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Resummation for jet processes



Long history of resummation of large logarithms in 
high-energy processes 

• Sudakov ’56 

• Yennie Frautschi Suura theory ‘61 

• … 

• Collins Soper Sterman (CSS) ‘84 

• … 

but despite modern EFT methods such as SCET, 
there are basic problems where the structure of 
higher-order logarithms is not known.
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Consider the simplest collider-physics problem 
involving large logarithms.  

Two regions:

3

outside: 

small energy

inside: large energy



Arises in many situation, in particular in all 
exclusive jet cross sections 

4

veto on 

additional jets

J

J



Many more examples 
• jet vetoes (includes unrestricted radiation near 

the beam pipe) 
• gaps between jets 
• jet substructure 
• isolated photons (veto on radiation near photon) 
• event shapes such as the light-jet mass and 

narrow jet broadening  
• … 

Such observables are called non-global, since they are 
insensitive to radiation inside certain regions of phase 
space. 
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veto:

 Eout < βQ ≪ Q

unrestricted Ein ~ Q

Non-global observables

→ large logs αsn lnn(Eout / Ein) ~ αsn lnn(β) 



Large logarithms αsn lnm(β) in non-global observables 
do not exponentiate Dasgupta and Salam ’02. 

Leading logarithms at large Nc can be obtained from 
non-linear integral equation
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Figure 14. The action of the operator Vm on an amplitude in the large-Nc limit.

suppressed at large Nc. At large Nc, emissions arise only between nearest-neighbour legs,

since all other attachments would lead to non-planar contributions which are suppressed.

Based on the above simplification, the effect of Rm in the large-Nc limit is shown diagram-

matically in Figure 13. The action of Vm simplifies analogously, as shown in Figure 14.

The large-Nc color factor from squaring the amplitudes is simply a factor of Nc for each

color loop, and the number of additional color loops is equal to the number of powers of

αs, so that the color factor is obtained by switching to the ’t Hooft coupling λ = Nc αs.

We now plug the explicit results (5.11) for the anomalous-dimension coefficients Vm

and Rm into the expressions (5.17). For the coefficients of the expansion in t, we then

obtain
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where
∫
Ω 3Out =

∫ dΩ(n3)
4π Θnn̄

out(n3), and we have used the abbreviation

P kl
ij = W k

ij

(
W l

ik +W l
kj

)
. (5.21)

The above expressions include all leading logarithms, i.e. the global and non-global loga-

rithmic terms appear together.

Let us now relate the above expressions to the leading logarithmic resummation of

NGLs at large Nc, which can be obtained by solving the BMS equation [26]

∂L̂Gkl(L̂) =

∫
dΩ(nj)

4π
W j

kl

[
Θnn̄

in (j)Gkj(L̂)Gjl(L̂)−Gkl(L̂)
]
, (5.22)

with boundary condition Gkl(0) = 1. The function Gkl(L̂) depends on two light-like refer-

ence vectors nk and nl. After solving the equation, the resummed soft function is obtained

as S({n}, Qβ, µ) = G12(L̂) with L̂ = 4Nc t. While the non-linear integral equation (5.22)
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Banfi, Marchesini, Smye ‘02

Non-global logarithms
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LL resummation
• The leading logarithms arise from configurations in 

which the emitted gluons are strongly ordered 

E1 ≫ E2 ≫ E3 ≫ …  ≫ Em 

• Multi-gluon emission amplitudes become extremely 
simple in this limit, especially at large Nc 

  
• Using their structure Banfi, Marchesini, Smye ’02  

derived an integral equation for resummation of 
leading logs at large Nc: BMS equation.

3 Strong energy ordering

In this section, we review the structure of the real, virtual and real-virtual integrands relevant
for the leading non-global logarithm at large N

c

limit [55]. While simplifications arising from
the strong-energy-ordering (SEO) limit have been known for decades, we try to provide more
explicit details than we have found in the literature. Hopefully, our exposition will clarify the
set of approximations going into the NGL calculation. A reader already familiar with SEO can
skip this section.

3.1 Real emission

To begin, consider the cross section for emission of m gluons o↵ classical quark sources in the aµ

and bµ directions. The di↵erential cross section for real-emission is then

1
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In the limit that the energy of the gluons is strongly ordered, at large N
c
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squared can be written as [55]
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because they are identical particles, the matrix element is independent of the gluon labels.
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A lot of recent work on these types of logarithms 

• Resummation of leading logs beyond large Nc Weigert ’03, Hatta, 
Ueda ’13 + Hagiwara ’15; Caron-Huot ’15. 

• Caron-Huot’s functional RG has a close relation to our results 

• Fixed-order results: 2 loops for S(ωL,ωR). Kelley, Schwartz, 
Schabinger and Zhu ’11; Hornig, Lee, Stewart, Walsh and Zuberi 
’11; with jet-cone  Kelley, Schwartz, Schabinger and Zhu ‘11; von 
Manteuffel, Schabinger and Zhu ’13, leading non-global log up to 
5 loops by solving BMS equation Schwartz, Zhu ’14, 5 loops and 
arbitrary Nc Delenda, Khelifa-Kerfa ‘15 

• Approximate resummation of such logs, based on resummation for 
observables with n soft subjets. Larkoski, Moult and Neill ‘15 

A systematic factorization of non-global observables was missing.

Non-global logarithms



``Globalization”
Alternative SCET approach to observables with NGLs based on 
resummation for substructure. Larkoski, Moult, Neill ‘15 

• Divide jet cross section into contributions from n sub-jets. 
Idea is to lower the hard scale in the NGLs by resolving the 
subjets. 

