AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY
 [GUIDO BELL]
 based on: GB, R. Rahn and J. Talbert, arXiv:1512.06100
 GB, R. Rahn and J. Talbert, work in progress
 UNIVERSITÄT SIEGEN

OUTLINE

SOFT-COLLINEAR EFFECTIVE THEORY

MOMENTUM SCALES
RESUMMATION BEYOND RG EQUATIONS

AUTOMATED RESUMMATIONS

NNLL INGREDIENTS
TWO-LOOP SOFT ANOMALOUS DIMENSION
RESULTS

OUTLINE

SOFT-COLLINEAR EFFECTIVE THEORY

MOMENTUM SCALES
RESUMMATION BEYOND RG EQUATIONS

AUTOMATED RESUMMATIONS

NNLL INGREDIENTS
TWO-LOOP SOFT ANOMALOUS DIMENSION
RESULTS

Higgs p_{T} spectrum

$$
m_{t} \simeq 175 \mathrm{GeV}
$$

$$
m_{H} \simeq 125 \mathrm{GeV}
$$

$$
p_{T} \simeq 0-200 \mathrm{GeV}
$$

$\Lambda_{Q C D} \simeq 0.5 \mathrm{GeV}$

Factorisation

For $\Lambda_{Q C D} \ll p_{T}, m_{H}, m_{t}$ the cross section factorises

$$
d \sigma \simeq \sum_{i, j} f_{i / p}\left(\Lambda_{Q C D}, \mu\right) \otimes f_{j / p}\left(\Lambda_{Q C D}, \mu\right) \otimes d \hat{\sigma}_{i j \rightarrow H X}\left(p_{T}, m_{H}, m_{t}, \mu\right)
$$

- universal parton-distribution functions $f_{i / p}$
- perturbative partonic cross section $d \hat{\sigma}_{i j \rightarrow H X}$

Factorisation scale μ separates short- and long-distance dynamics

- single-logarithmic evolution controlled by DGLAP equations

$$
\frac{d f_{i / p}(\mu)}{d \ln \mu}=\sum_{j} P_{i j}\left(\alpha_{s}\right) \otimes f_{j / p}(\mu)
$$

Small p_{T}

For $p_{T} \ll m_{H}, m_{t}$ the partonic cross section factorises further

$$
d \hat{\sigma} \simeq H\left(m_{H}, m_{t}, \mu\right) J_{1}\left(p_{T}, \mu\right) \otimes J_{2}\left(p_{T}, \mu\right) \otimes S\left(p_{T}, \mu\right)
$$

- hard function H
- jet (beam) functions J_{i}
- soft function S
perturbative double-logarithmic RG evolution
\Rightarrow Sudakov logarithms $\alpha_{s}^{n} \ln ^{2 n} \frac{m_{H}}{p_{T}}$

Soft-Collinear Effective Theory

Effective field theory for energetic massless particles

Soft-Collinear Effective Theory

Effective field theory for energetic massless particles
split into two energetic
collinear partons

Soft-Collinear Effective Theory

Effective field theory for energetic massless particles

Soft-Collinear Effective Theory

Effective field theory for energetic massless particles

\Rightarrow jet of collinear particles $\quad m_{J}^{2} \ll E_{J}^{2}$

$$
\text { soft large-angle radiation } \quad E_{S} \ll E_{J}
$$

SCET-1

Three-scale problem: $E_{s}^{2} \ll m_{J}^{2} \ll E_{J}^{2}$

$$
\begin{array}{r}
d \hat{\sigma} \simeq H(Q, \mu) J\left(m_{J}, \mu\right) \otimes S\left(m_{J}^{2} / Q, \mu\right) \\
\ln ^{2} \frac{Q^{2}}{m_{J}^{2}}=\frac{1}{2} \ln ^{2} \frac{Q^{2}}{\mu^{2}}-\ln ^{2} \frac{m_{J}^{2}}{\mu^{2}}+\frac{1}{2} \ln ^{2} \frac{m_{J}^{4} / Q^{2}}{\mu^{2}}
\end{array}
$$

