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_ong history of resummation of large logarithms in
Nigh-energy processes

e Sudakov '56

e Yennie Frautschi Suura theory ‘61

o (Collins Soper Sterman (CSS) ‘84

but despite modern EFT methods such as SCET,
there are basic problems where the structure of
higher-order logarithms is not known.




Consider the simplest collider-physics problem
involving large logarithms.

Two regions:

outside:
small energy ‘
% @

\ A -

inside: large energ



Arises in many situation, in particular in all
exclusive jet cross sections

veto on
additional jets
. o

=




Many more examples

* jet vetoes (includes unrestricted radiation near
the beam pipe)

® (gaps between jets
e jet substructure
e isolated photons (veto on radiation near photon)

e cvent shapes such as the light-jet mass and
narrow jet broadening

Such observables are called non-global, since they are
INnsensitive to radiation inside certain regions of phase
space.



Non-global observables

veto:
ot <BQ « Q ‘
L ‘
‘\ A =

unrestricted Ein ~ Q

L oan na

— large logs os" In"(Eout/ Ein) ~ as" IN"(6)



Large logarithms os" In™(B) in non-global observables
do not exponentiate Dasgupta and Salam "02.

Leading logarithms at large N¢ can be obtained from
non-linear integral equation

. dQn:) . . . .
0,Gu(E) = [ 58w [0 Gy () Gin(E) — Gua(D)
/ f Banfi, Marchesini, Smye ‘02
L~N.a;Inpg wi = —"%"" _ dipole radiator

Nk =My N - Ty
7



L L resummation

* The leading logarithms arise from configurations in
which the emitted gluons are strongly ordered

Ei1>»> Eo>» Ez>» ... » En

* Multi-gluon emission amplitudes become extremely
simple in this limit, especially at large N

ML=y - p YTV O)]F = N2 D
Map™ "= [pr - pm [YaY2] 0) e 9 2 (Pa - 1) (p1-p2) -+ (P - D)

perms of 1---m

* Using their structure Banfi, Marchesini, Smye '02
derived an integral equation for resummation of
leading logs at large N.: BMS equation.



Non-global logarithms

A lot of recent work on these types of logarithms

 Resummation of leading logs beyond large N, Weigert ‘03, Hatta,
Ueda '13 + Hagiwara '15; Caron-Huot '15.

e Caron-Huot’s functional RG has a close relation to our results

o Fixed-order results: 2 loops for S(w,wR). Kelley, Schwartz,
Schabinger and Zhu '11; Hornig, Lee, Stewart, Walsh and Zuberi
'11; with jet-cone Kelley, Schwartz, Schabinger and Zhu ‘11; von
Manteuffel, Schabinger and Zhu "13, leading non-global log up to
5 loops by solving BMS equation Schwartz, Zhu "14, 5 loops and
arbitrary N, Delenda, Khelifa-Kerfa ‘15

o Approximate resummation of such logs, based on resummation for
observables with n soft subjets. Larkoski, Moult and Neill “15

A systematic factorization of non-global observables was missing.



“Globalization”

Alternative SCET approach to observables with NGLs based on
resummation for substructure. Larkoski, Moult, Neill ‘15

e Divide Jet cross section into contributions from n sub-jets.
|dea is to lower the hard scale in the NGLs by resolving the
subjets.

‘) f\:%:é 2 “‘1;,

e Resum global logarithms in subjet observables: Dressed
gluons”.

e At leading-log level, this maps into iterative solution of BMS
equation (talk by lan Moult at LHC-ESI workshop)
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Factorization for NGLs



Basic physics Is soft radiation off energetic
partons inside |et.

Wilson line along direction of each hard parton
inside the jet.

Si(n;) = Pexp <ig5/0 dsn; - A% (sn;) Tf)
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Wilson line and elkonal interaction

Consider one-gluon matrix element of Wilson line

(e, A b| S |0) = ig. T* / ds (k. X, bln; - A%(s1;)|0) + O(g2)
0

=19, T / ds e F (kX bln; - A7(0)]0)
0

need small imaginary
isng -k | o patn-ksn-k+ie

o b, €
=19s T"n; - (k, \) p—"
0
_ T n; - e(k, \) _ _gspri - e(k, \)

eikonal interaction



Soft emissions In process with m energetic particles are
obtained from the matrix elements of the operator

S1(n1) S2(n2) - .. Sm(nm)|Mm(ip}))

soft Wilson lines along the directions hard scattering amplitude
of the energetic particles / jets with m particles
(color matrices) (vector in color space)

soft particles can be inside or outside  energetic partons must be inside



For a jet of several (nearly) collinear energetic particles, one
can combine

S1(n) Se(n) = Pexp (igs / dsn - A%(sn) (T} + T;))
0
iInto a single Wilson line with the total color charge.

For non-global observables one cannot combine the soft
Wilson lines = complicated structure of logs!

e For a wide-angle jet, the energetic particles are not
collinear.

e For a narrow-angle jets (see later), we find that small-
angle soft radiation plays an important role. Resolves
directions of individual energetic partons!