• Resum global logarithms in subjet observables: ``Dressed 
gluons’’. 

• At leading-log level, this maps into iterative solution of BMS 
equation (talk by Ian Moult at LHC-ESI workshop)
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Factorization for NGLs
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Basic physics is soft radiation off energetic 
partons inside jet. 

Wilson line along direction of each hard parton 
inside the jet. 

12
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Consider one-gluon matrix element of Wilson line 

Wilson line and eikonal interaction

eikonal interaction

need small imaginary  
part n·k ≣ n·k + iε
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Soft emissions in process with m energetic particles are 
obtained from the matrix elements of the operator 

  

Figure 1. Definition of the parameters � and � of the dijet cross section. We use the thrust axis
~n, as the jet axis.

definiton is identical to the one in the seminal paper of Sterman and Weinberg [36]. Using

the thrust vector as the jet axis leads to a simpler form of the phase-space constraints and

will enable us to use existing two-loop results for the cone-jet soft function obtained in

[27, 28].

If we consider wide-angle jets with � ⇠ 1, the e↵ective theory contains only two mo-

mentum regions

hard: ph ⇠ Q (1, 1, 1) , (2.3)

soft: ps ⇠ Q� (1, 1, 1) .

The hard mode describes the energetic particles inside the jet. Given their momentum

scaling, these particles can never be outside the jet, in contrast to the soft partons which

can be emitted inside or outside the jet. Since there are no collinear singularities for large

cone size, the cross section is single-logarithmic, i.e. the leading logarithms have the form

↵n
s ln�.

The factorization of an amplitude with m hard partons and an arbitrary number of

soft partons is of course well known. Each of the hard partons get dressed with a Wilson

line along its direction. In analogy to factorization for amplitudes with coft particles [32],

we have

S1(n1)S2(n2) . . . Sm(nm)|Mm({p})i , (2.4)

where nµ
i = pµi /Ei and {p} = {p1, p2, . . . , pm}, but while the coft case involved quark

splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})i. One way

to obtain this formula is to write down the SCET operator for processes with m jets,

which involves m di↵erent collinear fields, perform the decoupling transformation and then

take the matrix element with exactly one collinear particle in each sector, which gives the

amplitude |Mm({p})i. (On the amplitude level, there is no di↵erence between collinear

and hard on-shell particles. The di↵erence in scaling only matters in the expansion of the

phase-space constraints.) To get the amplitude with an arbitrary number of soft particles

in the final state, one takes the relevant matrix element of the Wilson-line operator (2.4).

Doing so, the cross section takes the form

– 5 –

hard scattering amplitude 
with m particles 

(vector in color space) 

energetic partons must be inside

soft Wilson lines along the directions  
of the energetic particles / jets 

(color matrices) 

soft particles can be inside or outside



For a jet of several (nearly) collinear energetic particles, one 
can combine 

into a single Wilson line with the total color charge. 

For non-global observables one cannot combine the soft 
Wilson lines → complicated structure of logs! 

• For a wide-angle jet, the energetic particles are not 
collinear. 

• For a narrow-angle jets (see later), we find that small-
angle soft radiation plays an important role. Resolves 
directions of individual energetic partons!

but for brevity, we do not indicate this explicitly. Since they commute, Wilson lines along

common directions immediately combine into single Wilson lines, for example

S1(n)S2(n) = P exp

(
igs

∫ ∞

0
ds n · Aa

s(sn) (T
a
1 + T

a
2 )

)
. (2.6)

This property ensures that collinear particles only produce a single Wilson line carrying

the total color charge. However, since we deal with large-angle jets, the individual Wilson

lines do not combine in our example.

To derive formula (2.5) in the effective field theory we introduce a separate collinear

field for each of the energetic particles in the final state, i.e. we write down the SCET

operators for processes with m jets. This is possible since on the amplitude level there is

no difference between collinear and hard on-shell particles. The relevant purely collinear

SCET Lagrangian consists of m copies of the ordinary QCD Lagrangian. Operators in the

effective theory are conveniently expressed in terms of gauge-invariant fields χi and Aµ
i⊥,

which are related to the usual quark and gluon fields via [45]

χi(0) = W †
i (n̄i)

/ni /̄ni

4
ψi(0) , Aµ

i⊥(0) = W †
i (n̄i) [iD

µ
⊥ Wi(n̄i)] . (2.7)

The i-collinear Wilson lines in the fundamental representation are defined analogously to

the soft Wilson lines in (2.4) as

Wi(n̄i) = P exp

(
igs

∫ 0

−∞

ds n̄i ·Aa
i (sn̄i)t

a

)
. (2.8)

The argument denotes the direction of the Wilson line, which is conjugate to the direction

ni of the collinear particle. These Wilson lines ensure that these fields are invariant under

collinear gauge transformations in each sector [17, 18].

At leading order in power counting, m-jet operators in this effective theory involve

exactly one collinear field Φi ∈ {χi, χ̄i,Aµ
i⊥} from each sector i = 1, . . . ,m. Performing the

usual decoupling transformation

Φi = Si(ni)Φ
(0)
i , (2.9)

with the appropriate color representation Ti for each field, yields the Wilson-line structure

shown in (2.5). Finally, one evaluates the matrix element of the operator with one collinear

particle in each sector, using

⟨0|χ(0)
j (0) |pi⟩ = δij u(pi) ,

⟨0| Aµ,a(0)
j⊥ (0) |pi; a⟩ = δij ϵ

µ(pi) .
(2.10)

Together with theWilson coefficient of them-jet operator this gives the amplitude |Mm({p})⟩,
see [13] for details. Since the particles are on the mass shell, the higher-order corrections

to the relations (2.10) are all scaleless and vanish.

