

Hadron Spectroscopy and Heavy Ion Results at LHCb

G. Passaleva On behalf of the LHCb collaboration

> 55th International Winter Meeting on Nuclear Physics Bormio, January 23-27, 2017

- LHCb has a wide hadronic physics program: QCD, EW, spectroscopy, heavy ions
- Spectroscopy of exotic states
 - ★ Observation of pentaquarks in Λ_b →J/ ψ pK
 - ★ Observation of exotic states in $B^+ \rightarrow J/\psi \phi K^+$
- Heavy ions
 - ★ Results from pPb collisions
 - ★ Fixet target program
 - ★ First look at pPb run in 2016
- Conclusions

27/01/2017

55th International Winter Meeting on Nuclear Physics

Muon system [IJMPA 30 (2015) 1530022] **RICH detectors** μ identification $\epsilon(\mu \rightarrow \mu) \sim 97$ %, [JINST 3 (2008) S08005] $K/\pi/p$ separation mis-ID $\varepsilon(\pi \rightarrow \mu) \approx 1-3 \%$ mis-ID $\varepsilon(\pi \rightarrow K) \sim 5 \%$ **Vertex Detector** reconstruct vertices decay time resolution: 45 fs IP resolution: 20 μm **Tracking system: TT and OT Calorimeters (ECAL, HCAL)** momentum resolution energy measurement Dipole Magnet $\Delta p/p = 0.5\% - 1.0\%$ e/y identification bending power: 4 Tm (5 GeV/c – 100 GeV/c) $\Delta E/E = 1\% \oplus 10\%/VE(GeV)$

27/01/2017

55th International Winter Meeting on Nuclear Physics

Chick Spectroscopy at LHCb

- LHCb particularly suitable for hadron spectroscopy:
 - ★ Large production cross section
 - ★ Excellent mass resolution
 - **\star** Excellent vertexing and PID (\rightarrow low background)
- Many new states have been observed in heavy flavor spectroscopy: see for example the charmonium spectrum
- Many of them can be interpreted as "standard" hadronic states while others require an "exotic" interpretation

27/01/2017

55th International Winter Meeting on Nuclear Physics

Litch Experimental efforts on charmonium-like exotics

• Spectroscopy studies in LHCb are part of a worldwide experimental effort (see also the talk by S.L. Olsen)

27/01/2017

55th International Winter Meeting on Nuclear Physics

INFN

LHCb Experimental efforts on charmonium-like exotics

		et to the second		×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Y(4260)	pp̄ incl.	pp incl .
$J/\psi \pi^+\pi^-$	X(3872)	Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^+\pi^-$		Y(4360) Y(4660)					
$\Lambda_c \overline{\Lambda}_c$		Y(4630)					
ψγ	X(3872)						
$\chi_{c1}(1P)\gamma$	X(3832)						
$\chi_{c1}(1P)\omega$				Y(4220)			
J/ψ ω	X(3872) Y(3940)			X(3915)			
${ m J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)			X(4350)			
${ m J}/\psi\pi$	Z(4430) Z(4200) Z(4240)				Z(3900)		
$\psi(2S)\pi$	Z(4430)						
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)						
$h_c(1P)\pi$					Z(4020)		
\overline{DD}				Z(3930)			
$D\overline{D}^*$	X(3872)		X(3940)		Z(3885)		
$D^*\overline{D}^*$			X(4160)		Z(4025)		
J/ψ_P	P _c (4380) P _c (4430)						
$B_s^0 \pi$						X(5568)	-
/01/2017	55t	h International	Winter Meeting	g on Nuclear Ph	vsics		G. Passa

$\frac{\mu}{\mu}$ Observation of pentaquarks in $\Lambda_{b} \rightarrow J/\psi pK$

- The decay proceeds through diagram a) dominated by decays into Λ^* resonances
- It can also proceed through exotic states decaying to $J/\psi p$ (diagram b)

27/01/2017

55th International Winter Meeting on Nuclear Physics

Full amplitude analysis

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb Observation of pentaquarks in $\Lambda_{\rm b} \rightarrow J/\psi p K_{\rm b}$

- Full amplitude analysis needed to correctly interpret the data ۲
- A fit with the full set of Λ resonances not enough to reproduce the data • need to include additional <u>resonant</u> states !

