NNLO Differential Calculation from Soft-Collinear Effective Theory: WHH production at hadron colliders

Jian Wang in collaboration with Hai Tao Li, arXiv:1607.06382 Eltville, 2016.09.14

Precise calculation in QCD

- LHC is a hadron collider. QCD radiations exist widespread.
- Kinematic distributions are different at higher orders.
- The description of jets is more accurate.
- The cross sections can be increased or decreased.
- The theoretical uncertainties can be reduced.
- NP may appear just as enhancement of some observables. It is necessary to understand the background precisely.

The art of precise calculation

IR divergences

Two-loop structure was predicted by Catani in '98.

- And the complete results were obtained later. [Aybat, Dixon, Sterman '06, Becher, Neubert '09, Gardi and Magnea '09]
- Extension to massive amplitudes was achieved soon. [Ferroglia, Neubert, Pecjak, Yang '09]

However, only knowing poles of $1/\varepsilon^n$ is not enough to make the real corrections finite. We need to know the behavior of cross section near the poles.

The idea of subtraction and cutoff

Near pole regions

Study the cross section near soft or collinear regions. $\sim x^{-1+\varepsilon}$

Near pole	Resummation scheme	Soft	Collinear	Extension to colored FS
$x = 1 - \frac{M^2}{s}$	Threshold resummation			
$x = \frac{\sum m_j^2}{s}$	N-jettiness resummation			
$x = \frac{q_T^2}{s}$	Transverse momentum resummation			

Catani, Grazzini, Phys. Rev. Lett. 98, 222002 (2007) Boughezal, Focke, Liu, Petriello, Phys.Rev. Lett. 115, 062002 (2015)

Higgs mass and width

Higgs spin, CP and couplings

CP-even spin 0 hypothesis strongly preferred. No significant deviations from SM couplings. Data up to now are consistent with a SM Higgs boson.

<u>Higgs potential</u>

$$V(\phi) = -m^{2}|\phi|^{2} + \lambda|\phi|^{4}$$

$$= \left(\frac{0}{\frac{\nu + H(x)}{\sqrt{2}}}\right) \Rightarrow V(H) = \frac{1}{2}M_{H}^{2}H^{2} + \frac{1}{2}\frac{M_{H}^{2}}{\nu}H^{3} + \frac{1}{8}\frac{M_{H}^{2}}{\nu^{2}}H^{4}$$

Higgs pair production

Different channels

 $\sigma(W^{\pm}HH) \times BR(W^{\pm} \to \ell^{\pm}\nu_{\ell}, HH \to b\bar{b}b\bar{b}) = 0.042 \text{fb},$ $\sigma(ZHH) \times BR(Z \to \nu\bar{\nu}, HH \to b\bar{b}b\bar{b}) = 0.028 \text{fb},$ $\sigma(gg \to HH) \times BR(HH \to \gamma\gamma b\bar{b}) = 0.053 \text{fb},$

The different channels are complementary to each other and deserve discussion on the same footing.