Sudakov resummation with standard EFT techniques

$$
\begin{aligned}
& \frac{d H(Q, \mu)}{d \ln \mu}=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+4 \gamma_{H}\left(\alpha_{s}\right)\right] H(Q, \mu) \\
\Rightarrow & H(Q, \mu)=H\left(Q, \mu_{h}\right) U_{H}\left(\mu_{h}, \mu\right)
\end{aligned}
$$

SCET-2

Two-scale problem: $E_{s}^{2} \sim m_{J}^{2} \ll E_{J}^{2}$

$$
\begin{gathered}
d \hat{\sigma} \simeq H(Q, \mu) J\left(p_{T}, \mu\right) \otimes S\left(p_{T}, \mu\right) \\
\ln ^{2} \frac{Q^{2}}{p_{T}^{2}}=\ln ^{2} \frac{Q^{2}}{\mu^{2}}-\ln ^{2} \frac{p_{T}^{2}}{\mu^{2}}+?
\end{gathered}
$$

Jet and soft functions are not well-defined in dimensional regularisation

$$
k^{\mu}=k_{-} \frac{n^{\mu}}{2}+k_{+} \frac{\bar{n}^{\mu}}{2}+k_{\perp}^{\mu} \quad \Rightarrow \quad J \sim \int_{0}^{Q} \frac{d k_{+}}{k_{+}} \quad S \sim \int_{E_{s}}^{\infty} \frac{d k_{+}}{k_{+}}
$$

\Rightarrow in light-cone coordinates DR is attached to the transverse space $d^{d-2} k_{\perp}$

Collinear anomaly

Need additional regulator that distinguishes modes by their LC components

$$
\left.\begin{array}{rl}
& \int d^{4} k \delta\left(k^{2}\right) \theta\left(k^{0}\right) \Rightarrow \int d^{d} k\left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \\
\Rightarrow & S \sim+\frac{1}{\alpha}+\ln \frac{\nu}{p_{T}} \\
& J \sim-\frac{1}{\alpha}-\ln \frac{\nu}{Q}
\end{array}\right\} \ln \frac{Q}{p_{T}} \Rightarrow \ln ^{2} \frac{Q^{2}}{p_{T}^{2}}=\ln ^{2} \frac{Q^{2}}{\mu^{2}}-\ln ^{2} \frac{p_{T}^{2}}{\mu^{2}}-2 \ln \frac{p_{T}^{2}}{\mu^{2}} \ln \frac{Q^{2}}{p_{T}^{2}}, ~ l
$$

\Rightarrow induces rapidity logarithms that cannot be resummed with $R G$ techniques

Rapidity logarithms exponentiate (in position space)

$$
\mathcal{J}\left(x_{T}, \mu\right) \mathcal{S}\left(x_{T}, \mu\right)=\left(Q^{2} x_{T}^{2}\right)^{-F\left(x_{T}, \mu\right)} W\left(x_{T}, \mu\right)
$$

- anomaly exponent $F\left(x_{T}, \mu\right)$, remainder function $W\left(x_{T}, \mu\right)$

Applications

$e^{+} e^{-}$event-shape variables

- Thrust ($\mathrm{N}^{3} \mathrm{LL}$) [Becher, Schwartz 08]
- Heavy jet mass ($\mathrm{N}^{3} \mathrm{LL}$) [Chien, Schwartz 10]
- C-parameter ($\mathrm{N}^{3} \mathrm{LL}$) [Hoang, Kolodrubetz, Mateu, Stewart 14]
- Jet broadenings (NNLL) [Becher, GB 12]
- Angularities (NNLL)
[GB, Hornig, Lee, Talbert, in progress]
hadron collider observables
- Threshold Drell-Yan ($\mathrm{N}^{3} \mathrm{LL}$) [Becher, Neubert, Xu 07]
- $W / Z / H$ at large $p_{T}\left(\mathrm{~N}^{3} \mathrm{LL}\right)$ [Becher, GB, Lorentzen, Marti 13,14]
- Higgs at small p_{T} (NNLL)
[Becher, Neubert, Wilhelm 12]
- jet veto (NNLL)
[Becher et al 13; Stewart et al 13]
- N -jettiness (NNLL)
[Berger et al 10; Jouttenus et al 13]

Can we automate these calculations?