LHCb

These states have minimal guark content: $c\overline{c}uud$ Therefore they are considered charmonium pentaguarks Other J^{P} combinations: $(3/2^{+}, 5/2^{-}), (5/2^{+}, 3/2^{-})$ are possible but slightly disfavoured

MeV)

O 700 ما

Events/(15

200

(b)

55th International Winter Meeting on Nuclear Physics

(b)

[PRL 115

(2015)

0720011

<u>*LHcb*</u> Observation of pentaquarks in $\Lambda_b \rightarrow J/\psi pK$

[PRL 115 (2015) 072001]

G. Passaleva 10

- The resonant character of the new states can be studied by plotting Im(A) vs $\mathcal{R}e(A)$ for 6 bins of $m(J/\psi p)$ between $-\Gamma$ and Γ , where A is the BW amplitude of the states (Argand diagram)
- P_c(4450) shows the rapid phase shift close to the mass pole typical of a resonant state
- The situation is less clear for P_c(4380), more statistics needed

 These results constrain the models of the internal binding mechanism: J^P, mass, width of two states must be explained ! (see e.g. Tim's presentation!)

27/01/2017

$\frac{LHCb}{MCD}$ Model independent analysis of $\Lambda_{b} \rightarrow J/\psi pK$

- A model independent analysis is very important to confirm the P_c states.
- Angular distributions are fitted with a series of Legendre polinomials with mass-dependent upper limits on possible angular momenta
- The null hypothesis (i.e. no P_c states) does not reproduce the data; need to include the new states to describe the peaking structure around 4450 MeV and other features of $m_{J/\psi p}$ spectrum
- The significance of the additional states is $> 9\sigma$

27/01/2017

55th International Winter Meeting on Nuclear Physics

$H = \frac{1}{2} \nabla F$ The decay $\Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-}$

- Paper on observation of his decay just released on arXiv:1701.05274, subm. to PLB
- It may proceed through P_c states with open strangeness: $udscar{c}$
- It is the analogous of $\Lambda_b \rightarrow J/\psi pK$ with an s spectator quark

**only L candidates made with 2 long tracks

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb Exotic states in $B^+ \rightarrow J/\psi \phi K^+$

- Exotic structures have been observed in the J/ $\psi\phi$ mass spectrum in the B⁺ \rightarrow J/ $\psi\phi$ K decays
- Experimental situation confusing: some experiments saw narrow X(4140) [i.e. Y(4140)], some didn't.; possibly a $2^{nd} J/\psi\phi$ structure in B decays, X(4274), but seen at inconsistent mass. No published claim of its significance.

27/01/2017

Phys. Rev. Lett. 118 (2017) 022003 Phys. Rev. D95 (2017) 012002

• LHCb exploits the largest sample of $B^+ \rightarrow J/\psi \phi K^+$ decays so far, trying to shed light on these states.

27/01/2017

LHCD Exotic states in $B^+ \rightarrow J/\psi \phi K^+$

27/01/2017

55th International Winter Meeting on Nuclear Physics

Phys. Rev. Lett. 118 (2017) 022003 Phys. Rev. D95 (2017) 012002

- Guidance from quark model was used to inform choices for K^{*} sector
- Try both known and unknown K* states
- Clear evidence that K* states only are not sufficient to reproduce data. Need additional states

55th International Winter Meeting on Nuclear Physics

<u>LHCb</u> Exotic states: summary of LHCb measurements

INFN	

ICb

				······································	Y(4260)	n= incl	an incl
	X(3872)	•	•		-	pp mei.	pp mei.
$J/\psi \pi^+ \pi^-$		Y(4260) Y(4008)				X(3872)	X(3872)
$\psi(2S)\pi^+\pi^-$		Y(4360) Y(4660)					
$\Lambda_c \overline{\Lambda}_c$		Y(4630)					
ψγ	X(3872)						
$\chi_{c1}(1P)\gamma$	X(3032)			N((220)			
$\chi_{c1}(IP)\omega$	X(7082)			Y(4220)			
$J/\psi \omega$	X(3872) Y(3940)			X(3915)			
${ m J}/\psi\phi$	X(4140) X(4274) X(4500) X(4700)			X(4350)			
$J/\psi \pi$	Z(4430) Z(4200) Z(4240)				Z(3900)		
$\psi(2S)\pi$	Z(4430)						
$\chi_{\rm c1}(1{\rm P})\pi$	Z(4051) Z(4248)						
$h_c(1P)\pi$					Z(4020)		
$D\overline{D}$				Z(3930)			
$D\overline{D}^*$	X(3872)		X(3940)		Z(3885)		
$D^*\overline{D}^*$			X(4160)		Z(4025)		
J/ψ_P	$P_{c}(4380)$ $P_{c}(4430)$						
$B_s^0 \pi$						X(5568)	-
27/01/2017	7	55th Internat	ional Winter M	eeting on Nucle	ear Physics		G. Pass

