Precise predictions for gauge-boson pair production processes at the LHC

Barbara Jäger University of Tübingen

what's the plan for today?

* gauge boson pair production at hadron colliders – an overview:

- why is this class of processes important?
- what has been done?
- what has not yet been done?
- * electroweak corrections to $pp \rightarrow W^+W^-$ and ZZ:
 - approximative calculations
 - details of the full calculation
 - phenomenological results

in collaboration with M. Billoni, B. Biedermann, A. Denner, S. Dittmaier, L. Hofer, L. Salfelder

what's the plan for today?

* gauge boson pair production at hadron colliders – an overview:

- why is this class of processes important?
- what has been done?
- what has not yet been sone?
- * electroweak corrections to $pp o W^+W^-$:
 - the on-shell approximation
 - · going seyond: the double-pole approximation
 - details of the calculation
 - phenomenological results

probe non-Abelian structure of the SM at high energies:

- (anomalous) triple-gauge-boson couplings
- dynamics of longitudinal massive gauge bosons

probe non-Abelian structure of the SM at high energies:

- (anomalous) triple-gauge-boson couplings
- dynamics of longitudinal massive gauge bosons

 $pp \rightarrow VV \rightarrow 4f$ constitutes important class of background processes to:

 $\$ the Higgs search in the mode $pp \rightarrow H \rightarrow VV \rightarrow 4f$

• **new physics searches** with leptons+ E_T signatures (e.g. SUSY-particle pair production)

Barbara Jäger, University of Tübingen

Eltville, Sept. 2016

$$pp \rightarrow VV \rightarrow 4f$$

constitutes important class of
background processes to:

 $\$ the Higgs search in the mode $pp \rightarrow H \rightarrow VV \rightarrow 4f$

• new physics searches with leptons+ E_T signatures (e.g. SUSY-particle pair production)

Barbara Jäger, University of Tübingen

Eltville, Sept. 2016

gauge-boson pair production @ NLO QCD

 $h_1h_2
ightarrow ZZ$:

Ohnemus, Owens (1991) / Mele, Nason, Ridolfi (1991)

 $h_1h_2
ightarrow W^\pm Z$:

Ohnemus (1991) / Frixione, Nason, Ridolfi (1992)

 $h_1h_2
ightarrow W^+W^-$:

Ohnemus (1991) / Frixione (1993)

including leptonic decays:

analytical expressions:

Dixon, Kunszt, Signer (1998) / Baur, Han, Ohnemus (1996)

implementation in public code MCFM:

Campbell, Ellis (1999)

gauge-boson pair production @ NLO QCD

 $pp
ightarrow W^+ (
ightarrow e^+
u_e) W^- (
ightarrow \mu^- \overline{
u}_\mu)$

\sqrt{s} [TeV] and cuts	$\sigma^{\scriptscriptstyle LO}$ [fb]	$\sigma^{\scriptscriptstyle NLO}$ [fb]	K-factor
7 (basic)	144	249	1.73
7 (Higgs)	7.14	15.19	2.13
14 (basic)	296	566	1.91
14 (Higgs)	13.7	34.7	2.53

numbers taken from MCFM: Campbell, Ellis, Williams (2011)

gauge-boson pair production @ NLO QCD

 $pp
ightarrow W^+ (
ightarrow e^+
u_e) W^- (
ightarrow \mu^- \overline{
u}_\mu)$

\sqrt{s} [TeV] and cuts	$\sigma^{\scriptscriptstyle LO}$ [fb]	$\sigma^{\scriptscriptstyle NLO}$ [fb]	K-factor
7 (basic)	144	249	1.73
7 (Higgs)	7.14	15.19	2.13
14 (basic)	296	566	1.91
14 (Higgs)	13.7	34.7	2.53

size of NLO-QCD corrections is large and cut-dependent

lpha not expected from variation of central scale $M_W/2 \leq \mu_f \leq 2M_W$ at LO (\leftarrow qg channels)

gauge-boson pair production & parton showers

NLO-QCD calculations matched with multi-purpose parton-shower programs PYTHIA, HERWIG, SHERPA

MC@NLO: Frixione, Webber (2002)

POWHEG:

Nason, Ridolfi (2006)

POWHEG in HERWIG++: *Hamilton (2010)* POWHEG in SHERPA:

Höche, Krauss, Schönherr, Siegert (2010) POWHEG-BOX:

Melia, Nason, Röntsch, Zanderighi (2011) aMC@NLO:

