Resummation for jet processes

Thomas Becher
 University of Bern

PRL 116 (2016) and 1605.02737
with Matthias Neubert, Dingyu Shao and Lorena Rothen

Effective Field Theories for Collider Physics, Flavor Phenomena and Electroweak Symmetry Breaking
Sept. 12-15, 2016, Burg Crass, Eltville

Long history of resummation of large logarithms in high-energy processes

- Sudakov '56
- Yennie Frautschi Suura theory ‘61
- Collins Soper Sterman (CSS) ‘84
but despite modern EFT methods such as SCET, there are basic problems where the structure of higher-order logarithms is not known.

Consider the simplest collider-physics problem involving large logarithms.

Arises in many situation, in particular in all exclusive jet cross sections

Many more examples

- jet vetoes (includes unrestricted radiation near the beam pipe)
- gaps between jets
- jet substructure
- isolated photons (veto on radiation near photon)
- event shapes such as the light-jet mass and narrow jet broadening

Such observables are called non-global, since they are insensitive to radiation inside certain regions of phase space.

Non-global observąbles

\rightarrow large logs $\alpha_{s}{ }^{\mathrm{n}} \operatorname{In}^{\mathrm{n}}\left(E_{\text {out }} / E_{\text {in }}\right) \sim \alpha_{\mathrm{s}}{ }^{\mathrm{n}} \operatorname{In}^{\mathrm{n}}(\beta)$

Non-global logarithms

Large logarithms $\alpha_{s}{ }^{n} \ln { }^{m}(\beta)$ in non-global observables do not exponentiate Dasgupta and Salam '02.

Leading logarithms at large N_{c} can be obtained from non-linear integral equation

$$
\partial_{\hat{L}} G_{k l}(\hat{L})=\int \frac{d \Omega\left(n_{j}\right)}{4 \pi} W_{k l}^{j}\left[\Theta_{\mathrm{in}}^{n \bar{n}}(j) G_{k j}(\hat{L}) G_{j l}(\hat{L})-G_{k l}(\hat{L})\right]
$$

$\hat{L} \sim N_{c} \alpha_{s} \ln \beta$

$$
W_{k l}^{j}=\frac{n_{k} \cdot n_{l}}{n_{k} \cdot n_{j} n_{l} \cdot n_{j}} \text { dipole radiator }
$$

LL resummation

- The leading logarithms arise from configurations in which the emitted gluons are strongly ordered

$$
E_{1} \gg E_{2} \gg E_{3} \gg \ldots \gg E_{m}
$$

- Multi-gluon emission amplitudes become extremely simple in this limit, especially at large N_{c}

$$
\left.\left|\mathcal{M}_{a b}^{1-m}\right|^{2}=\left|\left\langle p_{1} \cdots p_{m}\right| Y_{a}^{\dagger} Y_{b}\right| 0\right\rangle\left.\right|^{2}=N_{c}^{m} g^{2 m} \sum_{\text {perms of } 1 \cdots m} \frac{\left(p_{a} \cdot p_{b}\right)}{\left(p_{a} \cdot p_{1}\right)\left(p_{1} \cdot p_{2}\right) \cdots\left(p_{m} \cdot p_{b}\right)}
$$

- Using their structure Banfi, Marchesini, Smye '02 derived an integral equation for resummation of leading logs at large N_{c} : BMS equation.

Non-global logarithms

A lot of recent work on these types of logarithms

- Resummation of leading logs beyond large N_{c} Weigert '03, Hatta, Ueda '13 + Hagiwara '15; Caron-Huot '15.
- Caron-Huot's functional RG has a close relation to our results
- Fixed-order results: 2 loops for $S\left(\omega_{L}, \omega_{R}\right)$. Kelley, Schwartz, Schabinger and Zhu '11; Hornig, Lee, Stewart, Walsh and Zuberi '11; with jet-cone Kelley, Schwartz, Schabinger and Zhu '11; von Manteuffel, Schabinger and Zhu '13, leading non-global log up to 5 loops by solving BMS equation Schwartz, Zhu '14, 5 loops and arbitrary N_{c} Delenda, Khelifa-Kerfa '15
- Approximate resummation of such logs, based on resummation for observables with n soft subjets. Larkoski, Moult and Neill '15

A systematic factorization of non-global observables was missing.