HEAVY ION RESULTS

27/01/2017

55th International Winter Meeting on Nuclear Physics

- LHCb is specialised in heavy flavour precision physics but some characteristics make it attractive for measurements in Heavy ion physics:
 - ★ Detector fully instrumented in the forward region nicely complementary to other LHC experiments
 - ★ Precise vertexing: separation of prompt production from *B* decay products
 - ★ Precise tracking: reconstruction down to $p_T=0$
 - ★ Particle identification: reconstruction of (exclusive) hadronic decays

27/01/2017

Heavy ion operation modes

• LHCb can operate in collider mode, fixed target mode or both in parallel!

• Collider mode: Fixed target mode: forward/backward coverage central and backward coverage with Vs_{NN} between SPS and RHIC

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb heavy ion samples

N.B precise luminosity determination in progress

	year	beam1	beam2/target	√s _{NN} (GeV)	∫L (nb⁻¹)
	2013	р	Pb	5023	1.1
d	2013	Pb	p	5023	0.5
h/Aq	2016	р	Pb	5023	0.6
	2016	р	Pb	8162	12.8
	2016	Pb	р	8162	17.7
Pb-Pb	2015	Pb	Pb	5125	3-5x10 ⁻³
Fixet Target	2012	р	Ne	87	pilot run
	2013	Pb	Ne	54	pilot run
	2015	р	Ne	110	~0.5
	2015	р	He	110	~0.5
	2015	р	Ar	110	~4
	2015	р	Ar	69	n.a.
	2015	Pb	Ar	69	n.a.
	2016	р	He	110	~2
	2016	р	Не	87	n.a.

27/01/2017

Production Pb collisions: production of heavy quarkonia

INFN

- Candidates fully reconstructed from well identified muons
- Prompt J/ ψ , ψ (2S) and Υ (nS) and those from b decay separated using pseudo-decay time (t_z)

LHCb is unique in separating the two components in the forward acceptance

$\frac{\mu}{\mu}$ pPb collisions: production of J/ ψ and ψ (2S)

- Prompt J/ ψ : strongly suppressed in forward region, significant signs of CNM effects
- J/ ψ from b: modest suppression in forward region \rightarrow Suggests suppression of b-hadron production
- Prompt $\psi(2S)$: more suppressed than J/ ψ , intriguing suppression in backward rapidity \rightarrow energy loss + shadowing don't explain $\psi(2S)$ suppression in backward rapidity, requiring other mechanisms
- ψ (2S) from b: suppression consistent with that of J/ ψ from b

27/01/2017

LHCb Collider mode: production of $\Upsilon(1S)$

• Nuclear modification factor is the key observable

$$R_{pPb} = \frac{1}{A} \times \frac{d\sigma_{pPb}/dy}{d\sigma_{pp}/dy}$$

- Suppression in forward region is smaller than for J/ψ, but close to that of J/ψ from b → CNM effects on open b hadrons and bottomonia are not very different
- Hint of enhancement in the backward region → could be effect of anti-shadowing
- Data agree with prediction of energy loss + shadowing

EPS09LNO (shadowing + CEM): IJMP E 22 (2013) 1330007 Energy Loss: JHEP 03 (2013) 122, JHEP 05 (2013) 155

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb Prompt D⁰ production in pPb collisions

- D⁰ reconstruction in the hadronic decay mode $D^0 \rightarrow K^-\pi^+$ down to $p_T = 0$
- Particle identification using the RICH Cerenkov detectors
- Vertexing information to select displaced vertices
- Impact parameter to separate prompt production from B decays.