Frederix et al. (2011)

gauge-boson pair production & parton showers

♦ high- p_T tails: NLO+PS deviate from LO+PS results ($\leftarrow qg$)

- mostly: agreement between different NLO+PS simulations
- deviations between MC@NLO and POWHEG in distributions sensitive to extra jet emission

gauge-boson pair production – loop contributions

gluon-induced contributions first occur at one-loop level

considered first by

Dicus, Kao, Repko (1987); Glover, van der Bij (1989)

phenomenological study for the LHC:

Dührssen, Jakobs, van der Bij, Marquard (2005)

inclusion of off-shell effects and heavy-quark loops:

Binoth, Ciccolini, Kauer, Krämer (2005,2006);

Binoth, Kauer, Mertsch (2008)

impact depends on cuts; can be large towards NNLO QCD for $pp \rightarrow VV$

 \checkmark 2-loop master integrals for $ar{q}q
ightarrow VV$

Gehrmann, Tancredi, Weihs (2013) Gehrmann, von Manteuffel, Tancredi, Weihs (2014)

Barbara Jäger, University of Tübingen

$pp \rightarrow WW @ NNLO QCD!$

Gehrmann et al. (08/2014)

$pp \rightarrow ZZ @ NNLO QCD!$

Cascioli et al. (05/2014)

$pp \rightarrow WW$ @ NNLO QCD: going differential

Grazzini et al. (05/2016)

fully differential Monte Carlo:

allows for arbitrary cuts and distributions/correlations of leptonic decay products

realistic predictions possible

EW corrections: generic features

naive expectation:

 $lpha \sim lpha_s^2
ightarrow {
m NLO~EW} \sim {
m NNLO~QCD}$?

but: systematic enhancements possible, e.g.:

kinematic effects

◆ photon emission → mass-singular logs, e.g. $\frac{\alpha}{\pi} \ln \left(\frac{Q}{m_{\mu}}\right)$ ◆ high energies → EW Sudakov logs, e.g. $\frac{\alpha}{\pi} \ln^2 \left(\frac{Q}{M_W}\right)$

EW corrections: Sudakov logarithms

typical $2 \rightarrow 2$ process: at high energy EW corrections enhanced by large logs

$$\ln^2\left(rac{Q^2}{M_W^2}
ight)\sim 25$$
 @ energy scale of 1 TeV

universal origin of leading EW logs:

mass singularities in virtual corrections related to external lines

 \mathbf{Z} . W

soft and collinear virtual gauge bosons: \rightarrow double logs

soft or collinear virtual gauge bosons: \rightarrow single logs

EW corrections: Sudakov logarithms

compare to QED / QCD:

IR singularities of virtuals canceled by real-emission contributions

electroweak bosons massive

 \rightarrow real radiation experimentally distinguishable

non-Abelian charges of W, Z are open \rightarrow Bloch-Nordsieck theorem not applicable

M. Ciafaloni, P. Ciafaloni, Comelli; Beenakker, Werthenbach; Denner, Pozzorini; Kühn et al., Baur; ...

EW effects in PDFs

consistent calculation at NLO EW requires PDFs including $\mathcal{O}(\alpha)$ corrections and new photon PDF

MRST2004QED: first PDF set with $\mathcal{O}(\alpha)$ corrections

NNPDF2.3QED (2013): NNPDF set with $\mathcal{O}(\alpha)$ corrections

- 2013: best PDF prediction at (N)NLO QCD + NLO QED
- PDF samples for error estimate provided
- photon PDF fitted to DIS and Drell-Yan data $(10^{-5} \lesssim x \lesssim 10^{-1})$ (note lack of experimental information for large x)
- being updated; currently: NNPDF3.0QED

new physics effects in VV production

general contribution to Lagrangian for *WWV* interaction, compatible with C and P conservation:

$$egin{aligned} \mathcal{L}_{WWV} &= g_{WWV} \left[i g_1^V (W^*_{\mu
u} W^\mu V^
u - W_{\mu
u} W^{*\,\mu} V^
u) \ &+ i \kappa^V W^*_\mu W_
u V^{\mu
u} + i rac{\lambda^V}{M_W^2} W^*_{
ho\mu} W^\mu_{\
u} V^{
u
ho}
ight] \end{aligned}$$

supplied by form factors to tame unitarity violations at high energies:

$$\Delta g
ightarrow rac{\Delta g}{(1+M_{VV}^2/\Lambda^2)^2}$$

LEP bounds:

$$egin{aligned} \Delta g_1^Z &= (-0.054, 0.028), \ \Delta \kappa^\gamma = (-0.117, 0.067), \ \Delta \lambda^Z &= \Delta \lambda^\gamma = (-0.07, 0.012) \ (\mathrm{SM:} \ g_1^V &= \kappa^V = 1 \ \mathrm{and} \ \lambda^V = 0) \end{aligned}$$

higher order or new physics effects?