Applications

$e^{+} e^{-}$event-shape variables

- Thrust ($\mathrm{N}^{3} \mathrm{LL}$)
[Becher, Schwartz 08]
- Heavy jet mass ($\mathrm{N}^{3} \mathrm{LL}$)
[Chien, Schwartz 10]
- C-parameter ($\mathrm{N}^{3} \mathrm{LL}$)
[Hoang, Kolodrubetz, Mateu, Stewart 14]
- Jet broadenings (NNLL)
[Becher, GB 12]
- Angularities (NNLL)
[GB, Hornig, Lee, Talbert, in progress]
hadron collider observables
- Threshold Drell-Yan (N3LL) [Becher, Neubert, Xu 07]
- $W / Z / H$ at large $p_{T}\left(\mathrm{~N}^{3} \mathrm{LL}\right)$
[Becher, GB, Lorentzen, Marti 13,14]
- Higgs at small p_{T} (NNLL)
[Becher, Neubert, Wilhelm 12]
- jet veto (NNLL)
[Becher et al 13; Stewart et al 13]
- N -jettiness (NNLL)
[Berger et al 10; Jouttenus et al 13]

Automated resummation codes: CAESAR (NLL)

OUTLINE

SOFT-COLLINEAR EFFECTIVE THEORY
 MOMENTUM SCALES
 RESUMMATION BEYOND RG EQUATIONS

AUTOMATED RESUMMATIONS

NNLL INGREDIENTS
TWO-LOOP SOFT ANOMALOUS DIMENSION
RESULTS

Resummation ingredients

	$\Gamma_{\text {cusp }}$	$\gamma_{H},\left\{\begin{array}{l}\gamma_{J}, \gamma_{S} \\ F\end{array}\right.$	$c_{H},\left\{\begin{array}{l}c_{J}, c_{S} \\ W\end{array}\right.$
LL	1-loop	-	-
NLL	2-loop	1-loop	tree
NNLL	3-loop	2-loop	1-loop
$\mathrm{N}^{3} \mathrm{LL}$	4-loop	3-loop	2-loop

- $\Gamma_{\text {cusp }}$ is known to 3 -loops
- γ_{H} is known to 3 -loops ("dipole formula")
- 1-loop c_{H} from fixed-order QCD calculations
- 1-loop c_{J}, c_{S}, W are rather straight-forward
- $\gamma_{J}=-\gamma_{H}-\gamma_{S}$ fixed by RG invariance
\Rightarrow the non-trivial NNLL ingredient is 2-loop γ_{S} / F !

Generic dijet soft functions

Dijet soft functions are of the generic form

$$
S(\tau, \mu)=\frac{1}{N_{c}} \sum_{X} \mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right) \operatorname{Tr}\langle 0| S_{\bar{n}}^{\dagger} S_{n}|X\rangle\langle X| S_{n}^{\dagger} S_{\bar{n}}|0\rangle
$$

- light-like Wilson lines $S_{n}, S_{\bar{n}}$
- generic measurement function $\mathcal{M}\left(\tau ;\left\{k_{i}\right\}\right)$
- relevant for $e^{+} e^{-} \rightarrow 2$ jets, $e^{-} p \rightarrow 1$ jet, $p p \rightarrow 0$ jets
- but provides 2-loop γ_{S} / 2-loop F also for $p p \rightarrow 2$ jets

Structure of divergences is independent of the observable
\Rightarrow isolate singularities with universal phase-space parametrisation
\Rightarrow compute observable-dependent integrations numerically

NLO calculation

NLO calculation

Real emission

$$
S_{1} \sim \int d^{d} k\left(\frac{\nu}{k_{+}+k_{-}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \mathcal{M}(\tau ; k)|\mathcal{A}(k)|^{2}
$$

- $n \leftrightarrow \bar{n}$ symmetrised version of phase-space regulator
- $|\mathcal{A}(k)|^{2} \sim \frac{1}{k_{+} k_{-}}$