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb-CONF-2016-003

LHCb Prompt D⁰ production in pPb collisions

- In addition to R_{pPb} consider also the forward-backward ratio
- Measure it in a common rapidity range 2.5 < |y| < 4
- No input from pp cross-section and cancelation of experimental systematic uncertainties
- Good agreement with models based on pQCD and nuclear PDF EPS09NLO Nucl.Phys. B373 (1992) 295

27/01/2017

55th International Winter Meeting on Nuclear Physics

G. Passaleva 26

 $R_{FB}(p_T, |y^*|) = \frac{\sigma_{pPb}(p_T, y^*)}{\sigma_{Pbp}(p_T, y^*)}$

- LHCb is optimised for low multiplicity events (flavour physics). Nevertheless...
- ...LHCb took part for the first time to a LHC PbPb run in 2015, with emphasis on low multiplicity events.
- All sub-detectors running in nominal configuration
- 3-5 µb⁻¹ integrated luminosity
- Basic quantity in heavy ion collisions: centrality
- Related to overlap of colliding nuclei; determines the number of nucleons taking part in the collision
 related to the multiplicity in the event !

• What is the LHCb centrality reach ?

27/01/2017

PbPb collisions in LHCb: centrality reach

- Observable to measure event activity: energy E_{CAL} deposited in the calorimeters, which is not saturated even at large multiplicities. Tracking variables saturate at high multiplicity !
- Track reconstruction possible only up to 15000 VELO hits (using standard pp reconstruction algorithms: this corresponds to the 50-100% event activity region (based on E_{CAL} energy)

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb THCp J/ψ and D⁰ signals in PbPb collisions

1800

35

G. Passaleva 29

1950

 $M(K\pi)$ [MeV/c²]

1900

1850

55th International Winter Meeting on Nuclear Physics

$\frac{LHCb}{MCP}$ K⁰_S and Λ signals in PbPb collisions

G. Passaleva 30

INFN

LHCb Fixed target physics with LHCb

- Gas can be injected inside the LHC vacuum, in the VELO volume (SMOG device)
- Used to determine the luminosity but since 2015 is used to collect physics data. JINST 7 (2012) P01010
- The pressure in the LHC when the gas is injected is ~2x10⁻⁷ mbar (instead of 10⁻⁹ mbar with no injection)
- Several data samples taken with He, Ne, Ar, at different Vs_{NN}

	year	beam1	beam2/target √	s _{nn} (GeV)	∫L (nb⁻¹)
	2012	р	Ne	87	pilot run
	2013	Pb	Ne	54	pilot run
t d	2015	р	Ne	110	~0.5
Targ	2015	р	Не	110	~0.5
	2015	р	Ar	110	~4
xet	2015	р	Ar	69	n.a.
Ê	2015	Pb	Ar	69	n.a.
	2016	р	Не	110	~2
	2016	р	Не	87	n.a.

Imaging of beams with gas collisions

27/01/2017

LHCb Fixed target physics with LHCb

- Collisions at energies unique to LHCb
- Energies between SPS and RHIC
- Probes the negative rapidity region
- COSMIC RAY PHYSICS @ LHCb: pHe collisions will provide $\sigma(pHe \rightarrow \overline{p} X)$ crucial for the interpretation of major cosmic ray physics results

Analysis ongoing

27/01/2017

55th International Winter Meeting on Nuclear Physics

- pPb @ 5 TeV: LHCb injected Helium for the fixed target program with the 4 TeV proton beam, and • collected heavy flavour pPb triggers in parallel
- pPb + Pbp @ 8 TeV: collected 10⁹ minimum bias events and heavy flavour triggers for each configuration ۲
- Thanks to excellent performances of LHC, LHCb collected much more data than anticipated: 0.3 nb⁻¹ in 0 pPb at 5 TeV and 30 nb⁻¹ in pPb+Pbp at 8 TeV

Hick Conclusions

- LHCb is providing a wealth of results on hadron physics both from pp and from heavy ion collisions
- I have reviewed a few selected recent results on spectroscopy of exotic states
 - ★ Observation of penta-quarks
 - ★ Observation of (new) exotic X states
 - ★ Many results also in standard hadron spectroscopy
- LHCb has also a solid heavy ion physics program featuring also a unique fixed target mode
 - ★ Many data taking run at different c.o.m energies and different beam/target combinations
 - ★ Unique opportunity to measure pA cross sections useful also for astroparticle physics
 - ★ First results coming out
 - ★ Many more to come !