parameterize new physics by anomalous triple gauge boson couplings $\lambda,\,\Delta\kappa_\gamma,\,\Delta g_1^Z$

Scenario	λ	Δg_1^Z	$\Delta\kappa_\gamma$
Born/NLO EW	0	0	0
2a/2b	0	± 0.02	0
<mark>3a</mark> /3b	0	0	± 0.04
4a /4b	± 0.02	0	0

missing EW corrections can fake anomalous triple-gauge boson couplings

gauge-boson pair production beyond LO EW

 $pp \rightarrow VV \rightarrow 4$ leptons: $\mathcal{O}(\alpha)$ corrections more challenging than QCD corrections:

- \rightarrow first step: employ approximations:
- retain only universal logarithms that are large at high energies
- double pole approximation for gauge bosons

Accomando, Denner, Pozzorini, Kaiser (2001-2004)

Barbara Jäger, University of Tübingen

on-shell gauge-boson pair production @ NLO EW

 $\mathcal{O}(lpha)$ corrections to pp
ightarrow VV

Bierweiler, Kasprzik, Kühn, Uccirati (2012-2013)

Baglio, Ninh, Weber (2013)

 → EW corrections negative and small for inclusive x-secs,
 but can be large and negative in tails of distributions (universal Sudakov logarithms)

photon-induced contributions to pp ightarrow VV

non-vanishing PDFs for photons in proton \rightarrow need to consider sub-processes of type $\gamma\gamma \rightarrow VV$ at LO

effects are small for inclusive x-secs, but up to several tens of percent for some distributions relative to dominant $q\bar{q}$ processes at LO,

ightarrow can be of the same size as EW corrections to ar q q
ightarrow VV, but opposite in sign

on-shell gauge-boson pair production @ NLO EW

Bierweiler, Kasprzik, Kühn, Uccirati (2012)

$pp \rightarrow VV$ and parton shower in HERWIG++

Gieseke Kasprzik, Kühn (2014)

- * combination of fixed-order calculation for $pp \rightarrow VV$ with parton shower
- * leptonic decays are handled by HERWIG++
- * QCD and EW effects combined

$$egin{aligned} d\sigma_{ ext{QCD} imes ext{EW}} &= \ & K_{ ext{weak}}(\hat{s},\hat{t}) imes d\sigma_{ ext{QCD}} \end{aligned}$$

beyond the on-shell approximation at tree-level

resonant contributions of type $ar q q
ightarrow W^+W^-
ightarrow \ell^+
u \ell^- ar
u$

 $egin{array}{ll} \gamma\gamma
ightarrow W^+W^- \
ightarrow \ell^+
u \ell^- ar
u \end{array}$

non-resonant contributions in all channels

NLO-EW beyond the on-shell approximation

leading order: full off-shell calculation

- * light quark contributions (q = u, d, c, s)
- $* b \overline{b}$ -induced contributions (< 2%)
- * photon-induced contributions (< 1%)

real-emission and virtual contributions:

for light quark channels use full off-shell calculation or double pole approximation

(analogous to Racoon approach for $e^+e^- \rightarrow 4$ fermions [Denner, Dittmaier, Roth, Wackeroth (1999-2002)])

the double pole approximation (DPA)

full EW corrections to pp
ightarrow 4 fermions challenging

 \rightarrow compute tree-level contributions exactly, resort to double pole approximation for virtuals

(analogous to Racoon approach for $e^+e^- \rightarrow 4$ fermions [Denner, Dittmaier, Roth, Wackeroth (1999-2002)])

the double pole approximation (DPA)

- * doubly-resonant diagrams fully considered
- * = expansion around poles
- * expect error $\sim \Gamma_W/M_W$ w.r.t full EW calculation
- $\ensuremath{\ast}$ structure of corrections simpler \rightarrow faster code

the full off-shell calculation: $pp ightarrow 4\ell$

* all resonant and non-resonant diagrams contributing to $\bar{q}q
ightarrow 4\ell$ fully considered