Qing-Hong Cao, Yandong Liu, Bin Yan, arXiv:1511.03311

$$\frac{d\sigma_{3}}{d\Phi_{3}dy}\Big|_{\text{NNLO}} = \underbrace{\int_{0}^{q_{T}^{\text{cut}}} dq_{T} \frac{d\sigma_{3}}{d\Phi_{3}dydq_{T}}}_{\text{SCET}} + \underbrace{\int_{q_{T}^{\text{cut}}}^{q_{T}^{\text{max}}} dq_{T} \frac{d\sigma_{3+j}}{d\Phi_{3}dydq_{T}}}_{\text{NLO calculations}} \\ \frac{d\sigma}{dq_{T}^{2}dy} = \frac{1}{2s} \sum_{i,j=q\bar{q}g} \int_{\zeta_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{\zeta_{2}}^{1} \frac{dz_{2}}{z_{2}} \int d\Phi_{3}H_{q\bar{q}}(M,\mu) f_{i/N_{1}}(\zeta_{1}/z_{1},\mu) f_{j/N_{2}}(\zeta_{1}/z_{2},\mu) C_{q\bar{q}\leftarrow ij}(z_{1},z_{2},q_{T},M,\mu) + \mathcal{O}(\frac{q_{T}^{2}}{M^{2}}) \\ \text{Becher, Neubert, Wilhelm, `11} \\ \text{Becher, Neubert, Wilhelm, `11} \\ \text{Becher, Neubert, Xu, `07} \\ C_{F} \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left[C_{F}H_{F} + C_{A}H_{A} + T_{F}n_{f}H_{f}\right] \\ H_{F} = \frac{L^{4}}{2} - 3L^{3} + \left(\frac{25}{2} - \frac{\pi^{2}}{6}\right)L^{2} + \left(-\frac{45}{2} - \frac{3\pi^{2}}{2} + 24\varsigma_{3}\right)L + \frac{255}{8} + \frac{7\pi^{2}}{2} - \frac{83\pi^{4}}{360} - 30\varsigma_{3}, \\ \frac{d}{d\ln\mu}C_{V}(-M^{2},\mu) = \left[\Gamma_{\text{cusp}}^{F}(\alpha_{s})\ln\frac{-M^{2}}{\mu^{2}} + 2\gamma^{q}(\alpha_{s})\right]C_{V}(\cdot \frac{H_{A}}{10} - \frac{11}{9}L^{3} + \left(-\frac{213}{28} + \frac{\pi^{2}}{3}\right)L^{2} + \left(-\frac{45}{54} + \frac{11\pi^{2}}{9} - 26\varsigma_{3}\right)L \\ - \frac{51157}{648} - \frac{33\pi^{2}}{108} + \frac{11\pi^{4}}{45} + \frac{313}{9}\varsigma_{3}, \\ C_{V}(-M^{2},\mu) = 1 + \frac{C_{F}\alpha_{s}(\mu)}{4\pi}\left(-L^{2} + 3L - 8 + \frac{\pi^{2}}{6}\right) \qquad H_{I} = -\frac{4}{9}L^{3} + \frac{38}{9}L^{2} + \left(-\frac{418}{27} - \frac{4\pi^{2}}{9}\right)L + \frac{4085}{162} + \frac{23\pi^{2}}{27} + \frac{4}{9}\varsigma_{3}, \quad (B.2)$$

NNLO: Gehrmann, Luebbert, and Yang Phys.Rev.Lett.109.242003; JHEP, 06(2014)155

Numerical results

Cross sections after cuts

	$\sigma~[fb]$	boosted region	jet veto	
	LO	$0.271^{+3.0\%}_{-3.5\%}$	$6.30^{+7.1\%}_{-7.7\%}$	
	NLO	$0.360^{+0.5\%}_{-0.1\%}$	$3.76^{+6.3\%}_{-5.7\%}$	
	NNLO	$0.382^{+0.7\%}_{-0.5\%}$	$3.04^{+2.7\%}_{-2.2\%}$	
	$K^{\rm NLO/LO}$	1.33	0.60	
1	$K^{\rm NNLO/LO}$	1.41	0.48	
K	NNLO/NLO	1.06	0.81	
$p_T(W) > 200 \text{ GeV}, y(W) < 2.4,$			$p_T(\text{jet}) > 30 \text{ G}$	
$p_T(h) > 200 \text{ GeV}, y(h) < 2.4$			$ \eta(\text{jet}) < 3.5$	
			R = 0.7	

Conclusions

- It is essential to measure the Higgs self-couplings after its discovery.
- This can be achieved by studying the Higgs pair production at colliders.
- We present the QCD NNLO prediction on the total cross section as well as the various kinematic distributions of this process based on q_T subtraction.
- The NNLO effects reduce the scale uncertainties significantly, and are sizable in the large transverse momentum region or jet-vetoed cross section.
- These theoretical results can be utilized in future experimental analysis.

Thank You!

