

Transverse momentum distributions and jet cross sections at NNLO precision Eltville Workshop, 14.9.2016

Thomas Gehrmann, Universität Zürich

Standard Model processes at the LHC

Benchmark processes: $2 \rightarrow 2$ reactions

Large cross sections

- Multiple-differential measurements
 - Di-jet production
 - Z+jet,W+jet
 - ▶ H+jet
- Detailed understanding of dynamics
 - Disentangle production processes
 - Probe parton distributions
- Transverse momentum distribution
 - Continuous transition from hard to soft region
 - Fixed order versus resummation

Z transverse momentum distribution

Transverse momentum requires partonic recoil

Mismatch of orders in perturbation theory

- NNLO for inclusive Z is only NLO for p_T -distribution
- Z+jet and Z p_T distribution closely related
- NLO fails to describe measurements in norm and shape

NNLO calculations

- Require three principal ingredients
 - two-loop matrix elements
 - explicit infrared poles from loop integral
 - known for all massless $2 \rightarrow 2$ processes
 - one-loop matrix elements
 - explicit infrared poles from loop integral
 - and implicit poles from single real emission
 - usually known from NLO calculations
 - tree-level matrix elements
 - implicit poles from double real emission
 - known from LO calculations
- Infrared poles cancel in the sum
- Challenge: combine contributions into parton-level generator
 - Need a method to extract implicit infrared poles

NNLO Infrared Subtraction

Structure of NNLO cross section

$$d\sigma_{NNLO} = \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^{R} - \mathrm{d}\sigma_{NNLO}^{S} \right) + \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{MF,1} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^{S} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\sigma_{NNLO}^{MF,2} \right)$$

- Real and virtual contributions
- Subtraction term for double real radiation
- Subtraction term for one-loop single real radiation
- Mass factorization terms
- Each line finite and free of poles
 - \rightarrow numerical implementation

NNLO calculations for LHC processes

- Exclusive calculations, full final state information
 - Can apply experimental selection cuts
- ▶ $pp \rightarrow V, pp \rightarrow H, pp \rightarrow VH, pp \rightarrow \chi\chi$ (C.Anastasiou, K. Melnikov, F. Petriello; S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, F. Tramontano)
- ▶ $pp \rightarrow Vg, pp \rightarrow Z^0Z^0, pp \rightarrow W^+W^-$ (F. Cascioli, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, M. Wiesemann, E. Weihs, TG)
- $pp \rightarrow top \ quark \ pairs \ (M. Czakon, D. Heymes, A. Mitov)$
- ▶ $pp \rightarrow W^{\pm}+j$ (R. Boughezal, C. Focke, X. Liu, F. Petriello)
- ▶ $pp \rightarrow H+2j$ (VBF) (M. Cacciari, F. Dreyer, A. Karlberg, G. Salam, G. Zanderighi)
- ▶ $pp \rightarrow Z^{0+j}$ (A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, T. Morgan, TG)
- ▶ pp → H+j (R. Boughezal, F. Caola, K. Melnikov, F. Petriello, M. Schulze; X. Chen, E.W.N. Glover, M. Jaquier, TG)
- ▶ $pp \rightarrow 2j$ (J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, TG)

Real radiation at NNLO: methods

N-Jettiness subtraction

(R. Boughezal, X. Liu, F. Petriello; J. Gaunt, M. Stahlhofen, F. Tackmann, J.R. Walsh)

- ▶ $pp \rightarrow H+j$ (R. Boughezal, C. Focke, W. Giele, X. Liu, F. Petriello)
- ▶ pp \rightarrow W+j (R. Boughezal, C. Focke, X. Liu, F. Petriello)
- ▶ $pp \rightarrow Z+j$ (R. Boughezal, J. Campbell, K. Ellis, C. Focke, W. Giele, X. Liu, F. Petriello)
- N-Jettiness variable: distance from N-parton configuration (I. Stewart, F. Tackmann, W. Waalewijn)

$$\mathcal{T}_N(\Phi_M) = \sum_{k=1}^M \min_i \left\{ \frac{2q_i \cdot p_k}{Q_i} \right\}$$

- Universal behaviour at small T_N from SCET resummation
- Implementation: N+I jet calculation at NLO with cut-off on T_N

Antenna subtraction

- Subtraction terms constructed from antenna functions
 - > Antenna function contains all emission between two partons