To get the amplitude for the emission of l soft partons in the final state with momenta

k1, . . . , kl, one computes the matrix element

⟨k1, . . . , kl|S1(n1)S2(n2) . . . Sm(nm) |0⟩ (2.11)
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Hard function. 
m hard partons along  

fixed directions {n1, …, nm} 

Factorization theorem

Soft function 
with m Wilson lines

integration over the m 
directions 

color trace

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)
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TB, Neubert, Rothen, Shao ’15 ’16, see also Caron-Huot ‘15

First all-order factorization theorem for non-global 
observable. Achieves scale separation!



Comments
• Infinitely many operators Sm, mix under RG 

• Also for narrow-cone jets, the same type of 
structure is relevant TB, Neubert, Rothen, Shao ’15 
’16 

• Check: Have computed all ingredients for 
cone cross section at NNLO. Obtain full 
logarithmic structure at this order.

17

Since the vast majority of collider observables include hard phase-space cuts or, more

generally, regions of phase space in which radiation is not restricted, the presence of NGLs

severely limits the applicability of higher-order resummation techniques. For this reason, a

lot of effort was put into trying to get a better understanding of these types of logarithms.

For example, several groups computed hemisphere soft functions up to two-loops to obtain

the full result for the non-global structure at this order [30–33]. Also, using the BMS

equation, the analytic result for the leading-logarithmic terms up to five-loop order was

extracted [25]. This analysis was also extended beyond the large-Nc limit by computing the

higher-order terms directly from strongly-ordered soft amplitudes [34]. While these fixed-

order computations provide important insights into the form of NGLs, ultimately one is

interested in their all-order structure. Steps towards a resummation of such terms were

recently taken in [35, 36]. The authors claim that the NGLs arise from soft subjets near

phase-space boundaries and propose a set of factorization theorems which resum global

logarithms in the presence of subjets. They then argue that this resummation will capture

a large part of the NGLs in more inclusive cross sections. They propose an expansion in the

number of soft subjets, which they call “dressed gluons”. Since the dressed gluons include

Sudakov factors, the expansion in dressed gluons does not suffer from the same divergence

as standard perturbation theory when the logarithms become large. However, an arbitrary

number of soft subjets contributes even to the leading NGLs, and it is not clear what

expansion parameter governs the expansion in subjets and whether there is any parametric

suppression of the higher-multiplicity terms.1 From a numerical point of view (see Figure 8

in [35]), the expansion in dressed gluons appears to provide only a modest improvement

over a pure fixed-order treatment for moderately large values of the logarithms. A second

interesting proposal to go beyond leading-logarithmic resummation is the functional RG of

Caron-Huot [37]. We will comment in more detail on both approaches and their relation

to our results below.

An important example of non-global observables are jet cross sections, in particular

those involving cone jets, which are insensitive to radiation inside the jet cone. In the

present paper we analyze dijet cross sections in e+e− collisions. In addition to the narrow-

jet case analyzed in our previous work [38], we also treat the case where the opening angle

of the jet cone is large. For brevity, we will refer to these as “wide-angle jets”. We find that

in both situations, the simple factorization theorem (1.2) is incorrect. This is immediately

obvious for wide-angle jets since the jet opening angle is as large as the typical angle of the

soft radiation. The approximation (1.1) is therefore not appropriate and each hard parton

inside the jet produces its own Wilson line. In the next section we show that the relevant

factorization theorem for the cross section takes the form

σ =
∞∑

m=2

〈
Hm ⊗ Sm

〉
. (1.3)

The function Hm is the squared amplitude for having m particles inside the two jets,

integrated over their energies but at fixed angles. The function Sm contains soft Wilson

1We were informed by an author of [35] that a paper addressing these questions is in preparation.
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Figure 4. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢` for the light-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

�(�) =
1X

m=2

⌦Jm ⌦ Um
↵
, (5.2)

A Absence of leading-power collinear contributions

In the following, we demonstrate explicitly that all collinear contributions are scaleless,

using rescaling arguments after multi-pole expansion. One would expect that also left-

collinear modes with scaling

(n · pc, n̄ · pc, p?c ) ⇠ (1, ⌧,
p
⌧)!R (A.1)

could contribute to the cross section since they have n̄ · p ⇠ !L, as required. The operator

definition for the associated leading-power jet function has the form:

Jc(!L) =
X

XL

���hXL|W †
n̄Wn|0i

���
2

�(!L �
X

i

n̄ · P i
L) , (A.2)

where the Wilson lines are built from collinear fields. The multipole expansion ensures that

the left-collinear fields are always in the left hemisphere and for this reason, the collinear

– 17 –

collinear “coft” 
soft+collinear
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MA =
2π2

3ϵ2
+

1

ϵ

(
−2 +

π2

2
+ 12 ζ3 + 6 ln2 2 + 4 ln 2

)
− 4 +

7π2

6
− 24ζ3 −

π4

6
+

8

3
ln4 2

− 4 ln3 2 + 6 ln2 2− 8π2

3
ln2 2− 4 ln 2 + 9π2 ln 2 + 56ζ3 ln 2 + 64Li4

(
1

2

)
.

This result was presented earlier in the supplemental material to [38], but the finite terms

were given only in numerical form.

Higher-order jet functions

The last unknown ingredients in the factorization formula (3.1) involve the one-loop cor-

rections to the 2-particle jet function as well as the 3-particle jet functions with parton

content qgg and qq̄′q′ (summed over flavors q′). Their combined contribution to the cross

section can schematically be written as

2σ0
(α0

4π

)2 〈
J

(2)
2 ⊗ 1+J

(2)
3 ⊗ 1

〉
. (3.32)

Some sample Feynman diagrams for these contributions are shown in Figure 6. We have

not computed these contributions individually but have inferred their divergent parts from

the finiteness of the cross section. The explicit result is given in Appendix A.

