.08_{h \to \gamma\gamma}) \cdot 10^{-5}$$

$$BR(h \to \omega\gamma) = (1.48 \pm 0.03_{f} \pm 0.07_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$BR(h \to \phi\gamma) = (2.31 \pm 0.03_{f} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$BR(h \to J/\psi\gamma) = (2.95 \pm 0.07_{f} \pm 0.06_{\text{direct}} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6}$$

$$BR(h \to \Upsilon(1S)\gamma) = \left(4.61 \pm 0.06_{f} + \frac{1.75}{-1.21}_{\text{direct}} \pm 0.22_{h \to \gamma\gamma}\right) \cdot 10^{-9}$$

$$BR(h \to \Upsilon(2S)\gamma) = \left(2.34 \pm 0.04_{f} + \frac{0.75}{-0.99}_{\text{direct}} \pm 0.11_{h \to \gamma\gamma}\right) \cdot 10^{-9}$$

$$BR(h \to \Upsilon(3S)\gamma) = \left(2.13 \pm 0.04_{f} + \frac{0.75}{-1.12}_{\text{direct}} \pm 0.10_{h \to \gamma\gamma}\right) \cdot 10^{-9}$$

A general feature: $h \rightarrow V\gamma$ decays are rare.

But: What is wrong with the Υ -channels?

Allowing deviations of the κ_q and no *CP*-odd couplings:

Ratio of BR for J/ψ

Usually, the indirect contributions are the dominant ones

Allowing deviations of the κ_q and no *CP*-odd couplings:

Ratio of BR for J/ψ

Ratio of BR for $\Upsilon(1S)$

Usually, the indirect contributions are the dominant ones, however for the Υ , the direct contribution is comparable, leading to a cancellation between the two.

 \Rightarrow This leads to a strong sensitivity to NP effects!

Possible future scenarios:

Blue: direct measurements of $h \to b\bar{b}$ constrain $\kappa_b^2 + \tilde{\kappa}_b^2$ Orange: measurements of $h \to \Upsilon\gamma$ constrain $(1 - \kappa_b)^2 + \tilde{\kappa}_b^2$

Possible future scenarios:

Blue: direct measurements of $h \to b\bar{b}$ constrain $\kappa_b^2 + \tilde{\kappa}_b^2$ Orange: measurements of $h \to \Upsilon\gamma$ constrain $(1 - \kappa_b)^2 + \tilde{\kappa}_b^2$

Possible future scenarios:

Blue: direct measurements of $h \rightarrow b\bar{b}$ constrain $\kappa_b^2 + \tilde{\kappa}_b^2$ Orange: measurements of $h \rightarrow \Upsilon\gamma$ constrain $(1 - \kappa_b)^2 + \tilde{\kappa}_b^2$

 \Rightarrow From the **overlap** one can find information on the *CP*-odd coupling, **even the sign** of the *CP*-even coupling!

Hadronic Higgs decays Weak radiative hadronic Higgs decays

Very rare, exclusive, hadronic decays in QCD factorization

For select mesons, literature exists on these modes.

[Isidori, Manohar, Trott (2014), Phys.Lett. B728 131-135]

[Gao (2014), Phys.Lett. B737 366-368] [Modak, Srivastava (2014), 1411.2210]

Higgs decay to a meson and a Z-boson

JGU

For select mesons, literature exists on these modes.

[Isidori, Manohar, Trott (2014), Phys.Lett. B728 131-135]

[Gao (2014), Phys.Lett. B737 366-368] [Modak, Srivastava (2014), 1411.2210]

There are three contributions:

JGU

For select mesons, literature exists on these modes.

[Isidori, Manohar, Trott (2014), Phys.Lett. B728 131-135]

[Gao (2014), Phys.Lett. B737 366-368] [Modak, Srivastava (2014), 1411.2210]

There are three contributions:

While the diagrams $h \to Z(\gamma^* \to V)$ are **loop-suppressed**, the photon is off-shell only by m_V^2 , **lifting** the **suppression**.

JGU

For select mesons, literature exists on these modes.

[Isidori, Manohar, Trott (2014), Phys.Lett. B728 131-135]

[Gao (2014), Phys.Lett. B737 366-368] [Modak, Srivastava (2014), 1411.2210]

There are three contributions:

While the diagrams $h \to Z(\gamma^* \to V)$ are **loop-suppressed**, the photon is off-shell only by m_V^2 , **lifting** the **suppression**.

The direct contributions are only important for heavy quarkonia.