"Globalization"

Alternative SCET approach to observables with NGLs based on resummation for substructure. Larkoski, Moult, Neill '15

- Divide jet cross section into contributions from n sub-jets. Idea is to lower the hard scale in the NGLs by resolving the subjets.

- Resum global logarithms in subjet observables: "Dressed gluons".
- At leading-log level, this maps into iterative solution of BMS equation (talk by Ian Moult at LHC-ESI workshop)

Factorization for NGLs

Basic physics is soft radiation off energetic

Wilson line along direction of each hard parton inside the jet.

$$
\boldsymbol{S}_{i}\left(n_{i}\right)=\mathbf{P} \exp \left(i g_{s} \int_{0}^{\infty} d s n_{i} \cdot A_{s}^{a}\left(s n_{i}\right) \boldsymbol{T}_{i}^{a}\right)
$$

Wilson line and eikonal interaction

Consider one-gluon matrix element of Wilson line

$$
\begin{aligned}
&\langle k, \lambda, b| \boldsymbol{S}_{i}|0\rangle=i g_{s} \boldsymbol{T}^{a} \int_{0}^{\infty} d s\langle k, \lambda, b| n_{i} \cdot A^{a}\left(s n_{i}\right)|0\rangle+\mathcal{O}\left(g_{s}^{2}\right) \\
&=i g_{s} \boldsymbol{T}^{a} \int_{0}^{\infty} d s e^{i s n_{i} \cdot k}\langle k, \lambda, b| n_{i} \cdot A_{\mu}^{a}(0)|0\rangle \\
&=\left.i g_{s} \boldsymbol{T}^{b} n_{i} \cdot \varepsilon(k, \lambda) \frac{e^{i s n_{i} \cdot k}}{i n_{i} \cdot k}\right|_{0} ^{\infty} \begin{array}{c}
\text { need small imaginary } \\
\text { part n } \cdot k \equiv n \cdot k+i \varepsilon
\end{array} \\
&=-g_{s} \boldsymbol{T}^{b} \frac{n_{i} \cdot \varepsilon(k, \lambda)}{n_{i} \cdot k}=-g_{s} \boldsymbol{T}^{b} \frac{p_{i} \cdot \varepsilon(k, \lambda)}{p_{i} \cdot k} \\
& \text { eikonal interaction }
\end{aligned}
$$

Soft emissions in process with m energetic particles are obtained from the matrix elements of the operator

$$
\boldsymbol{S}_{1}\left(n_{1}\right) \boldsymbol{S}_{2}\left(n_{2}\right) \ldots \boldsymbol{S}_{m}\left(n_{m}\right)\left|\mathcal{M}_{m}(\{\underline{p}\})\right\rangle
$$

soft Wilson lines along the directions of the energetic particles / jets (color matrices)
soft particles can be inside or outside

hard scattering amplitude with m particles (vector in color space)
energetic partons must be inside

For a jet of several (nearly) collinear energetic particles, one can combine

$$
\boldsymbol{S}_{1}(n) \boldsymbol{S}_{2}(n)=\mathbf{P} \exp \left(i g_{s} \int_{0}^{\infty} d s n \cdot A_{s}^{a}(s n)\left(\boldsymbol{T}_{1}^{a}+\boldsymbol{T}_{2}^{a}\right)\right)
$$

into a single Wilson line with the total color charge.
For non-global observables one cannot combine the soft Wilson lines \rightarrow complicated structure of logs!

- For a wide-angle jet, the energetic particles are not collinear.
- For a narrow-angle jets (see later), we find that smallangle soft radiation plays an important role. Resolves directions of individual energetic partons!