3.2 NNLO cross section

We now have all the ingredients at hand to obtain the full NNLO result for the cone-jet

cross section. The bare ingredients need to be combined according to the NNLO expansion

(3.1) of the factorization formula (2.34). After coupling renormalization all divergences

cancel and we get a finite result for the Laplace-transformed cross section σ̃(τ, δ). This

provides a highly nontrivial check of the factorization formula (2.34), since the individual

two-loop ingredients all depend on different scales. After expanding in ϵ, the divergences

then involve logarithms of the different scales, which must cancel in the cross section. We

stress that one would not obtain a finite result starting from the “standard” factorization

formula (1.2) involving only two soft Wilson lines. Beyond one-loop order the nontrivial

Wilson-line structure in (2.34) becomes an essential feature.

Up to the desired order, the Laplace-transformed cross section is a quadratic polyno-

mial in ln τ . For such a function, the Laplace transformation (2.30) can be inverted by

means of the simple substitutions

ln τ → ln β , ln2 τ → ln2 β − π2

6
. (3.33)

We choose µ = Q for the renormalization scale of the strong coupling and write

σ(β, δ)

σ0
= 1 +

αs

2π
A(β, δ) +

(αs

2π

)2
B(β, δ) + . . . . (3.34)

We follow the standard convention and define A(β, δ) and B(β, δ) as the coefficients in an

expansion in αs/(2π), while we expand in αs/(4π) in the rest of the paper. The explicit

result for the one- and two-loop coefficients reads

A(β, δ) = CF

[
− 8 ln δ ln β − 6 ln δ − 1 + 6 ln 2

]
,
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n⃗

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
n⃗ as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to n⃗ but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni · Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})⟩ , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})⟩.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i ̸= j. The same is therefore true for the

– 6 –



Numerical check against Event2

• Works: agreement for small β. 

• Reproduce all logs, not only the leading ones!
19

Figure 12. Comparison of our analytic results (solid lines) for the coefficients of the three color
structures in the two-loop coefficient dB(β, δ)/d ln β with numerical results (points with invisibly
small error bars) obtained using the Event2 event generator [44]. In the lower panels we show the
difference ∆B between Event2 and our result, which should be equal for small values of β. The
cone size is chosen as α = π/4, corresponding to δ ≈ 0.414.

5.1 Renormalization at one-loop order

Let us write the expansion of the Z-factor defined in (2.35) in the form

Z
H
ij ({n}, Q, δ, ϵ, µ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞∑

n=j−i

(αs

4π

)n
z
(n)
i,j ({n}, Q, δ, ϵ, µ) ; if i ! j ,

0 ; if i > j ,

(5.1)

with z(0)i,j = 1. The entries zi,j are matrices in the color space of the partons in the

amplitude and its conjugate. We denote the color generators T a
i acting on i-th particle

in the amplitude on the left-hand-side of Hm in (2.14) as T a
i,L, and those acting on the

conjugate amplitude on the right-hand side as T a
i,R. Because of the structure of (2.15), the

roles of T a
i,L and T a

i,R are reversed for the case of the soft function: the generators T a
i,L act

on the right-hand side of Sm.

Let us now verify that ZH , which is introduced to absorb the divergences of the hard

function, can indeed be used to renormalize the one-loop soft function. If this is true, we

must find that

∑

l≥m

Z
H
ml({n}, Q, δ, ϵ, µ) ⊗̂S l({n}, Qβ, δ, ϵ) = Sm({n}, Qβ, δ, µ) = finite . (5.2)

– 38 –
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Narrow-angle jets



For a narrow jet δ → 0 in direction n one would 
expect that one could combine 

since n1 ≈ n2 ≈ n. 

Doing so, one ends up with a single Wilson line per 
jet and a simple form of the soft radiation. 

• Works for global observables such as thrust, 
broadening, …
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σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(12)

〈
J2(Qδ)⊗ Ũ2(Qδτ)

〉
= (13)

Γ
J =

αs

4π

⎛

⎜⎜⎜⎜⎜⎜⎝

V1 R1 0 0 . . .

0 V2 R2 0 . . .

0 0 V3 R3 . . .

0 0 0 V4 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (14)

ΓH + ΓS + Γ
J
nm = Γ

U
nm (15)

Ũ3(Qδτ) = 1+O(αs) (16)

⟨O|C⟩ = 1+O(αs) (17)

∂

∂L̂
Gab(L̂) =

∫
dΩ(nj)

4π
W j

ab

[
Θin(nj)Gaj(L̂)Gjb(L̂)−Gab(L̂)

]
(18)

S1(n1)S2(n2) ≈ P exp

(
igs

∫
∞

0
ds n · Aa

s(sn) (T
a
1 + T

a
2 )

)
. (19)

Soft emissions from a narrow jet



Consider the emission of single soft a gluon from energetic 
particles with momenta pi inside a narrow jet: 

  

This approximation breaks down when the soft emission 
has a small angle, i.e. when                   !  

Small region of phase space, but it turns out that it gives a 
leading contribution to jet rates!

Soft emissions from a narrow jet

∑

i

Qi

pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)∑

i

Qi
pi · ε

pi · k
= Qtot

n · ε

n · k
+ . . . (1)

p
µ
i ≈ Ei n

µ (2)Approximation:

kµ ⇡ ! nµ



Momentum modes for jet processes

Full jet cross section is recovered after adding the contributions 
from all regions (“method of regions”) 

• Additional coft mode has very low characteristic scale βδQ! 
Jets are less perturbative than they seem! 