***** complex-mass scheme for weak boson resonances:

$$m_V^2
ightarrow m_V^2 + i m_V \Gamma_V$$

 \rightarrow applicable and gauge-invariant everywhere in phase space

* tensor loop integrals (up to hexagons) evaluated with COLLIER

* per channel: $\sim 10^3$ diagrams \rightarrow CPU intensive

Barbara Jäger, University of Tübingen

real emission contributions

... full matrix elements for two classes of processes

... encounter IR divergences that need to be handled with care

 \rightarrow Catani-Seymour type subtraction procedure adapted for EW corrections [*Dittmaier* (1999)]

some more details on the calculation

* phase-space integration:

multi-channel integrator based on Monte-Carlo for $\gamma\gamma \rightarrow 4$ fermions [Bredenstein, Dittmaier, Roth (2005)]

* matrix elements computed via in-house Mathematica routines, converted into Fortran code

- * all leading-order and real emission amplitudes compared with MadGraph
- * independent calculation based on RECOLA
 ("recursive computation of one-loop amplitudes")

EW input parameter scheme

st EW parameters obtained from G_{μ}, M_W, M_Z via

$$\cos heta_W = M_W/M_Z\,, lpha_{G_\mu} = rac{\sqrt{2}G_\mu M_W^2 \sin^2 heta_W}{\pi} \quad (G_\mu ext{ scheme})$$

 accounts for higher order corrections associated with running coupling and universal top-mass corrections to *ρ* parameter

* contributions involving photon radiation effects: use instead $\alpha(0)$ as effective coupling [c. f. Denner (1993)]

$pp ightarrow WW ightarrow e^+ u_e \mu^- ar{ u}_\mu$: phenomenological setup

NNPDF2.3qed factorization scale $\mu_F = M_W$ photon recombination

minimal cuts: $p_{T,\ell} > 20 \; ext{GeV}, \; \; |y_\ell| < 2.5$ jet veto: $p_{T,j} > 100 \; ext{GeV}$

ATLAS cuts:

 $p_{T,\ell} > 20 \text{ GeV}, \; |y_\ell| < 2.5$ $p_{T,\ell}^{ ext{leading}} > 25 ext{ GeV}, \; E_T^{ ext{miss}} > 25 ext{ GeV}, \ R_{e\mu} > 0.1, \; M_{e\mu} > 10 ext{ GeV}$ jet veto: not jets with $p_{T,j} > 25 ext{ GeV}$

$pp ightarrow W^+W^-$: cross section contributions

	$\sigma^{ m LO}_{ar q q}$ [fb]	$\delta^{ m NLO}_{ar q q}$ [%]	$\delta^{q eq b}_{q\gamma}$ [%]	$\delta_{\gamma\gamma}$ [%]	$\delta_{b\gamma}$ [%]
LHC8	238.65(3)	-3.28	0.44	0.84	1.81
LHC13	390.59(3)	-3.41	0.49	0.73	2.30
ATLAS8	165.24(1)	-3.56	-0.26	1.01	0.18
ATLAS13	271.63(1)	-3.71	-0.27	0.87	0.23

$$pp
ightarrow W^+W^-$$
: cross section contributions

	$\sigma^{ m LO}_{ar q q}$ [fb]	$\delta^{ m NLO}_{ar q q}$ [%]	$\delta^{q eq b}_{q\gamma}$ [%]	$\delta_{\gamma\gamma}$ [%]	$\delta_{b\gamma}$ [%]
LHC8	238.65(3)	-3.28	0.44	0.84	1.81
LHC13	390.59(3)	-3.41	0.49	0.73	2.30
ATLAS8	165.24(1)	-3.56	-0.26	1.01	0.18
ATLAS13	271.63(1)	-3.71	-0.27	0.87	0.23

full calculation very well reproduced by DPA:

LHC13 (DPA) :
$$\delta^{
m NLO}_{ar q q} = -2.91\%$$

ATLAS13 (DPA) : $\delta^{
m NLO}_{ar q q} = -3.18\%$

transverse-momentum distribution (DPA)

Billoni et al. (2013)

no jet veto:

- * $\delta_{ar{q}q} = -30\%$ for $p_{T,e} = 900~{
 m GeV}$ (Sudakov logs)
- * $\delta_{\gamma\gamma} =$ up to +10 %
- * $\delta_{\gamma q}$ large due to soft W emission (same effect in QCD corrections leads to huge K factors)

 \rightarrow apply jet veto

transverse-momentum distribution (DPA)

Billoni et al. (2013)

no jet veto:

- * $\delta_{\bar{q}q}$ up to –30 %
- * $\delta_{\gamma\gamma}$ up to +10 %
- * $\delta_{\gamma q}$ up to +30 %
 - \rightarrow apply jet veto:

*
$$\delta_{\gamma q} < 5\%$$
 even at high p_T
* δ_{EW} = -20% for $p_{T,e}$ = 900 GeV

angular distributions (DPA) ...