Factorization theorem

TB, Neubert, Rothen, Shao '15 '16, see also Caron-Huot '15

Hard function.
m hard partons along fixed directions $\left\{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}\right\}$

$$
\sigma(\beta)=\sum_{m=2}^{\infty}\left\langle\mathcal{H}_{m}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \mu)\right\rangle
$$

color trace

Soft function with m Wilson lines
integration over the m directions

First all-order factorization theorem for non-global observable. Achieves scale separation!

Comments

- Infinitely many operators S_{m}, mix under RG
- Also for narrow-cone jets, the same type of structure is relevant TB, Neubert, Rothen, Shao '15 '16

$$
\mathcal{H}_{m} \otimes \mathcal{S}_{m} \quad \longrightarrow \quad \mathcal{J}_{m} \otimes \mathcal{U}_{m}
$$

collinear

"coft"
soft+collinear

- Check: Have computed all ingredients for cone cross section at NNLO. Obtain full logarithmic structure at this order.

$$
\begin{aligned}
\frac{\sigma(\beta, \delta)}{\sigma_{0}}=1 & +\frac{\alpha_{s}}{2 \pi} A(\beta, \delta)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} B(\beta, \delta)+\ldots \\
A(\beta, \delta)=C_{F} & {\left[-8 \ln \delta \ln \beta-1+6 \ln 2-6 \ln \delta-6 \delta^{2}+\left(\frac{9}{2}-6 \ln 2\right) \delta^{4}+4 \mathrm{Li}_{2}\left(\delta^{2}\right)-4 \mathrm{Li}_{2}\left(-\delta^{2}\right)\right] } \\
B(\beta, \delta)=C_{F}^{2} & B_{F}+C_{F} C_{A} B_{A}+C_{F} T_{F} n_{f} B_{f} \\
B_{A}= & \frac{4}{3}\left[11 \ln \delta-\frac{\pi^{2}}{2}+3 \operatorname{Li}_{2}\left(\delta^{4}\right)\right] \ln ^{2} \beta+\frac{4}{3}\left[11 \ln 2 \delta-\frac{67 \ln \delta}{3}+\frac{4 \delta^{4} \ln \delta}{\left(1-\delta^{4}\right)^{2}}+\frac{1}{1-\delta^{4}}\right. \\
& +36 \ln \delta \ln ^{2}\left(1-\delta^{2}\right)-12 \ln \delta \ln ^{2}\left(1+\delta^{2}\right)+22 \ln \delta \ln \left(1-\delta^{2}\right)-5 \pi^{2} \ln \left(1-\delta^{2}\right) \\
& +22 \ln \delta \ln \left(1+\delta^{2}\right)-\pi^{2} \ln \left(1+\delta^{2}\right)-4 \ln ^{3}\left(1+\delta^{2}\right)+33 \operatorname{Li}_{2}\left(-\delta^{2}\right)+22 \operatorname{Li}_{2}\left(\delta^{2}\right) \\
& +48 \ln \delta \operatorname{Li}_{2}\left(-\delta^{2}\right)-12 \ln \left(1-\delta^{2}\right) \operatorname{Li}_{2}\left(-\delta^{2}\right)-36 \ln \left(1+\delta^{2}\right) \operatorname{Li}_{2}\left(-\delta^{2}\right) \\
& +12 \ln 2 \operatorname{Li}_{2}\left(-\delta^{2}\right)+24 \ln \delta \operatorname{Li}_{2}\left(\delta^{2}\right)+24 \ln \left(1-\delta^{2}\right) \operatorname{Li}_{2}\left(\delta^{2}\right)+12 \ln 2 \operatorname{Li}_{2}\left(\delta^{2}\right) \\
& +12 \ln \left(1-\delta^{4}\right) \operatorname{Li}_{2}\left(1-\delta^{2}\right)-6 \operatorname{Li}_{3}\left(1-\delta^{4}\right)+24 \operatorname{Li}_{3}\left(1-\delta^{2}\right)-36 \operatorname{Li}_{3}\left(-\delta^{2}\right) \\
& \left.-36 \operatorname{Li}_{3}\left(\delta^{2}\right)+24 \operatorname{Li}_{3}\left(\frac{\delta^{2}}{1+\delta^{2}}\right)-12 \zeta_{3}-\frac{11 \pi^{2}}{12}-\frac{1}{2}-\pi^{2} \ln 2-\frac{3}{8} M_{A}^{[1]}(\delta)\right] \ln \beta \\
& +c_{2}^{A}(\delta),
\end{aligned}
$$