• Effective field theory has additional “coft” degree of freedom.

Region Energy Angle Inv. Mass

Hard Q 1 Q

Collinear Q δ Qδ

Soft βQ 1 βQ

Coft βQ δ βδQ

(

st
an

da
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Split momenta into light-cone components 

Scaling of the momentum components (β ~ δ2) 

Note: every component of coft mode is smaller than the 
corresponding collinear one. Different than SCETI , SCETII, 
SCET1.5, SCETn , SCET+, …

Momentum modes again (for experts) 
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1. lepton pT > 20GeV

2. leading lepton pT > 25GeV

3. lepton pseudorapidity ⌘e < 1.37

or 1.52 < ⌘e < 2.47

4. me+e� > 15GeV and

|me+e� �mZ | > 15GeV

( p+ , p� , p? )

collinear: pc ⇠ Q ( 1 , �2 , � )

soft: ps ⇠ Q ( � , � , � )

( p+ , p� , p? )

coft: pt ⇠ �Q ( 1 , �2 , � )

soft: ps ⇠ Q ( � , � , � )

2

pµ = p+
nµ

2
+ p�

n̄µ

2
+ pµ?



Method of regions expansion
To isolate the different contributions, one expands the 
amplitudes as well as the phase-space constraints in each 
momentum region. 

• Generic soft mode has O(1) angle: after expansion, it is 
always outside the jet. 

• Collinear mode has large energy E ≫ βQ. Can never go 
outside the jet. 

• Coft mode can be inside or outside, but its contribution to 
the momentum inside the jet is negligible. 

Expansion is performed on the integrand level: the full result is 
obtained after combining the contributions from the different 
regions.



Coft functions with 
m Wilson lines

Factorization for two-jet cross section

Soft function

Hard function

3

k

p1

+

FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
∏

i θ(δ
2n̄·pic−n·pic) ,

(11)

Jet functions with m partons 
at fixed direction

integration over angles
color traceLaplace space 

τ ↔ β

TB, Neubert, Rothen, Shao, arXiv:1508.06645

Checks against wide-angle result and fixed-order event 
generator.



All-order resummation



• Renormalization of hard Wilson coefficients 

• Same Z-factor must render Sm  finite! 
• Associated anomalous dimension ΓH

28

Figure 3. omparison of our analytic results (solid lines) for the coe�cients of the three color
structures in the two-loop coe�cient dB/d ln ⇢h for the heavy-jet mass distribtion with numerical
results (points with invisibly small error bars) obtained using the Event2 event generator [13].

Putting everything together, inverting the Laplace transformation, and using relation

(1.5) we then obtain the following result for the logarithms in the light-jet cross section

d�

d⇢`
= (4.9)

This can be compared to numerical results obtained from running fixed-order event

generators such as Event2 [13] or eerad3 [? ] at low values of the jet mass.

[Write what we conclude from this comparison...]

5 Conclusions

• Non-global observables all have similar structure, key feature are multi-Wilson-line

operators tracking hard partons.

• Briefly discuss resummation.

• Numerical trouble with event generators?

�(�) =
1X

m=2

⌦Hm({n}, Q, µ)⌦ Sm({n}, Q�, µ)
↵
, (5.1)
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High-E physics 
Wilson coefficients

Low-E physics 
EFT Operator

of logarithmically-enhanced contributions to all orders in perturbation theory. This re-

summation is achieved by evolving the Wilson coefficients of these operators from the high

scale µ ∼ Q down to the scale where the low-energy physics takes place. Let us first

discuss the wide-angle cross section for which the factorization theorem has been given in

(2.15). In our effective theory, the hard functions Hm are the Wilson coefficients of the

Wilson-line matrix elements Sm and we regularize both quantities in d = 4−2ϵ dimensions.

The effective field theory matrix elements contain UV divergences since the short-distance

structure of the full theory is not resolved. The corresponding 1/ϵ poles can be removed

by renormalizing the hard Wilson coefficients according to

Hm({n}, Q, δ, ϵ) =
m∑

l=2

Hl({n}, Q, δ, µ)ZH
lm({n}, Q, δ, ϵ, µ) . (2.35)

In practice, it is easiest to obtain the bare Wilson coefficients from on-shell matching

calculations, where the poles arise from IR divergences. However, these IR poles are in

one-to-one correspondence to UV divergences since the effective-theory loop-integrals in

such matching computations are scaleless, see e.g. [13] for a detailed explanation of this

point within SCET. We have discussed this correspondence after (2.15). It implies that

we can understand the UV divergences of Hm from the structure of the IR divergences

in the real and virtual diagrams which contribute to these quantities. Given that the

coefficients Hm are fixed-multiplicity QCD amplitudes squared, integrated over energy, it

is clear that the matrix ZH
lm({n}, Q, δ, ϵ, µ) cannot be diagonal: lower-multiplicity virtual

diagrams are needed to cancel the divergences of real-emission diagrams. In order to achieve

this cancellation, the renormalization matrix must have the form

Z
H({n}, Q, δ, ϵ, µ) ∼

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 αs α2
s α3

s . . .

0 1 αs α2
s . . .

0 0 1 αs . . .

0 0 0 1 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.36)

where we indicate the perturbative order of each element. At each higher order in per-

turbation theory, more off-diagonal contributions fill in. We have anticipated the upper

diagonal structure of the matrix in (2.35) by restricting the sum to l ≤ m. Note that

ZH
lm({n}, Q, δ, ϵ, µ) has logarithmic Q dependence, because the fixed-multiplicity ampli-

tudes involve both soft and collinear divergences. This dependence is a familiar feature of

Sudakov-type processes.