Phase space factorization

 $d\Phi_{m+1}(p_1,\ldots,p_{m+1};q) = d\Phi_m(p_1,\ldots,\tilde{p}_I,\tilde{p}_K,\ldots,p_{m+1};q) \cdot d\Phi_{X_{ijk}}(p_i,p_j,p_k;\tilde{p}_I+\tilde{p}_K)$

Integrated subtraction term

$$\mathcal{X}_{ijk} = \int d\Phi_{X_{ijk}} X_{ijk}$$

Antenna functions

Colour-ordered pair of hard partons (radiators)

- Hard quark-antiquark pair
- Hard quark-gluon pair
- Hard gluon-gluon pair
- ▶ NLO (D. Kosower; J. Campbell, M. Cullen, E.W.N. Glover)
 - Three-parton antenna: one unresolved parton
- NNLO (A. Gehrmann-De Ridder, E.W.N. Glover, TG)
 - Four-parton antenna: two unresolved partons
 - Three-parton antenna at one loop
 - Products of NLO antenna functions
 - Soft antenna function

Antenna subtraction: incoming hadrons

Three antenna types (A. Daleo, D. Maitre, TG; J. Currie, N. Glover, S. Wells)

NNLOJET code

NNLO parton level event generator

- Based on antenna subtraction
- Provides infrastructure
 - Process management
 - Phase space, histogram routines
 - Validation and testing
 - Parallel computing (MPI) support for warm-up and production
 - ApplGrid/fastNLO interfaces in development
- Processes implemented at NNLO
 - Z+(0,1)jet, H+(0,1)jet, W+0jet
 - DIS-2j, LHC-2j (ongoing)

NNLOJET project: X. Chen, J. Cruz-Martinez, J, Currie, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss, T. Morgan, J. Niehues, J. Pires, M. Sutton, D. Walker, TG

Z+jet at NNLO

Calculation based on antenna subtraction

- In-depth validation of subsequent results (MCFM: R.Boughezal et al.)
- Uncovering various issues, finally in agreement

Using calculation for Z+jet inclusively on partons

- No jet requirement
- Including leptonic Z-decay
- Lower cut on transverse momentum
- Compute fiducial cross sections

	ATLAS	CMS
leading lepton	$ \eta_{\ell_1} < 2.4$	$ \eta_{\ell_1} < 2.1$
	$p_T^{\ell_1} > 20 \ {\rm GeV}$	$p_T^{\ell_1} > 25 \mathrm{GeV}$
sub-leading lepton	$ \eta_{\ell_2} < 2.4$	$ \eta_{\ell_2} < 2.4$
	$p_T^{\ell_2} > 20~{\rm GeV}$	$p_{T,2}^{\ell_2} > 10 \text{ GeV}$

NNLO effects

- > Around 5% corrections, modify shape of p_T distribution
- Normalization of data not described correctly (both CMS/ATLAS)

Compute inclusive fiducial cross section at NNLO

Corresponds to Z+0j calculation

Consider normalized p_T distribution

Double differential distributions

- ▶ (p_T,m_{ll}), (p_T,y)
- Good agreement for normalized distributions
- Revisit ingredients
 - Luminosity
 - Parton distributions

► Low p_T

- measurements to I GeV
- Challenge for NNLO calculation: stability
- NNLO reliable to around 10 GeV

Related observable (purely from lepton directions)

$$\phi^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right)\sin(\theta_{\eta}^*) \approx \frac{p_T^Z}{2m_{ll}}$$

Z ϕ^* -distribution at NNLO

• Leptonic variable ϕ^* allows higher resolution

- Observe breakdown of fixed order similar to p_T -distribution
- Eagerly awaiting matching to resummation

Higgs+jet at NNLO

Calculation based on antenna subtraction

- Agreement (0.4%) with residue-subtraction (F. Caola, K. Melnikov, M. Schulze)
- Validation against Njettiness ongoing (R. Boughezal, C. Focke, X. Liu, F. Petriello)