Factorization theorem

1B, Neubert, Rothen, Shao ’15 16, see also Caron-Huot ‘15

Hard function.
m hard partons along
fixed directions {n1, ..., Nm)

Soft function
with m Wilson lines

/

o(8) =3 (Hm({n},Q, 1) ® Sm{n}, @B, 1)) .

2 I ,\
color trace mtegrat.lon Qver the m
airections

m

First all-order factorization theorem for non-global
observable. Achieves scale separation!



Comments

o |nfinitely many operators Sm, mix under RG

e Also for narrow-cone jets, the same type of

structure Is relevant 1B,
16

Hy @ S g

Neubert, Rothen, Shao '15

Tm @Unp,

“COft”

collinear

soft+collinear

e Check: Have computed all ingredients for
cone cross section at NNLO. Obtain full
logarithmic structure at this order.
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2Ewout < BQ

0 = tan(«a/2)

g

o(f,9)

=1+ 22 A(5.0) + (22) B(5.9) +

o0 2T

A(B,0) = Cp [— 8InélnfB—1+6In2—6Ind — 662 + (g - 61n2) 6% 4 4 Liy(0%) —4L12(—52)]

3(5,5) = CIQ:BF + CprCyuBy + CFTanBf

671no 46*1In o 1

4
3 +(1_54)2+1—54

2 R 9 4

111n%6 —

+36In01n* (1 —6%) —12In61In* (1 +6%) +22Ind1n (1 — 6*) — 57°In (1 — &%)
+22In6In (1+6%) —7?In (1 +6%) — 410’ (14 6%) + 33 Lis (—6) + 22 Lis (6?)
+481n6 Lip (—67) — 12In (1 — 6%) Lis (—6%) — 361n (1 + 67) Lis (—6%)
+12In2Lis (—6%) 4+ 241n6 Lis (6°) +241n (1 — 6%) Lis (6*) + 12In2 Lis (6°)

+12In (1 —6*) Lip (1 — 6%) — 6 Liz (1 — 6*) + 24 Liz (1 — 6%) — 36 Liz (—0°)

+c5(0),

14~ o |_ 1 19¢c41.. C 1N



dB/dInp

dAB/dnf3

Numerical check against Event2

Cr? CrCa
200 T 400f T of
100 - [ i
: 300 | 201
0k I I
: % [ % ~40 -
_100; '3 200f 'S ol
-200 | % = ,
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~400 05 t0o |
5;} —tt 1 5: “““““““““““ .7
i et : 10| ]
0 ammemammees™™ i I ]
Q. (| EgziEnnm o nane, Q. I . ]
5t = * = 5 .
I RS i RS f ]
. fact. thm. X = |
I < < I ]
L S -5+ = 0
[ | RAGhtdddd I I TP owmm—— =
_15; Event 2 L oo
20| 7 10 5|
10 8 -6 -4 2 0 -10 8 -6 -4 2 0 -10 8 -6 -4 2 0
IngB IngB IngB

Works: agreement for small 5.

Reproduce all logs, not only the leading ones!
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Narrow-angle |ets



Soft emissions from a narrow |et

For a narrow jet 6 — 0 In direction n one would
expect that one could combine

S1(n1) S2(nz) ~ Pexp (igs/ dsn - A% (sn) (T} + T2a)>
0

SINCE N1 = N2 = N.

Doing so, one ends up with a single Wilson line per
jet and a simple form of the soft radiation.

e \WNorks for global observables such as thrust,
broadening, ...
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Soft emissions from a narrow |et

Consider the emission of single soft a gluon from energetic
particles with momenta p; inside a narrow |et:

Approximation: p; ~ E; n'

This approximation breaks down when the soft emission
has a small angle, i.e. when k* ~ wn*!

Small region of phase space, but it turns out that it gives a
leading contribution to jet rates!



Momentum modes for |et processes

1B, Neubert, Rothen, Shao,1508.06645; Chien, Hornig and Lee 1509.04287

Region Energy Angle Inv. Mass

e Hard Q 1 Q

S [

25 Collinear Q ¢ QO
T W

» Soft 3Q 1 BQ
new Coft 3Q & 3oQ

Full jet cross section is recovered after adding the contributions
from all regions (“method of regions”)

* Additional coft mode has very low characteristic scale 36Q!
Jets are less perturbative than they seem!

* Effective field theory has additional “coft” degree of freedom.



Momentum modes again (for experts)

Split momenta into light-cone components

n* n*

p" =P+ TP-7 +

Scaling of the momentum components (8 ~ 6?)
(p—|- sy P— 5 PL )
collinear: p.~Q( 1, 6%, &)

soft: ps~Q( B8, B8, 5 )
coft: pr~BQ( 1, 6, 5)

Note: every component of coft mode is smaller than the
corresponding collinear one. Different than SCET, , SCET),,
SCET+5, SCET, , SCET,, ...



Method of regions expansion

To isolate the different contributions, one expands the
amplitudes as well as the phase-space constraints in each
momentum region.

* (Generic soft mode has O(1) angle: after expansion, it is
always outside the jet.

e (Collinear mode has large energy E » BQ. Can never go
outside the |et.

« Coft mode can be inside or outside, but its contribution to
the momentum inside the jet is negligible.