By consistency, the matrix ZH must render the soft functions finite, i.e. we must find

that the functions

S l({n}, Qβ, δ, µ) =
∞∑

m=l

Z
H
lm({n}, Q, δ, ϵ, µ) ⊗̂Sm({n}, Qβ, δ, ϵ) (2.37)

are finite for ϵ → 0. The structure of this result is at first sight quite surprising, since

Wilson-line matrix elements can usually be renormalized multiplicatively. However, in the

– 15 –

present case additional UV divergences in the real-emission diagrams arise because the

soft radiation is not constrained inside the jet. It is precisely those types of divergences

which lead to NGLs. Furthermore, the upper triangular form of ZH
lm implies that higher-

multiplicity soft functions are needed to absorb the divergences of matrix elements with

fewer Wilson lines. The symbol ⊗̂ indicates that in (2.37) one has to integrate over the

(m − l) additional directions of the unresolved partons on which the bare function Sm

depends.

The scale dependence of the renormalized hard and soft functions is governed by the

RG equations

d

d lnµ
Hm({n}, Q, δ, µ) = −

m∑

l=2

Hl({n}, Q, δ, µ)ΓH
lm({n}, Q, δ, µ) , (2.38)

d

d lnµ
S l({n}, Qβ, δ, µ) =

∞∑

m=l

ΓH
lm({n}, Q, δ, µ) ⊗̂Sm({n}, Qβ, δ, µ) , (2.39)

which ensure that the cross section (2.15) is scale independent. The anomalous-dimension

matrix is obtained from the standard relation

d

d lnµ
Z

H
km({n}, Q, δ, ϵ, µ) =

m∑

l=k

Z
H
kl ({n}, Q, δ, ϵ, µ) ⊗̂ΓH

lm ({n}, Q, δ, µ) , (2.40)

and it has linear dependence on ln(Q/µ) as is familiar from Sudakov-type problems. How-

ever, the wide-angle cross section we consider only contain only a single large logarithm at

each order. The Sudakov double logarithms must cancel in the sum over multiplicities in

(2.15). A related observation is that the RG equation (2.39) for the soft functions is only

consistent if the Q-dependence of the anomalous dimension drops out after the integrals

over the unresolved partons have been performed, since the expression on the left-hand

side only involves the soft scale Qβ. This implies a set of highly nontrivial consistency

relations among the entries of the anomalous-dimension matrix. At one-loop order this

will be studied in Section 5.

Solving the RG equations (2.38) and (2.39) one can resum all large logarithms in

the wide-angle jet cross section (2.15). At the soft scale µs ≈ Qβ the soft functions do

not involve large logarithms, and hence they can be calculated in a perturbative series in

powers of αs(µs). Likewise, at the hard scale µh ≈ Q the hard functions do not involve

large logarithms, and hence they can be calculated in a perturbative series in powers of

αs(µh). The large logarithms of the scale ratio µh/µs are resummed by evolving the soft

functions up to the hard scale (or vice versa),

Sl({n}, Qβ, δ, µh) =
∑

m≥l

U
S
lm({n}, δ, µs, µh) ⊗̂Sm({n}, Qβ, δ, µs) , (2.41)

with an evolution matrix of the form

U
S({n}, δ, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, δ, µ)

]
. (2.42)
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Resummation by RG evolution
Wilson coefficients fulfill renormalization 
group (RG) equations 

  
1. Compute Hm at a characteristic high 

scale µh ~ Q  

2. Evolve Hm to the scale of low energy 
physics µl ~ Qβ  

Avoids large logarithms αsn lnn(β) of scale 
ratios which can spoil convergence of 
perturbation theory.

R
G

 evolution

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn

(13)

�LL =

1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

2

Q

Qβ



RG = Parton Shower
• Ingredients for LL 

• RG 

• Equivalent to parton shower equation

30

divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ϵ, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ϵ, µ)

= − αs

2πϵ

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,
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d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
)e�(t0�t)Vn

(13)

�LL =
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d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
lm({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t

t1

dt0Hm�1(t
0
)Rm�1e

(t�t0)Vn
(17)
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Sm(µ = �Q) = 1 (19)

Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t

t1

dt0Hm�1(t
0
)Rm�1e

(t�t0)Vn
(20)
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d
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mX

l=2
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d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
lm(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)
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dt
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Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t
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0
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(t�t0)Vn
(21)

2

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z t

0
dt0Hn�1(t

0
)Rn�1(t

0
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d
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d lnµ
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mX
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t =

Z ↵(Q)

↵(µ)

d↵

�(↵)

↵
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(20)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)

Hm(t) = Hm(t1)e
(t�t1)Vn

+

Z t

t1

dt0Hm�1(t
0
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(t�t0)Vn
(22)

2



Compari

• Equivalent to the dipole shower used by Dasgupta 
and Salam ’02. 

• For higher-log accuracy we will need to include 
corrections to Hm, Sm, Γmn into the shower.
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MC numerical results
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Conclusion and Outlook
• Have obtained factorization formulae for non-global 

observables. Key features 

• Multi-Wilson line structure of soft radiation 

• Resummation of NGLs from RG evolution 

• Are developing MC formalism for higher-log resummation 

• Have applied formalism to hemisphere soft function and 
light-jet mass 

• factorization theorems have same general structure as 
the ones for jet cross sections 

• Applications … 

• Interplay with Glauber gluons? Superleading logs?
32

TB, Pecjak, Shao, in preparation



Extra slides
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Hemisphere soft function
• Most past studies of NGLs were performed 

for hemisphere soft function 

• Leading logs are related to the ones 
arising in light-jet mass event shape 

• Factorization formula for ωL ≪ ωR

34

In the limit where the jet masses become small, perturbative corrections to these observ-

ables are logarithmically enhanced. For the heavy jet mass these logarithms have been

resummed up to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [1], while

only leading-log predictions are available for the light-jet mass [2].1 The reason for the

poor accuracy for ρℓ is that it is not known how the observable factorizes in the limit of

small ρℓ, while the factorization is well known for the heavy-jet mass.