THANK YOU!

27/01/2017

55th International Winter Meeting on Nuclear Physics

BACKUP

27/01/2017

55th International Winter Meeting on Nuclear Physics

LHCb Fit of angular distributions

- They greatly increase discrimination power between resonances of different J^P
- Without using full decay phase-space difficult to do efficiency correction correctly

27/01/2017

55th International Winter Meeting on Nuclear Physics

<u>*LHCb*</u> Cabibbo suppressed decays: $\Lambda_b \rightarrow J/\psi p\pi$

- Evidence for exotic states searched for also in Cabibbo-suppressed decays $\Lambda_b \rightarrow J/\psi p\pi$
- Much lower statistics !
- Full amplitude analysis performed, including P_c(4380)⁺, P_c(4450)⁺, Z_c(4200)⁻ states

27/01/2017

55th International Winter Meeting on Nuclear Physics

G. Passaleva 38

(2016)

0820031

<u>*LHCb*</u> Cabibbo suppressed decays: $\Lambda_b \rightarrow J/\psi p\pi$

[PRL 117 (2016) 082003]

- Significance of $P_c(4380)^+$, $P_c(4450)^+$, $Z_c(4200)^-$ taken together is 3.1 σ
- Individual exotic hadron contributions are not significant
- Evidence for exotic hadron contributions to $\Lambda_b \rightarrow J/\psi p\pi$

27/01/2017

55th International Winter Meeting on Nuclear Physics

<u>*LHCb*</u> Model independent analysis of $\Lambda_b \rightarrow J/\psi pK$

A model independent analysis id very important to confirm the P_c states.

1. The $\cos\theta_{\Lambda^*}$ (helicity angle of Kp system) the distribution is expanded in series of Legendre polynomials: $dN/d\cos\theta_{\Lambda^*} = \sum_{lmax}^{lmax} \langle P_l^U \rangle P_l(\cos\theta_{\Lambda^*})$

[PRL 115

(2015)

0720011

2. A null hypothesis (i.e. no P_c states) H_0 is defined by setting l_{max} as a function of m_{Kp} taking into account only the known and predicted Λ^* states

$\overset{hlcb}{\longrightarrow} Model independent analysis of \Lambda_b \rightarrow J/\psi pK$

- Amplitude analysis of $\Lambda_b \rightarrow J/\psi pK$ shows the necessity to include two P_c states in addition to many Λ^* states to explain the data
- Theoretical models predict a much larger number of Λ^{\ast} states than is established experimentally
- Non resonant contributions may also be present
- A model independent analysis is therefore very important to confirm the P_c states.
- 1. The $\cos\theta_{\Lambda *}$ distribution is expanded in series of Legendere polynomials:

$$dN/d\cos heta_{\Lambda^*} = \sum_{l=0}^{max} \langle P_l^U \rangle P_l\left(\cos heta_{\Lambda^*}
ight)$$

2. A null hypothesis (i.e. no P_c states) H_0 is defined by setting I_{max} as a function of m_{Kp} taking into account only the known and predicted Λ^* states

27/01/2017

55th International Winter Meeting on Nuclear Physics

G. Passaleva 41

PRL 117 (2016) 082002

• Try to model the $m_{\phi K}$ spectrum with K^{*} states.

Phys. Rev. Lett. 118 (2017) 022003 Phys. Rev. D95 (2017) 012002

- Guidance from quark model was used to inform choices for K^{*} sector
- Try both known and unknown K* states

Clear evidence that K* states only are not sufficient to reproduce data. Need additional states

27/01/2017

55th International Winter Meeting on Nuclear Physics

Phys. Rev. Lett. 118 (2017) 022003 Phys. Rev. D95 (2017) 012002

- Lighter X state masses consistent with previous measurements
- However, X(4140) width substantially larger
- Higher mass states X(0⁺) are new !
- J^{PC} combinations are those *preferred* by the fit.