Numerical check against Event2

- Works: agreement for small β.
- Reproduce all logs, not only the leading ones!

Narrow-angle jets

Soft emissions from a narrow jet

For a narrow jet $\delta \rightarrow 0$ in direction n one would expect that one could combine

$$
\boldsymbol{S}_{1}\left(n_{1}\right) \boldsymbol{S}_{2}\left(n_{2}\right) \approx \mathbf{P} \exp \left(i g_{s} \int_{0}^{\infty} d s n \cdot A_{s}^{a}(s n)\left(\boldsymbol{T}_{1}^{a}+\boldsymbol{T}_{2}^{a}\right)\right)
$$

since $n_{1} \approx n_{2} \approx n$.
Doing so, one ends up with a single Wilson line per jet and a simple form of the soft radiation.

- Works for global observables such as thrust, broadening, ...

Soft emissions from a narrow jet

Consider the emission of single soft a gluon from energetic particles with momenta p_{i} inside a narrow jet:

$$
\sum_{i} Q_{i} \frac{p_{i} \cdot \varepsilon}{p_{i} \cdot k}=Q_{\mathrm{tot}} \frac{n \cdot \varepsilon}{n \cdot k}+\ldots
$$

Approximation: $p_{i}^{\mu} \approx E_{i} n^{\mu}$
This approximation breaks down when the soft emission has a small angle, i.e. when $k^{\mu} \approx \omega n^{\mu}$!

Small region of phase space, but it turns out that it gives a leading contribution to jet rates!

Momentum modes for jet processes

TB, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287

	Region	Energy	Angle	Inv. Mass
	Hard	Q	1	Q
	Collinear	Q	δ	Q
	Soft	β Q	1	β Q
new	Coft	βQ	δ	$\beta \delta Q$

Full jet cross section is recovered after adding the contributions from all regions ("method of regions")

- Additional coft mode has very low characteristic scale $\beta \delta \mathbf{Q}$! Jets are less perturbative than they seem!
- Effective field theory has additional "coft" degree of freedom.

Momentum modes again (for experts)

Split momenta into light-cone components

$$
p^{\mu}=p_{+} \frac{n^{\mu}}{2}+p_{-} \frac{\bar{n}^{\mu}}{2}+p_{\perp}^{\mu}
$$

Scaling of the momentum components ($\beta \sim \delta^{2}$)

$$
\begin{aligned}
& \left(p_{+}, p_{-}, p_{\perp}\right) \\
\text { collinear: } & p_{c} \sim Q\left(1, \delta^{2}, \delta\right) \\
\text { soft: } & p_{s} \sim Q(\beta, \beta, \beta) \\
\text { coft: } & p_{t} \sim \beta Q\left(1, \delta^{2}, \delta\right)
\end{aligned}
$$

Note: every component of coft mode is smaller than the corresponding collinear one. Different than SCET $_{1}$, SCET $_{\|}$, SCET $_{1.5}$, SCET $_{n}$, SCET $_{+}, \ldots$

Method of regions expansion

To isolate the different contributions, one expands the amplitudes as well as the phase-space constraints in each momentum region.

- Generic soft mode has $O(1)$ angle: after expansion, it is always outside the jet.
- Collinear mode has large energy $E \gg \beta Q$. Can never go outside the jet.
- Coft mode can be inside or outside, but its contribution to the momentum inside the jet is negligible.