Expansion is performed on the integrand level: the full result is
obtained after combining the contributions from the ditferent
regions.



Factorization for two-jet cross section

1B, Neubert, Rothen, Shao, arXiv:1508.06645

Laplace space color trace |
T f l integration over angles

l -oo l 12

5(r) = 00 H(Q) S(Q7) | > (Tin(Q0) © Unn(Q0T) )

m=1 \ _
T Coft functions with
Soft function m Wilson lines

Hard function Jet functions with m partons
at fixed direction

Checks against wide-angle result and fixed-order event
generator.
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All-order resummation



O

7(8) = > (Hm({n},Q, 1) ® Sm({n}, QB, 1))

m=2 /

T

High-E physics Low-E physics
Wilson coefficients EFT Operator

Renormalization of hard Wilson coe

ficlients

Hin({n},Q.0.¢) =Y  Hi({n},Q,6,1) Zi1,({n},Q,0,¢, )
[=2

e Same /-factor must render Sy finite!

e Associated anomalous dimension I'2

d
dln p

28
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Resummation by RG evolution

Wilson coefticients fulfill renormalization .
group (RG) equations
d ———
T Hin(Q, 1) ZHZ Q, 1) T1,(Q, 1) Q -
0O
1. Compute Hm at a characteristic high 0
scale un~ Q %
g
2. Evolve Hm to the scale of low energy Vo
ohysics w~ Of T Op

Avoids large logarithms ay" In*(f) of scale

ratios which can spoil convergence of
perturbation theory.



RG = Parton Shower

e [ngredients for LL (VeRy 0 0 ...

7‘[2(,&:@):00 0 ‘/ESRS 0 ...

N rW—=1 0 0 Vy Ry ...
H,.(n=Q) =0 for m > 2 0 0 0 Vi
Sm(p=pQ) =1 \: S )

e RG
d Q) do o
L (t) = Hon () Vi + Hon 1 () Ronr . £ — /
" 1 1 a(py Bla) dm

e [Fquivalent to parton shower equation

t
Hon (1) = Hon (1)l / A Hoy 1 () Ry eV

t1
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 ete o 2 jets
_rapidity gap Ay=1

Smc(t)

® _parton lILower
° ]

Ay=1 4—loop

1073 - .

| | | | | | | | | | | | | | | | | | | |
0.00 0.05 0.10 0.15 0.20

t

e [quivalent to the dipole shower used by Dasgupta
and Salam '02.

e [or higher-log accuracy we will need to include
corrections to Hm, Sm. I'mn into the shower.
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Conclusion and Outlook

Have obtained factorization formulae for non-global
observables. Key features

e Multi-Wilson line structure of soft radiation
¢ Resummation of NGLs from RG evolution
Are developing MC formalism for higher-log resummation

Have applied formalism to hemisphere soft function and
ight-jet mass TB, Pecjak, Shao, in preparation

e factorization theorems have same general structure as
the ones for jet cross sections

Applications ...

Interplay with Glauber gluons”? Superleading logs?
32



Extra slides



Hemisphere soft function

e Most past studies of NGLs were performed
for hemisphere soft function

S(wr,wr) ZTr 0/5(7)ST(n)| X )(X|S(n)ST(7)]|0)6(wr —n - Pr)6(wr, — 7 - Pp)

e | eading logs are related to the ones
arising in light-jet mass event shape

e [actorization formula for w; < we

S(wr,wr) = Z ’HS {n}t,wr) ® Smai1({n,n}, wL)>
m=0

/

mode with p, ~ wr mode with p, ~ wr
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Factorization theorem for left-jet mass

* Heavy jet mass is global, light jet mass non-
global 1

heavy jet mass: pp = @max(Ml%,M%g)
1
light jet mass: py = @min(M?,,M}%)

e Relation to left-jet mass pr.

e [actorization formula

do >

- > /oodwRJi(M%—QwL) N (Hi ({1}, Q) © Sim({n,n},wr))

1=q,q,9 L

m=1
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Jet substructure: myinpp = £+

Challenges and contaminations

e (Grooming can mitigate these problems
e MMDT also eliminates NGLs in my

e Analytical NLL Dasgupta, Fregoso, Marzani, Salam
'13, Larkoski, Marzani, Soyez, Thaler 14
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NNLL + O(as?) for jet mass

04

Soft Drop Groomed Mass
Soft Drop, z¢yt = 0.1, =0
03F 18XeV, pp - Z+j, pry > 500 GeV,R = 0.8 |
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Based on factorization

Frye, Larkoski, Schwartz, Yan’16
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-=== Pythia8 (no had+ue) \ ]
------ Pythia8 (had-+ue) \\ ]
—— NNLL+a? ]
0.001 0010 0.100 1
mj
pF

Mm% <K Zewry < P

do.resum

dm? /
k=q,q,9

/ includes pdfs, emissions
that were groomed

sum over jet flavor

\

away, out-of-jet radiation,...
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— Z Dk(pTa Zcut s R)Sc,k(zcutm?]) 02 Jk (m?])

collinear-soft radiation

hard collinear radiation