Mode	SM Branching ratio $[10^{-6}]$				
$h \to \pi^0 Z$	(2.30	\pm	0.01_{f}	\pm	$0.09_{\Gamma})$
$h \to \eta Z$	(0.83	\pm	0.08_{f}	\pm	$0.03_{\Gamma})$
$h \to \eta' Z$	(1.24	\pm	0.12_{f}	\pm	$0.05_{\Gamma})$
$h \to \rho^0 Z$	(7.19	\pm	0.09_{f}	\pm	$0.28_{\Gamma})$
$h \rightarrow \omega Z$	(0.56)	\pm	0.01_{f}	\pm	$0.02_{\Gamma})$
$h \to \phi Z$	(2.42	\pm	0.05_{f}	\pm	$0.09_{\Gamma})$
$h \to J/\psi Z$	(2.30	\pm	0.06_{f}	\pm	$0.09_{\Gamma})$
$h \to \Upsilon(1S)Z$	(15.38	\pm	0.21_{f}	\pm	$0.60_{\Gamma})$
$h \to \Upsilon(2S)Z$	(7.50	\pm	0.14_{f}	\pm	$0.29_{\Gamma})$
$h \to \Upsilon(3S)Z$	(5.63)	\pm	0.10_{f}	\pm	$0.22_{\Gamma})$

Phenomenology

Idea: Use these decays to probe $\kappa_{\gamma Z}$ The bound on $\kappa_{\gamma Z}$ from CMS is:

$$\sqrt{|\kappa_{\gamma Z} - 2.395|^2 + |\tilde{\kappa}_{\gamma Z}|^2} < 7.2$$

[CMS (2013), Phys.Lett. B726 587-609]

Phenomenology

Idea: Use these decays to probe $\kappa_{\gamma Z}$ The bound on $\kappa_{\gamma Z}$ from CMS is:

$$\sqrt{|\kappa_{\gamma Z} - 2.395|^2 + |\tilde{\kappa}_{\gamma Z}|^2} < 7.2$$

[CMS (2013), Phys.Lett. B726 587-609]

JGU

From the decays $h \to \Upsilon(1S)Z$, we obtain:

Phenomenology

Idea: Use these decays to probe $\kappa_{\gamma Z}$ The bound on $\kappa_{\gamma Z}$ from CMS is:

$$\sqrt{|\kappa_{\gamma Z} - 2.395|^2 + |\tilde{\kappa}_{\gamma Z}|^2} < 7.2$$

[CMS (2013), Phys.Lett. B726 587-609]

JGU

From the decays $h \to \Upsilon(1S)Z$, we obtain:

The decays $h \to \Upsilon(1S)Z$ can serve as **complementary probes** of $\kappa_{\gamma Z}$

Very rare, exclusive, hadronic decays in QCD factorization

Conclusions

Very rare, exclusive, hadronic decays in QCD factorization

JG U

JG U

Power corrections are **suppressed** by the tiny scale ratio μ_{hadr}/μ_{EW} thanks to the **very high factorization scale**.

JGU

- Power corrections are **suppressed** by the tiny scale ratio μ_{hadr}/μ_{EW} thanks to the **very high factorization scale**.
- The renormalization group evolution of the hadronic parameters to the electroweak scale decreases the sensitivity of our predictions to hadronic input parameters.

JGU

- Power corrections are **suppressed** by the tiny scale ratio μ_{hadr}/μ_{EW} thanks to the **very high factorization scale**.
- The renormalization group evolution of the hadronic parameters to the electroweak scale decreases the sensitivity of our predictions to hadronic input parameters.
- Z- and W-decays probe the QCDF approach, Higgs decays can be used as probes of new physics. Dedicated experimental efforts are needed but are possible at future machines.

JG U

- Power corrections are **suppressed** by the tiny scale ratio μ_{hadr}/μ_{EW} thanks to the **very high factorization scale**.
- The renormalization group evolution of the hadronic parameters to the electroweak scale decreases the sensitivity of our predictions to hadronic input parameters.
- Z- and W-decays probe the QCDF approach, Higgs decays can be used as probes of new physics. Dedicated experimental efforts are needed but are possible at future machines.
- The decays $h \to V\gamma$ can probe **light-quark Yukawa couplings**. The decays $h \to MZ$ can be probes of $\kappa_{\gamma Z}$.

JGU

Power corrections are suppressed by the tiny scale ratio µ_{hadr}/µ_{EW} thanks to the verv high factorization scale.

Thank you for your attention!