Expansion is performed on the integrand level: the full result is obtained after combining the contributions from the different regions.

Factorization for two-jet cross section

TB, Neubert, Rothen, Shao, arXiv:1508.06645

Laplace space $\tau \leftrightarrow \beta$ \downarrow
$\widetilde{\sigma}(\tau)=\sigma_{0} H(Q) \widetilde{S}(Q \tau)$
color trace integration over angles

Jet functions with m partons at fixed direction

Checks against wide-angle result and fixed-order event generator.

All-order resummation

$$
\sigma(\beta)=\sum_{m=2}^{\infty}\left\langle\mathcal{H}_{m}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{S}_{m}(\{\underline{n}\}, Q \beta, \mu)\right\rangle,
$$

High-E physics
Wilson coefficients

Low-E physics EFT Operator

- Renormalization of hard Wilson coefficients

$$
\mathcal{H}_{m}(\{\underline{n}\}, Q, \delta, \epsilon)=\sum_{l=2}^{m} \mathcal{H}_{l}(\{\underline{n}\}, Q, \delta, \mu) \boldsymbol{Z}_{l m}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu)
$$

- Same Z-factor must render S_{m} finite!
- Associated anomalous dimension $\boldsymbol{\Gamma}^{H}$

$$
\frac{d}{d \ln \mu} \boldsymbol{Z}_{k m}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu)=\sum_{l=k}^{m} \boldsymbol{Z}_{k l}^{H}(\{\underline{n}\}, Q, \delta, \epsilon, \mu) \hat{\otimes} \boldsymbol{\Gamma}_{l m}^{H}(\{\underline{n}\}, Q, \delta, \mu)
$$

Resummation by RG evolution

Wilson coefficients fulfill renormalization group (RG) equations

$$
\frac{d}{d \ln \mu} \boldsymbol{\mathcal { H }}_{m}(Q, \mu)=-\sum_{l=2}^{m} \mathcal{H}_{l}(Q, \mu) \boldsymbol{\Gamma}_{l m}^{H}(Q, \mu)
$$

1. Compute \mathcal{H}_{m} at a characteristic high scale $\mu_{h} \sim Q$
2. Evolve \mathcal{H}_{m} to the scale of low energy physics $\mu_{l} \sim Q \beta$

Avoids large logarithms $\alpha_{s}{ }^{n} \ln ^{n}(\beta)$ of scale ratios which can spoil convergence of
 perturbation theory.

RG = Parton Shower

- Ingredients for LL

$$
\begin{aligned}
& \mathcal{H}_{2}(\mu=Q)=\sigma_{0} \\
& \mathcal{H}_{m}(\mu=Q)=0 \text { for } m>2 \\
& \mathcal{S}_{m}(\mu=\beta Q)=1
\end{aligned}
$$

$$
\boldsymbol{\Gamma}^{(1)}=\left(\begin{array}{ccccc}
\boldsymbol{V}_{2} & \boldsymbol{R}_{2} & 0 & 0 & \ldots \\
0 & \boldsymbol{V}_{3} & \boldsymbol{R}_{3} & 0 & \ldots \\
0 & 0 & \boldsymbol{V}_{4} & \boldsymbol{R}_{4} & \ldots \\
0 & 0 & 0 & \boldsymbol{V}_{5} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- RG

$$
\frac{d}{d t} \mathcal{H}_{m}(t)=\mathcal{H}_{m}(t) \boldsymbol{V}_{m}+\mathcal{H}_{m-1}(t) \boldsymbol{R}_{m-1} . \quad t=\int_{\alpha(\mu)}^{\alpha(Q)} \frac{d \alpha}{\beta(\alpha)} \frac{\alpha}{4 \pi}
$$

- Equivalent to parton shower equation

$$
\mathcal{H}_{m}(t)=\mathcal{H}_{m}\left(t_{1}\right) e^{\left(t-t_{1}\right) V_{n}}+\int_{t_{1}}^{t} d t^{\prime} \mathcal{H}_{m-1}\left(t^{\prime}\right) \boldsymbol{R}_{m-1} e^{\left(t-t^{\prime}\right) \boldsymbol{V}_{n}}
$$

- Equivalent to the dipole shower used by Dasgupta and Salam '02.
- For higher-log accuracy we will need to include corrections to $\mathcal{H}_{\mathrm{m}}, \boldsymbol{S}_{\mathrm{m}}, \boldsymbol{\Gamma}$ mn into the shower.