Due to left-right symmetry, the three possible scale hierarchies for the hemisphere

masses are a.) ML ∼ MR ≪ Q , b.) ML ≪ MR ≪ Q and c.) ML ≪ MR ∼ Q. The

relevant factorization theorem for case a.) has the form

dσ

dM2
LdM

2
R

= σ0H(Q2)

∫ ∞

0
dωL

∫ ∞

0
dωRJq(M

2
L −QωL)Jq(M

2
R −QωR)S(ωL,ωR) (1.3)

The hard function collects the virtual corrections to γ∗ → qq̄ which are known to three

loops [3, 4]. The jet functions are the usual inclusive jet functions of SCET which are known

to two loops [5, 6]. Also the hemisphere soft function S(ωL,ωR, µ) is known at NNLO [7–9].

This function measures the contribution of the soft radiation to the hemisphere mass in

each hemishere. Since the relevant anomalous dimensions are known for all ingredients to

(1.3), one can solve their RG evolution equations to obtain N3LL resummation for hierarchy

a.) which is the one relevant for the heavy jet mass ρh.

However, the above theorem does not achieve the resummation for case b.) since for

ωL ≪ ωR the soft function S(ωL,ωR) itself contains large logarithms of κ = ωL/ωR which

are examples of non-global logarithms. To be able to also resum these logarithms one must

factorize the physics at the two different soft scales ωL and ωR. In the context of the

function S(ωL,ωR), we will refer to ωR as the hard scale and ωL the soft one. The main

result we obtain in the present paper is that the hemisphere soft function factorizes in the

limit κ → 0 as

S(ωL,ωR) =
∞∑

m=0

〈
H

S
m({n},ωR)⊗ Sm+1({n, n},ωL)

〉
. (1.4)

The hard functions HS
m are the squared amplitudes for m emissions into the right hemi-

sphere, integrated over their energies but at fixed directions {n} = {n1, . . . , nm}, where the
ni’s are light-like vectors. The soft functions Sm+1 consist of m+2 Wilson lines along the

directions {n} of the m hard partons and the two jets along nµ = (1, n⃗) and n̄µ = (1,−n⃗).

The symbol ⊗ indicates that one has to integrate over the m directions of the emissions

into the right hemisphere. The form of the factorization theorem (1.4) is basically the same

as the one for wide-angle cone-jet cross sections derived in [10]. To see the connection, one

should view the right hemisphere as the inside of a jet which contains hard particles with

momenta pµ ∼ ωR and the left hemisphere as the outside region where a veto on radiation

is imposed which constrains the momenta to pµ ∼ ωL.

Before we will analyze the factorization formula (1.4) in more detail and provide op-

erator definitions for its ingredients, we now turn the light jet mass ρℓ . Due to left-right

1We count the logarithms in the exponent; the next-to-leading logarithms in the cross section are known

[2].

– 2 –

2 Factorization

The derivation of the factorzation formula follows the same steps in both cases and is

similar to the one relevant for wide-angle cone-jet cross sections presented in [10]. We will

first sketch the derivations of the factorization theorems, and specify the ingredients. We

then relate the soft functions to the ones which arise in the case of the narrow-cone cross

sections. Due to this relation, we can simply use the results [10] for these and only the

hard functions need to be computed.

2.1 Hemisphere soft function

The hemisphere soft function originates from a quark and an anti-quark Wilson line along

the directions n and n̄ of the two jets. The Wilson line generated by an outgoing quark

along the n direction is

S(n) = P exp

(
igs

∫ ∞

0
ds n ·Aa(sn)ta

)
, (2.1)

and the soft function is therefore defined as

S(ωL,ωR) =
1

Nc

∑

X

Tr⟨0|S(n̄)S†(n)|X⟩⟨X|S(n)S†(n̄)|0⟩δ(ωR − n · PR) δ(ωL − n̄ · PL) ,

(2.2)

We call the hemisphere which contains the thrust vector the right hemisphere. The right-

moving particles therefore have n̄ · p > n · p and PR(L) is the total momentum in the right

(left) hemisphere. Usually, the function S(ωL,ωR) is defined in terms of the soft gluon field

in SCET. However the soft SCET Lagrangian is equivalent to the full QCD field and for

our discussion we will consider (2.2) as a matrix element in QCD. In the asymmetric case

ωL ≪ ωR the function S(ωL,ωR) develops large, “non-global logarithms” (NGLs) in the

ratio κ ≡ ωL/ωR ≪ 1. It is these logarithms which we seek to resum using effective-field

theory methods.

Before constructing the appropriate effective theory, it is useful to study the matrix ele-

ment (2.2) perturbatively. Clearly, one method is to calculate the hemisphere soft function

at a given order in perturbation theory, and then take the limit κ → 0 in the final result.

This was the approach taken in the next-to-next-to-leading order (NNLO) calculations of

[7, 9], and the obvious benefit of such a computation is it provides the hemisphere soft func-

tion for any value of κ. On the other hand, if one is interested only in NGLs appearing in

the limit κ → 0, it is much simpler to obtain results by expanding the phase-space integrals

appearing in the hemisphere soft function using the method of regions [11]. Indeed, in a

first step, we have used this method to reproduce the NNLO fixed-order calculations in the

non-global limit. The factorization results discussed below can be viewed as a translation

of this diagrammatic approach into the language of effective field theory.