Generic measurement function in Laplace space

$$
\mathcal{M}(\tau ; k)=\exp \left(-\tau k_{T} y^{n / 2} f(y, \theta)\right) \quad y=\frac{k_{+}}{k_{-}} \in\{0,1\}
$$

- k_{T} dependence fixed on dimensional grounds
- θ is angle between \vec{k}_{\perp} and measurement vector \vec{v}_{\perp}
- $f(y, \theta)$ finite and non-zero in collinear limit $y \rightarrow 0$

Measurement function

$$
\mathcal{M}(\tau ; k)=\exp \left(-\tau k_{T} y^{n / 2} f(y, \theta)\right)
$$

Observable	n	$f(y, \theta)$
Thrust	1	1
Angularities	$1-A$	1
Recoil-free broadening	0	$1 / 2$
C-parameter	1	$1 /(1+y)$
Threshold Drell-Yan	-1	$1+y$
W@large p_{T}	-1	$1+y-2 \sqrt{y} \cos \theta$
$e^{+} e^{-}$transverse thrust	1	$\frac{1}{s \sqrt{y}}\left(\sqrt{\left(c \cos \theta+\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right) \frac{s}{2}\right)^{2}+1-\cos ^{2} \theta}\right.$
$\left.-\left\|c \cos \theta+\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right) \frac{s}{2}\right\|\right)$		

NLO master formula

After performing the observable-independent integrations one has

$$
S_{1} \sim \Gamma(-2 \varepsilon-\alpha) \int_{0}^{1} d y \frac{y^{-1+n \varepsilon+\alpha / 2}}{(1+y)^{\alpha}} \int_{-1}^{1} d \cos \theta \sin ^{-1-2 \varepsilon} \theta[f(y, \theta)]^{2 \varepsilon+\alpha}
$$

- singularities from $k_{T} \rightarrow 0$ and $y \rightarrow 0$ are factorised
- additional regulator is needed only for $n=0(\rightarrow$ SCET-2 $)$

Isolate singularities with standard subtraction techniques

$$
\int_{0}^{1} d x x^{-1+n \varepsilon} f(x)=\int_{0}^{1} d x x^{-1+n \varepsilon}[\underbrace{f(x)-f(0)}_{\text {finite }}+\underbrace{f(0)}_{1 / \varepsilon}]
$$

NNLO calculation

NNLO calculation

Double real emission

$$
S_{2}^{R R} \sim \int d^{d} k\left(\frac{\nu}{k_{+}+k_{-}}\right)^{\alpha} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \int d^{d} I\left(\frac{\nu}{I_{+}+I_{-}}\right)^{\alpha} \delta\left(l^{2}\right) \theta\left(l^{0}\right) \mathcal{M}(\tau ; k, I)|\mathcal{A}(k, l)|^{2}
$$

- non-trivial matrix element

$$
|\mathcal{A}(k, l)|^{2} \sim C_{F} T_{F} n_{f} \frac{2 k \cdot l\left(k_{-}+I_{-}\right)\left(k_{+}+l_{+}\right)-\left(k_{-} I_{+}-k_{+} I_{-}\right)^{2}}{\left(k_{-}+I_{-}\right)^{2}\left(k_{+}+I_{+}\right)^{2}(2 k \cdot l)^{2}}+C_{F} C_{A} \ldots+C_{F}^{2} \ldots
$$

\Rightarrow complex singularity structure with overlapping divergences

Phase-space parametrisation

$$
\begin{array}{lll}
p_{-}=k_{-}+I_{-} & a=\sqrt{\frac{k_{-} I_{+}}{k_{+} I_{-}}} & \\
p_{+}=k_{+}+I_{+} & b=\sqrt{\frac{k_{-} k_{+}}{I_{-} I_{+}}}=\frac{k_{T}}{l_{T}} & \Rightarrow \\
p_{T} p_{-} \\
& & y=\frac{p_{+}}{p_{-}}
\end{array}
$$