- 2- and *w*-decays probe the QCD1 approach, **Higgs decays** can be used as probes of **new physics**. Dedicated experimental efforts are needed but are possible at future machines.
- The decays $h \to V\gamma$ can probe **light-quark Yukawa couplings**. The decays $h \to MZ$ can be probes of $\kappa_{\gamma Z}$.

Backup slides

Very rare, exclusive, hadronic decays in QCD factorization

Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks!

JGU
Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks!

JGU

Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks!

JGU

At LEP, $|a_b|$ and $|a_c|$ have been measured to 1%, using our predictions, $|a_s|$, $|a_d|$ and $|a_u|$ could be measured to $\sim 6\%$

Our analysis can straight-forwardly be generalized to the case of non-SM Z boson couplings to quarks!

At LEP, $|a_b|$ and $|a_c|$ have been measured to 1%, using our predictions, $|a_s|$, $|a_d|$ and $|a_u|$ could be measured to $\sim 6\%$

Introducing FCNC couplings allows the production of flavor off-diagonal mesons

Model independent predictions for flavor off-diagonal mesons:

Decay mode	Branching ratio	SM background
$Z^0 \to K^0 \gamma$	$\left[(7.70 \pm 0.83) v_{sd} ^2 + (0.01 \pm 0.01) a_{sd} ^2 \right] \cdot 10^{-8}$	$\frac{\lambda}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 2 \cdot 10^{-3}$
$Z^0 \to D^0 \gamma$	$\left[(5.30 {}^{+ 0.67}_{- 0.43}) v_{cu} ^2 + (0.62 {}^{+ 0.36}_{- 0.23}) a_{cu} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 2 \cdot 10^{-3}$
$Z^0 \to B^0 \gamma$	$\left[(2.08 {}^{+0.59}_{-0.41}) v_{bd} ^2 + (0.77 {}^{+0.38}_{-0.26}) a_{bd} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda^3}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 8 \cdot 10^{-5}$
$Z^0 \to B_s \gamma$	$\left[(2.64^{+0.82}_{-0.52}) v_{bs} ^2 + (0.87^{+0.51}_{-0.33}) a_{bs} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda^2}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 4 \cdot 10^{-4}$

JGU

Model independent predictions for flavor off-diagonal mesons:

Decay mode	Branching ratio	SM background
$Z^0 \to K^0 \gamma$	$\left[(7.70 \pm 0.83) v_{sd} ^2 + (0.01 \pm 0.01) a_{sd} ^2 \right] \cdot 10^{-8}$	$\frac{\lambda}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 2 \cdot 10^{-3}$
$Z^0 \to D^0 \gamma$	$\left[(5.30 {}^{+0.67}_{-0.43}) v_{cu} ^2 + (0.62 {}^{+0.36}_{-0.23}) a_{cu} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 2 \cdot 10^{-3}$
$Z^0 \to B^0 \gamma$	$\left[(2.08 {}^{+0.59}_{-0.41}) v_{bd} ^2 + (0.77 {}^{+0.38}_{-0.26}) a_{bd} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda^3}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 8 \cdot 10^{-5}$
$Z^0 \to B_s \gamma$	$\left[(2.64^{+0.82}_{-0.52}) v_{bs} ^2 + (0.87^{+0.51}_{-0.33}) a_{bs} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda^2}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 4 \cdot 10^{-4}$

FCNCs would induce tree-level neutral-meson mixing, strongly constrained:

$Re\left[(v_{sd}\pm a_{sd})^2 ight]$	$<2.9\cdot10^{-8}$	$\left Re \Big[(v_{sd})^2 - (a_{sd})^2 \Big] \right $	$< 3.0 \cdot 10^{-10}$
$\left {\rm Im} \Big[(v_{sd} \pm a_{sd})^2 \Big] \right $	$< 1.0 \cdot 10^{-10}$	$\left \left \operatorname{Im} \left[(v_{sd})^2 - (a_{sd})^2 \right] \right \right $	$< 4.3 \cdot 10^{-13}$
$\left (v_{cu}\pm a_{cu})^2\right $	$<2.2\cdot10^{-8}$	$ (v_{cu})^2 - (a_{cu})^2 $	$< 1.5\cdot 10^{-8}$
$\left (v_{bd}\pm a_{bd})^2\right $	$<4.3\cdot10^{-8}$	$ (v_{bd})^2 - (a_{bd})^2 $	$< 8.2\cdot 10^{-9}$
$(v_{bs} \pm a_{bs})^2$	$< 5.5\cdot 10^{-7}$	$(v_{bs})^2 - (a_{bs})^2$	$< 1.4\cdot 10^{-7}$

[Bona et al. (2007), JHEP 0803, 049] [Bertone et al. (2012), JHEP 1303, 089] [Carrasco et al. (2013), JHEP 1403, 016]

These bounds push our branching ratios down to $10^{-14},\,{\rm rendering}$ them unobservable.