ATT AC

CMG

Fiducal cross sections

	ALLAS	OND
leading photon	$ \eta_{\gamma_1} < 2.37$	$ \eta_{\gamma_1} < 2.5$
	$p_T^{\gamma_1} > 0.35 m_H$	$p_T^{\gamma_1} > 0.33 m_H$
sub-leading photon	$ \eta_{\gamma_2} < 2.37$	$ \eta_{\gamma_2} < 2.5$
	$p_T^{\gamma_2} > 0.25 m_H$	$p_T^{\gamma_2} > 0.25 m_H$
photon isolation	$R_{\gamma} = 0.4$	$R_{\gamma} = 0.4$
	$\sum_i E_{Ti} < 14 \mathrm{GeV}$	$\sum_{i} E_{Ti} < 10 \text{ GeV}$
anti- k_T jets	R = 0.4	R = 0.5
	$ \eta_j < 4.4$	$ \eta_j < 2.5$
	$p_T^j > 30 \mathrm{GeV}$	$p_T^j > 25 \mathrm{GeV}$

Consider normalization inclusive fiducal cross section
Input to HXSWG Yellow Report 4

Higgs p_T distribution at NNLO

Normalized results in good agreement with 8TeV data

Prepare for precision studies at higher energy

X. Chen, J. Cruz-Martinez, E.W.N. Glover, M. Jaquier, TG

Higgs p_T distribution at NNLO

► EFT description of Higgs-gluon coupling breaks down at large transverse momenta NNI OLET PR → H + ≥ 0 iet mu=125 GeV √s = 131

m_H=125 GeV √s = 13 TeV $p p \rightarrow H + \ge 0$ jet NNLOJET 10⁻¹ Need finite mass corrections $p_{\rm Y}^{\rm Y}$ > 15 GeV, $|\eta_{\rm V}|$ < 2.5 NNLO EFT⊗M NNLO EFT⊕M $p_{1}^{+1} > 1/3 \cdot m_{H}, p_{2}^{+2} > 1/4 \cdot m_{H}$ NNLO EFT PDF4LHC15 (NNLO) Only known at LO so far 10⁻² $\mu_{\rm B} = \mu_{\rm F} = (1/4, 1/2, 1) \cdot (m_{\rm H}^2 + p_{\rm TH}^2)^{1/2}$ (1/a_{tot}) da/dp^{ty} [1/GeV] 0 6 m_H=125 GeV √s = 13 TeV NNLOJET pp → H + ≥0 jet 10⁻³ ATLAS Data NNLO EFT⊗M NLO EFT⊗M 10⁰ LO M $p_{Y}^{Y} > 20 \text{ GeV}$ da/dpY^v [fb/GeV] 10. $p_{1}^{+1} > 0.35 \cdot m_{H}, p_{2}^{+2} > 0.25 \cdot m_{H}$ PDF4LHC15 (NLO and NNLO) $\mu_{\text{B}} = \mu_{\text{F}} = (1/4, 1/2, 1) \cdot (m_{\text{H}}^2 + p_{\text{TH}}^2)^{1/2}$ 10⁻⁵ 10-2 ratio to NNLO 3 1.4 2 1.2 1 K factor 1 0 0.8 Latio to NLO 0.9 0.7 0.5 0.6 0.4 EFT⊗M/ EFT EFT⊗M/EFT⊕M FFT⊕M/ FFT 0.2 50 100 150 200 0 0 100 200 300 400 500 p^{¥Ŷ} [GeV] p^{YY} [GeV]

Jet cross sections at hadron colliders

CMS results: single jet inclusive

- uncertainty on NLO prediction larger than spread from partons
- need improved theory for precise extraction of parton distributions from jets

Jet cross sections at NNLO

NNLO corrections to di-jet production in DIS

- Recently completed (J. Currie, J. Niehues, TG)
- Implemented in NNLOJET
- Substantial NNLO effects
- Uncovered infrared-sensitive interplay of H1 event selection
 - Combination of jet-pT and di-jet mass restricts
 LO/NLO phase space
- Will become input to PDF fits
 - Require APPLGrid/FastNLO

NNLO corrections to di-jets at hadron colliders ongoing (J. Currie, E.W.N. Glover, J. Pires)

Jet cross sections in DIS

New HI measurement at low Q^2 (preliminary)

NNLO with NNPDF3.0

Conclusions and outlook

NNLO corrections to precision observables at LHC

- Various methods have been applied successfully
- Healthy competition between groups

• Current frontier: $2 \rightarrow 2$ QCD processes

- Substantial number of calculations completed in the past two years
- More results coming (require in part new two-loop amplitudes)

Precision phenomenology starting

- Parton distributions from multiple-differential measurements
- Transverse momentum distributions
- Indirect new physics searches