Measurement function

Generic form

$$
\mathcal{M}(\tau ; k, l)=\exp \left(-\tau p_{T} y^{n / 2} F\left(a, b, y, \theta_{k}, \theta_{l}, \theta_{k l}\right)\right) \quad a, b, y \in\{0,1\}
$$

- p_{T} dependence fixed on dimensional grounds
three angles in transverse plane: $\theta_{k} \varangle\left(\vec{k}_{\perp}, \vec{v}_{\perp}\right), \theta_{l} \varangle\left(\vec{l}_{\perp}, \vec{v}_{\perp}\right), \theta_{k l} \varangle\left(\vec{k}_{\perp}, \vec{l}_{\perp}\right)$
- $y^{n / 2}$ as in NLO $\Rightarrow F\left(a, b, y, \theta_{k}, \theta_{l}, \theta_{k l}\right)$ finite and non-zero for $y \rightarrow 0$

Constraints from infrared-collinear safety

- soft limit $\left(k^{\mu} \rightarrow 0\right): \quad F\left(a, 0, y, \theta_{k}, \theta_{l}, \theta_{k l}\right)=f\left(y, \theta_{l}\right)$
- collinear limit $\left(k^{\mu} \propto I^{\mu}\right): F\left(1, b, y, \theta_{l}, \theta_{l}, \theta_{k l}\right)=f\left(y, \theta_{l}\right)$

Strategy

Disentangle overlapping singularities with sector decomposition algorithm [Binoth, Heinrich 00]

- SecDec-3.0
simple interface to NNLO master formula
Cuba library for numerical integrations
currently limited to SCET-1 observables (additional rapidity regulator in development)
- in-house C++ code
designed for dijet soft functions (SCET-1 and SCET-2)
Cuba library for numerical integrations
- analytic approach
compact integral representations for γ_{S} and F

Soft anomalous dimension

RG equation in Laplace space

$$
\frac{d S(\tau, \mu)}{d \ln \mu}=-\frac{1}{n}\left[4 \Gamma_{\text {cusp }}\left(\alpha_{S}\right) \ln (\mu \bar{\tau})-2 \gamma^{S}\left(\alpha_{S}\right)\right] S(\tau, \mu)
$$

Two-loop solution with $L=\ln (\mu \bar{\tau})$

$$
\begin{aligned}
S(\tau, \mu)=1+\left(\frac{\alpha_{s}}{4 \pi}\right)\{ & \left.-\frac{2 \Gamma_{0}}{n} L^{2}+\frac{2 \gamma_{0}^{S}}{n} L+c_{1}^{S}\right\}+\left(\frac{\alpha_{S}}{4 \pi}\right)^{2}\left\{\frac{2 \Gamma_{0}^{2}}{n^{2}} L^{4}-4 \Gamma_{0}\left(\frac{\gamma_{0}^{S}}{n^{2}}+\frac{\beta_{0}}{3 n}\right) L^{3}\right. \\
& \left.-2\left(\frac{\Gamma_{1}}{n}-\frac{\left(\gamma_{0}^{S}\right)^{2}}{n^{2}}-\frac{\beta_{0} \gamma_{0}^{S}}{n}+\frac{\Gamma_{0} c_{1}^{S}}{n}\right) L^{2}+2\left(\frac{\gamma_{1}^{S}}{n}+\frac{\gamma_{0}^{S} c_{1}^{S}}{n}+\beta_{0} c_{1}^{S}\right) L+c_{2}^{S}\right\}
\end{aligned}
$$

Assuming non-abelian exponentiation, the results will be of the form

$$
\gamma_{1}^{S}=\gamma_{1}^{C_{A}} C_{F} C_{A}+\gamma_{1}^{n_{f}} C_{F} T_{F} n_{f}
$$

$$
c_{2}^{S}=c_{2}^{c_{A}} C_{F} C_{A}+c_{2}^{n_{f}} C_{F} T_{F} n_{f}+\frac{1}{2}\left(c_{1}^{s}\right)^{2}
$$