The decays are challenging because of the small branching ratios and difficult reconstruction.

- The decays are **challenging** because of the **small branching ratios** and **difficult reconstruction**.
- At HL-LHC (with 3000 ${\rm fb}^{-1}$) one can hope for $\sim 10^{11}Z$'s, $\sim 5\cdot 10^{11}W$'s.

- The decays are challenging because of the small branching ratios and difficult reconstruction.
- At HL-LHC (with 3000 ${\rm fb}^{-1}$) one can hope for $\sim 10^{11}Z$'s, $\sim 5\cdot 10^{11}W$'s.
- The most promising modes for the Z seem $Z \to J/\psi\,\gamma$ and $Z \to \Upsilon(nS)\gamma$: Triggering on $\mu^+\mu^-$ we can expect $\mathcal{O}(100)$ events at HL-LHC.

- The decays are challenging because of the small branching ratios and difficult reconstruction.
- At HL-LHC (with 3000 ${\rm fb}^{-1}$) one can hope for $\sim 10^{11}Z$'s, $\sim 5\cdot 10^{11}W$'s.
- The most promising modes for the Z seem $Z \to J/\psi\,\gamma$ and $Z \to \Upsilon(nS)\gamma$: Triggering on $\mu^+\mu^-$ we can expect $\mathcal{O}(100)$ events at HL-LHC.
- The W decays seem harder, ideas exist exploiting the large $t\bar{t}$ cross-section at the LHC.

[Mangano, Melia (2015), Eur.Phys.J. C75 258]

JG U

- The decays are **challenging** because of the **small branching ratios** and **difficult reconstruction**.
- At HL-LHC (with 3000 ${\rm fb}^{-1}$) one can hope for $\sim 10^{11}Z$'s, $\sim 5\cdot 10^{11}W$'s.
- The most promising modes for the Z seem $Z \to J/\psi\,\gamma$ and $Z \to \Upsilon(nS)\gamma$: Triggering on $\mu^+\mu^-$ we can expect $\mathcal{O}(100)$ events at HL-LHC.
- The W decays seem harder, ideas exist exploiting the large $t\bar{t}$ cross-section at the LHC.

[Mangano, Melia (2015), Eur.Phys.J. C75 258]

JG U

• However: Future lepton machines like ILC or TLEP might produce $10^{12}Z$'s and 10^7W 's at the corresponding thresholds \rightarrow This enables an experimental program to test QCDF in a theoretically clean environment!

The analysis in the case for $W \to M\gamma$ is almost the same, only this time, an indirect diagram exists involving the local matrix element:

JGU

The analysis in the case for $W \to M\gamma$ is almost the same, only this time, an indirect diagram exists involving the local matrix element:

mode	Branching ratio	asym.	LO
$\pi^{\pm}\gamma$	$(4.00^{+0.06}_{-0.11} \mu \pm 0.01_f \pm 0.49_{a_2} \pm 0.66_{a_4}) \cdot 10^{-9}$	2.45	8.09
$\rho^{\pm}\gamma$	$(8.74^{+0.17}_{-0.26\ \mu} \pm 0.33_f \pm 1.02_{a_2} \pm 1.57_{a_4}) \cdot 10^{-9}$	6.48	15.12
$K^{\pm}\gamma$	$(3.25^{+0.05}_{-0.09} \ \mu \pm 0.03_f \pm 0.24_{a_1} \pm 0.38_{a_2} \pm 0.51_{a_4}) \cdot 10^{-10}$	1.88	6.38
$K^{*\pm}\gamma$	$ (4.78 + 0.09 + 0.00 + 0.28_f \pm 0.39_{a_1} \pm 0.66_{a_2} \pm 0.80_{a_4}) \cdot 10^{-10} $	3.18	8.47
$D_s\gamma$	$(3.66^{+0.02}_{-0.07 \ \mu} \pm 0.12_{ m CKM} \pm 0.13_{f} {}^{+1.47}_{-0.82 \ \sigma}) \cdot 10^{-8}$	0.98	8.59
$D^{\pm}\gamma$	$(1.38 + 0.01 - 0.02 \mu \pm 0.10_{\rm CKM} \pm 0.07_{f} + 0.50 - 0.30 \sigma) \cdot 10^{-9}$	0.32	3.42
$ B^{\pm}\gamma $	$(1.55^{+0.00}_{-0.03 \ \mu} \pm 0.37_{\rm CKM} \pm 0.15_{f}^{+0.68}_{-0.45 \ \sigma}) \cdot 10^{-12}$	0.09	6.44