Conclusion and Outlook

- Have obtained factorization formulae for non-global observables. Key features
- Multi-Wilson line structure of soft radiation
- Resummation of NGLs from RG evolution
- Are developing MC formalism for higher-log resummation
- Have applied formalism to hemisphere soft function and light-jet mass TB, Pecjak, Shao, in preparation
- factorization theorems have same general structure as the ones for jet cross sections
- Applications ...
- Interplay with Glauber gluons? Superleading logs?

Extra slides

Hemisphere soft function

- Most past studies of NGLs were performed for hemisphere soft function

$$
S\left(\omega_{L}, \omega_{R}\right)=\frac{1}{N_{c}} \sum_{X} \operatorname{Tr}\langle 0| S(\bar{n}) S^{\dagger}(n)|X\rangle\langle X| S(n) S^{\dagger}(\bar{n})|0\rangle \delta\left(\omega_{R}-n \cdot P_{R}\right) \delta\left(\omega_{L}-\bar{n} \cdot P_{L}\right)
$$

- Leading logs are related to the ones arising in light-jet mass event shape
- Factorization formula for $\omega_{L}<\omega_{R}$

$$
\begin{gathered}
S\left(\omega_{L}, \omega_{R}\right)=\sum_{m=0}^{\infty}\left\langle\mathcal{H}_{m}^{S}\left(\{\underline{n}\}, \omega_{R}\right) \otimes \mathcal{S}_{m+1}\left(\{n, \underline{n}\}, \omega_{L}\right)\right\rangle \\
\text { mode with } p_{\mu} \sim \omega_{R} \quad \text { mode with } p_{\mu} \sim \omega_{L}
\end{gathered}
$$

Factorization theorem for left-jet mass

- Heavy jet mass is global, light jet mass nonglobal

$$
\begin{aligned}
\text { heavy jet mass: } \quad \rho_{h} & =\frac{1}{Q^{2}} \max \left(M_{L}^{2}, M_{R}^{2}\right) \\
\text { light jet mass: } \rho_{\ell} & =\frac{1}{Q^{2}} \min \left(M_{L}^{2}, M_{R}^{2}\right)
\end{aligned}
$$

- Relation to left-jet mass ρ_{L}

$$
\frac{d \sigma}{d \rho_{\ell}}=2 \frac{d \sigma}{d \rho_{L}}-\left.\frac{d \sigma}{d \rho_{h}}\right|_{\rho_{L}=\rho_{h}=\rho_{\ell}}
$$

- Factorization formula

$$
\frac{d \sigma}{d M_{L}^{2}}=\sum_{i=q, \bar{q}, g} \int_{0}^{\infty} d \omega_{R} J_{i}\left(M_{L}^{2}-Q \omega_{L}\right) \sum_{m=1}^{\infty}\left\langle\mathcal{H}_{m}^{i}(\{\underline{n}\}, Q) \otimes \boldsymbol{\mathcal { S }}_{m}\left(\{n, \underline{n}\}, \omega_{L}\right)\right\rangle
$$

Jet substructure: m_{\jmath} in $p p \rightarrow Z+j$

Challenges and contaminations

- Grooming can mitigate these problems
- mMDT also eliminates NGLs in m_{J}
- Analytical NLL Dasgupta, Fregoso, Marzani, Salam
'13, Larkoski, Marzani, Soyez,Thaler '14

NNLL $+O\left(\alpha_{s}^{2}\right)$ for jet mass

Frye, Larkoski, Schwartz, Yan'16

Based on factorization