... in general only marginally affected by EW corrections

invariant mass distribution

Biedermann et al. (2016)

* large negative corrections in $\bar{q}q$ channel,

- * positive contributions from $\gamma\gamma$ channel
- ightarrow sum of corrections moderate even at high values of $M_{e\mu}~(<10\%)$

error estimate of the approximation

error estimate of the NLO EW calculation

(impact of missing 2-loop EW corrections):

$$\Delta \sim (\delta_{
m EW})^2$$

error estimate of the DPA:

$$\Delta_{\rm DPA} \sim \max\left\{ (\delta_{\rm EW}^{\rm DPA})^2, \ \frac{\alpha}{\pi} \frac{\Gamma_W}{m_W} \ln(\ldots), \ |\delta_{\rm EW}^{\rm DPA}| \times \frac{\sigma_{\rm LO} - \sigma_{\rm LO}^{\rm DPA}}{\sigma_{\rm LO}^{\rm DPA}} \right\}$$

(1) missing 2-loop EW corrections
 (2) missing off-shell contributions in regions where the DPA applies
 (3) change of NLO EW corrections due to failure of DPA

DPA versus full calculation

Biedermann et al. (2016)

rapidity and invariant-mass distributions: good agreement between DPA and full calculation

DPA versus full calculation

 doubly-resonant diagrams strongly suppressed

* singly-resonant diagrams dominate: ($e\mu$) pair recoils against ($\nu_{\mu}\bar{\nu}_{e}$) pair

Biedermann et al. (2016)

poor agreement between DPA and full calculation for transverse-momentum of lepton pair

Barbara Jäger, University of Tübingen

Eltville, Sept. 2016

$pp ightarrow ZZ ightarrow \mu^+ \mu^- e^+ e^-$: phenomenological setup

NNPDF2.3qed factorization scale $\mu_F = M_Z$

 $\begin{array}{l} \mbox{Higgs-search specific cuts:} \\ p_{T,\ell} > 6 \; {\rm GeV}, \;\; |y_\ell| < 2.5 \; , \\ \Delta R_{\ell\ell} > 0.2 \; , \\ \mbox{40 GeV} < M_{\ell_1^+ \ell_1^-} < 120 \; {\rm GeV} \; , \\ \mbox{12 GeV} < M_{\ell_2^+ \ell_2^-} < 120 \; {\rm GeV} \; , \\ \mbox{M}_{4\ell} > 100 \; {\rm GeV} \end{array}$

$pp ightarrow \mu^+ \mu^- e^+ e^-$: weak and photonic corrections

process without charged currents at LO

 \rightarrow can perform gauge-invariant decomposition into weak and photonic corrections

 $pp \rightarrow ZZ \rightarrow \mu^+\mu^-e^+e^-$: cross sections

\sqrt{s} [TeV]	$\sigma^{ m LO}_{ar q q}$ [fb]	$\delta^{ ext{EW}}_{ar{q}q} [\%]$	$\delta^{ ext{weak}}_{ar{q}q} [\%]$
7	7.3293(4)	-3.4	-3.3
8	8.4704(2)	-3.5	-3.4
13	13.8598(3)	-3.6	-3.6
14	14.8943(8)	-3.6	-3.6

(recall: Higgs-search specific setup)

total xsec dominated by ZZ on-shell production

- weak corrections moderate
- photonic corrections negligible

$pp ightarrow ZZ ightarrow \mu^+ \mu^- e^+ e^-$ as a Higgs background

 radiative tails below thresholds and peaks (caused by cuts and mass spectrum)

 weak corrections change sign at ZZ threshold

→ approximation based on global rescaling factor does not work

scale dependence

choice of factorization scale:

fixed scale: $\mu_{
m F}=\xi M_W$ dynamical scale: $\mu_{
m F}=\xi M_{WW}$

vary ξ in range (0.5, 2)

ightarrow overall change of x-sec : $\sim 8\%$

(mostly PDF effect)

combination of QCD and EW corrections

EW corrections insensitive to scale choice

combination with QCD corrections
 via factorization ansatz:

$$egin{array}{rll} d\sigma^{
m best} &= d\sigma^{
m QCD}_{qq} imes \left(1+\delta^{
m EW}_{qq}
ight) \ &+ d\sigma_{gg}+d\sigma_{\gamma\gamma}+d\sigma_{q\gamma} \end{array}$$

summary

first computation of EW corrections to $pp \rightarrow 4$ leptons that gives full access to leptonic final state:

- * EW corrections to integrated x-sec small
- * sizable effects in tails of distributions (Sudakov logarithms)
- * $\gamma\gamma$ induced contributions non-negligible
- * γq induced contributions can be suppressed by jet veto
- * scale dependence small

conclusions

* weak boson pair production processes provide powerful probes of the structure of the Standard Model

e.g. triple gauge boson couplings

* serve as important backgrounds

... to searches for the Higgs boson ... to searches for new physics

- * impact of radiative corrections can be large and dependent on experimental selection criteria
 - \rightarrow to achieve precision required by experiment:
 - consider QCD and EW corrections
 - disregard (on-shell, high-energy, ...) approximations

Thank You.

backup slides ...

... for details and supplementary material

the double-pole approximation (DPA)

the double-pole approximation (DPA)

$$egin{aligned} \mathcal{M}_{ ext{DPA}} &\sim & \sum_{pol} rac{1}{k_{W^+}^2 - M_W^2 + i M_W \Gamma_W} rac{1}{k_{W^-}^2 - M_W^2 + i M_W \Gamma_W} \ & imes \mathcal{M}^{ar{q}q o W^+ W^-} imes \mathcal{M}^{W^+ o
u \ell^+} imes \mathcal{M}^{W^- o ar{
u} \ell^-} \end{aligned}$$

on-shell production

on-shell decay

off-shell propagators

Barbara Jäger, University of Tübingen

on-shell projection in DPA

kinematics:
$$a(p_a) + b(p_b) o W^+(k_+) + W^-(k_-) \ o f_1(k_1) + ar{f}_2(k_2) + f_3(k_3) + ar{f}_4(k_4)$$

gauge invariance requires on-shell kinematics in production and decay amplitudes

 \rightarrow need to replace off-shell W momenta with on-shell projections such that

$$\hat{k}_W^2 = M_W^2$$

virtual corrections in DPA

* factorizable corrections to production

* factorizable corrections to decay of W^-

* factorizable corrections to decay of W^+

* non-factorizable corrections (soft photon exchange)

virtual corrections in DPA

* factorizable corrections to production

* factorizable corrections to decay of W^-

* factorizable corrections to decay of W^+

* non-factorizable corrections (soft photon exchange)

factorizable virtual corrections in DPA

$$egin{aligned} \mathcal{M}_{ ext{DPA}}^{ ext{virt, fact}} &\sim \sum_{pol} & rac{1}{\left(k_{W^+}^2 - M_W^2 + i M_W \Gamma_W
ight)} \cdot rac{1}{\left(k_{W^-}^2 - M_W^2 + i M_W \Gamma_W
ight)} \ & imes \left\{ & \delta \mathcal{M}^{ar{q}q o W^+W^-} imes \mathcal{M}^{W^+ o
u \ell^+} imes \mathcal{M}^{W^- o ar{
u} \ell^-} \ &+ & \mathcal{M}^{ar{q}q o W^+W^-} imes \delta \mathcal{M}^{W^+ o
u \ell^+} imes \delta \mathcal{M}^{W^- o ar{
u} \ell^-} \ &+ & \mathcal{M}^{ar{q}q o W^+W^-} imes \mathcal{M}^{W^+ o
u \ell^+} imes \delta \mathcal{M}^{W^- o ar{
u} \ell^-} \end{aligned}$$

Barbara Jäger, University of Tübingen

Eltville, Sept. 2016

virtual corrections in DPA

* factorizable corrections to production

* factorizable corrections to decay of W^-

st factorizable corrections to decay of W^+

* non-factorizable corrections (soft photon exchange)

non-factorizable virtual corrections in DPA

* non-factorizable corrections (soft photon exchange)

improved Born approximation

for $M_{WW} < 2m_W + \Delta_m$:

replace DPA with improved Born approximation (captures dominant parts of virtual corrections)

[Denner, Dittmaier, Roth, Wackeroth (2001)]

with adjusted couplings

Coulomb singularity (damped away from threshold)