SCET-1 results

Observable	$\gamma_{1}^{C_{A}}$	$\gamma_{1}^{n_{f}}$	$c_{2}^{C_{A}}$	$c_{2}^{n_{f}}$
Thrust [Kelley et al, Monni et al 11]	15.7945 (15.7945)	3.90981 (3.90981)	-56.4992 (-56.4990)	43.3902 (43.3905)
C-parameter [Hoang et al 14]	15.7947 (15.7945)	3.90980 (3.90981)	-57.9754 (-58.16 ± 0.26)	43.8179 Threshold Drell-Yan [Belitsky 98]
15.7946				
(15.7945)	3.90982 (3.90981)	6.81281 W@large p_{T} [Becher et al 12]	15.7947 (15.7945)	3.90981 (3.90981)
Transverse thrust	-158.278	19.3955	-2.65034	(-2.65010)

- upper numbers: SecDec in a few hours on a single 8-core machine
- lower numbers: analytic (black) or fit to fixed-order code (gray)

Angularities

$e^{+} e^{-}$event-shape that interpolates between thrust $(A=0)$ and broadening ($A=1$)

\Rightarrow last missing ingredient for NNLL resummation
[GB, Hornig, Lee, Talbert, in progress]

Hemisphere masses

Double differential event-shape variable

$$
\frac{d^{2} \sigma}{d M_{L} d M_{R}} \Rightarrow \frac{d^{2} \sigma}{d \tau_{L} d \tau_{R}} \quad \tau=\tau_{L}+\tau_{R} \quad u=\frac{\tau_{L}}{\tau_{L}+\tau_{R}}
$$

\Rightarrow perfect agreement with analytic result

Anomaly exponent

RG equation in Laplace space

$$
\frac{d F(\tau, \mu)}{d \ln \mu}=2 \Gamma_{\mathrm{cusp}}\left(\alpha_{s}\right)
$$

Two-loop solution with $L=\ln (\mu \bar{\tau})$

$$
F(\tau, \mu)=\left(\frac{\alpha_{s}}{4 \pi}\right)\left\{2 \Gamma_{0} L+d_{1}\right\}+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left\{2 \Gamma_{0} \beta_{0} L^{2}+2\left(\Gamma_{1}+\beta_{0} d_{1}\right) L+d_{2}\right\}
$$

Results will be presented in the form

$$
d_{2}=d_{2}^{C_{A}} C_{F} C_{A}+d_{2}^{n_{f}} C_{F} T_{F} n_{f}
$$

SCET-2 results

Observable	$d_{2}^{C_{A}}$	$d_{2}^{n_{f}}$
Recoil-free broadening	7.03595	-11.5393
[Becher, GB 12]	(7.03605)	(-11.5393)
p_{T} resummation	-3.73389	-8.29610
[Becher, Neubert 10]	(-3.73167)	(-8.29630)
E_{T} resummation	15.9804	-18.7370
	$(-)$	$(-)$
Transverse thrust	208.098	-37.1766
[Becher et al 15]	(208.0 ± 0.1)	(-37.191 ± 0.006)

- do not confirm QCD result for E_{T} resummation

$$
B_{g}^{(2)}=\frac{1}{16}\left(d_{2}+2 \gamma_{1}^{g}+\beta_{0} e_{1}^{g}\right)=\left\{\begin{array}{cl}
33.0081 & \text { (our result) } \\
-5.1 \pm 1.6 & \text { [Grazzini et al 14] }
\end{array}\right.
$$

Conclusions

SCET can be used to resum Sudakov logarithms for collider observables

- resummation beyond RG techniques

First step towards automated NNLL resummations

- automated setup to compute two-loop soft anomalous dimensions
- applies to SCET-1 and SCET-2 observables
- next steps: relax non-abelian exponentiation assumption,
more than two jet directions, massive particles

Backup slides

Momentum modes

SCET-1

$$
k_{s}^{2} \ll k_{c}^{2}
$$

SCET-2

$k_{s}^{2} \sim k_{c}^{2}$

In SCET-2 one cannot distinguish soft from collinear mode when radiated into jet direction
\Rightarrow need additional regulator that distinguishes modes by their rapidities