We find that two momentum regions are needed for the leading-power diagrammatic

expansion in the limit κ → 0. Defining the light-cone components of an arbitrary vector p
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mode with pµ ~ ωR mode with pµ ~ ωL



Factorization theorem for left-jet mass
• Heavy jet mass is global, light jet mass non-

global 

• Relation to left-jet mass ρL 

• Factorization formula
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Figure 1. Pictorial representation of the factorization theorem for the hemisphere soft function
(left) and the left jet mass (right). Blue lines correspond to collinear partons inside the jet functions,
the red lines represent soft emissions. The green lines in the left picture correspond to the hard
part of the hemisphere soft function, while the black lines correspond to hard emission into the
right hemisphere.

symmetry and its definition, ρℓ is directly related to the left jet mass ρL = M2
L/Q

2,

dσ

dρℓ
= 2

dσ

dρL
−

dσ

dρh

∣∣∣∣
ρL=ρh=ρℓ

. (1.5)

Instead of the light jet mass one can therefore equally well analyze the factorization for

ρL. If one only measures the left jet mass, the mass of the right jet will typically be large

so that scale hierarchy c.) applies. We find that the cross section for the left jet mass

factorizes as

dσ

dM2
L

=
∑

i=q,q̄,g

∫ ∞

0
dωR Ji(M

2
L −QωL)

∞∑

m=1

〈
H

i
m({n}, Q)⊗ Sm({n, n},ωL)

〉
. (1.6)

Since the unobserved radiation in the right hemisphere is typically hard pµ ∼ Q, we no

longer encounter a jet function for this hemisphere, in contrast to the previous case (1.4).

The hard functions also differ from the function HS
m encountered for the hemisphere soft

functions. Rather than Wilson-line matrix elements as in (1.4), the functions Hi
m are now

given by squared QCD amplitudes with a single parton of flavor i in the left hemisphere

propagating along the n̄-direction and m partons in the right hemisphere. The subsequent

branchings of the hard parton on the left are described by the jet function Ji. A graphical

representation of the factorization theorems is shown in Figure 1.

Our paper is organized as follows. In the next section, we will flesh out the factorization

formula for the hemisphere soft function and discuss its derivation which can be obtained

following the same steps as in [10]. We also present a factorization formula relevant for

the light-jet mass event shape. The soft functions in these theorems can be related to the

coft functions computed in that reference so that the only new ingredients which need to

be computed are the hard functions. After computing these in Section 3 up to O(α2
s), we

verify that we reproduce the known NNLO result for the hemisphere soft function in the

limit ωL → 0. Next, we analyze the light-jet mass distribution in Section 4 and compare to

the numerical fixed-order result for this quantity. In Section 5 discuss the necessary steps

to perform resummation for this event shape and conclude.
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1 Non-global logarithms in hemisphere-mass observables

[Add introduction]

For a given final state configuration in an e+e− collision at center-of-mass energy Q

one defines the thrust axis n⃗ as the direction of maximum momentum flow. More precisely,

the unit-vector n⃗ is chosen to maximize the quantity
∑

i |n⃗ · p⃗i|, where the sum runs over

all particles in the final state. The event shape thrust T is defined as this sum normalized

to Q. The thrust axis splits each event into a left and right hemisphere and one can define

additional event shapes by considering the invariant masses ML and MR of the particles

in the hemispheres. Two commonly used event shapes are

heavy jet mass: ρh =
1

Q2
max(M2

L,M
2
R) (1.1)

light jet mass: ρℓ =
1

Q2
min(M2

L,M
2
R) (1.2)
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Jet substructure: mJ in pp → Z + j 
Challenges and contaminations 

• Grooming can mitigate these problems 
• mMDT also eliminates NGLs in mJ 

• Analytical NLL Dasgupta, Fregoso, Marzani, Salam 
’13, Larkoski, Marzani, Soyez,Thaler ’14 

36

9

Measure        on the jet in pp    Z + j eventsm2
J

How to get to Precision Jet Substructure

Can eliminate these problems by 
grooming the jet!

non-global logs

pile-up underlying event



NNLL + O(αs2) for jet mass

Based on factorization
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Comparison with Pythia8 Monte Carlo

Almost three decades of perturbative control in a single jet distribution!

Results: NNLL+αs2 Jet Substructure
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NNLL+αs2, β = 1NNLL+αs2, β = 0

Hadronization and underlying event only dominate form2
J/p

2
T . 10�3

Frye, AJL, Schwartz, Yan 2016

15

Factorization for NNLL Resummation

41

Factorization for NNLL Resummation

Z

d�

de(2)2

=
X

k=q,q̄,g

Dk(pT , zcut, R)SC,k(zcut, e
(2)
2 )⌦ Jk(e

(2)
2 )

sum over jet flavor

includes pdfs, emissions
that were groomed

away, out-of-jet radiation,...

collinear-soft radiation

hard collinear radiation

Effective theory for soft drop 
groomed jets

Frye, AJL, Schwartz, Yan 2016

Coefficient Dk can be 
extracted from fixed-order

Only assumes collinear 
factorization of high pT jets in 

pp collisions

d�resum

dm2
J

=
X

k=q,q̄,g

Dk(pT , zcut, R)SC,k(zcutm
2
J)⌦ Jk(m

2
J)

m2
J ⌧ zcutp

2
TJ ⌧ p2TJ

Frye, Larkoski, Schwartz, Yan’16 