The analysis in the case for $W \to M\gamma$ is almost the same, only this time, an indirect diagram exists involving the local matrix element:

JGU

mode	Branching ratio	asym.	LO
$\pi^{\pm}\gamma$	$(4.00^{+0.06}_{-0.11\ \mu} \pm 0.01_f \pm 0.49_{a_2} \pm 0.66_{a_4}) \cdot 10^{-9}$	2.45	8.09
$\rho^{\pm}\gamma$	$(8.74^{+0.17}_{-0.26\ \mu} \pm 0.33_f \pm 1.02_{a_2} \pm 1.57_{a_4}) \cdot 10^{-9}$	6.48	15.12
$ K^{\pm}\gamma $	$(3.25^{+0.05}_{-0.09} \ \mu \pm 0.03_f \pm 0.24_{a_1} \pm 0.38_{a_2} \pm 0.51_{a_4}) \cdot 10^{-10}$	1.88	6.38
$K^{*\pm}\gamma$	$(4.78^{+0.09}_{-0.14 \ \mu} \pm 0.28_f \pm 0.39_{a_1} \pm 0.66_{a_2} \pm 0.80_{a_4}) \cdot 10^{-10}$	3.18	8.47
$D_s \gamma$	$(3.66^{+0.02}_{-0.07 \ \mu} \pm 0.12_{\rm CKM} \pm 0.13_{f} {}^{+1.47}_{-0.82 \ \sigma}) \cdot 10^{-8}$	0.98	8.59
$D^{\pm}\gamma$	$(1.38 + 0.01 - 0.02 \mu \pm 0.10_{\rm CKM} \pm 0.07_{f} + 0.50 - 0.30 \sigma) \cdot 10^{-9}$	0.32	3.42
$B^{\pm}\gamma$	$(1.55^{+0.00}_{-0.03\ \mu} \pm 0.37_{\rm CKM} \pm 0.15_{f\ -0.45\ \sigma}^{+0.68}) \cdot 10^{-12}$	0.09	6.44

flavour off-diagonal mesons allowed

The analysis in the case for $W \to M\gamma$ is almost the same, only this time, an indirect diagram exists involving the local matrix element:

mode	Branching ratio	asym.	LO
$\pi^{\pm}\gamma$	$(4.00^{+0.06}_{-0.11\ \mu} \pm 0.01_f \pm 0.49_{a_2} \pm 0.66_{a_4}) \cdot 10^{-9}$	2.45	8.09
$\rho^{\pm}\gamma$	$(8.74^{+0.17}_{-0.26\ \mu} \pm 0.33_f \pm 1.02_{a_2} \pm 1.57_{a_4}) \cdot 10^{-9}$	6.48	15.12
$K^{\pm}\gamma$	$(3.25^{+0.05}_{-0.09} \ \mu \pm 0.03_f \pm 0.24_{a_1} \pm 0.38_{a_2} \pm 0.51_{a_4}) \cdot 10^{-10}$	1.88	6.38
$K^{*\pm}\gamma$	$(4.78 + 0.09 + 0.028_{f} \pm 0.39_{a_{1}} \pm 0.66_{a_{2}} \pm 0.80_{a_{4}}) \cdot 10^{-10}$	3.18	8.47
$D_s\gamma$	$(3.66^{+0.02}_{-0.07 \mu} \pm 0.12_{\rm CKM} \pm 0.13_{f} {}^{+1.47}_{-0.82 \sigma}) \cdot 10^{-8}$	0.98	8.59
$D^{\pm}\gamma$	$(1.38^{+0.01}_{-0.02} \mu \pm 0.10_{\rm CKM} \pm 0.07_{f} {}^{+0.50}_{-0.30} \sigma) \cdot 10^{-9}$	0.32	3.42
$B^{\pm}\gamma$	$(1.55 + 0.00 \mu \pm 0.37_{\rm CKM} \pm 0.15_{f} + 0.68 - 0.45 \sigma) \cdot 10^{-12}$	0.09	6.44

introduces uncertainties from CKM elements