Contri-	signif.		Fit results	
bution		M_0 [MeV]	Γ_0 [MeV]	FF %
All $X(1^+)$				$16\pm3 \ ^{+ \ 6}_{- \ 2}$
X(4140)	8.4σ	$4146.5 \pm 4.5 {}^{+4.6}_{-2.8}$	$83\pm21^{+21}_{-14}$	$13.0 \pm 3.2 {}^{+4.8}_{-2.0}$
av. prev. meas		4143.4 ± 1.9	15.7 ± 6.3	
X(4274)	6.0σ	$4273.3 \pm 8.3 \substack{+17.2 \\ -3.6}$	$56 \pm 11 + 8 \\ -11$	$7.1 {\pm} 2.5 {+}^{+3.5}_{-2.4}$
CDF		$4274.4^{+8.4}_{-6.7} \pm 1.9$	$32^{+22}_{-15}\pm 8$	
CMS		$4313.8 {\pm} 5.3 {\pm} 7.3$	$38^{+30}_{-15}\pm 16$	
All $X(0^+)$				$28\pm 5\pm 7$
X(4500)	6.1σ	$4506 \pm 11 {}^{+12}_{-15}$	$92{\pm}21{}^{+21}_{-20}$	$6.6 \pm 2.4 {}^{+3.5}_{-2.3}$
X(4700)	5.6σ	$4704 \pm 10 {}^{+14}_{-24}$	$120 \pm 31 {}^{+42}_{-33}$	$12\pm 5 \ ^{+9}_{-5}$

X(4140) summary

Year	Experiment	Ref	$B \to J/\psi \phi K$	X(4140) peak			
	luminosity		statistics	mass [MeV]	width [MeV]	sign.	fraction %
2008	$CDF 2.7 \text{ fb}^{-1}$	PRL 102,242002	58 ± 10	$4143.0 {\pm} 2.9 {\pm} 1.2$	$11.7^{+8.3}_{-5.0}\pm3.7$	3.8σ	
2009	Belle	LP2009 (unpub.)	325 ± 21	4143.0 fixed	11.7 fixed	1.9σ	
2011	$CDF \ 6.0 \ fb^{-1}$	arXiv:1101.6058 (unpub.)	115 ± 12	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.3^{+10.4}_{-6.1}\pm2.5$	5.0σ	$14.9 {\pm} 3.9 {\pm} 2.4$
2011	LHCb $0.37 {\rm ~fb^{-1}}$	PRD85, 091103	346 ± 20	4143.4 fixed	15.3 fixed	1.4σ	< 7 @ 90% CL
2013	$\rm CMS~5.2~fb^{-1}$	PL, B734, 261	2480 ± 160	$4148.0 {\pm} 2.4 {\pm} 6.3$	$28^{+15}_{-11}{\pm}19$	5.0σ	10±3 (stat.)
2013	$D0 \ 10.4 \ fb^{-1}$	PRD89, 012004	215 ± 37	$4159.0 {\pm} 4.3 {\pm} 6.6$	$19.9 \pm 12.6 {}^{+1.0}_{-8.0}$	3.1σ	$21\pm8\pm4$
2014	BaBar 422 fb^{-1}	PRD91, 012003	189 ± 14	4143.4 fixed	15.3 fixed	1.6σ	<13.3 @ 90% CL
2015	D0 10.4 fb^{-1}	PRL, 115, 232001	$p\bar{p} \rightarrow J/\psi \phi$	$4152.5 \pm 1.7 {}^{+6.2}_{-5.4}$	$16.3 {\pm} 5.6 {\pm} 11.4$	4.7σ (5.7	(σ)
Average				4146.9 ± 2.3	17.8 ± 6.8		

X(4274-4351) summary

			$B \rightarrow J/\psi \psi R$	A (4214 -	4351) peaks(s)		
lur	ninosity		statistics	mass [MeV]	width [MeV]	sign.	fraction [%]
2011 CDF	6.0 fb ⁻¹ arXiv:1	101.6058 (unpub.)	115 ± 12	$4274.4_{-6.7}^{+8.4}\pm1.9$	$32.3^{+21.9}_{-15.3}\pm7.6$	3.1σ	
2011 LHCb	0.37 fb ⁻¹ Pl	RD85, 091103	346 ± 20	4274.4 fixed	32.3 fixed		< 8 @ 90%CL
2013 CMS	5.2 fb ⁻¹ P	L, B734, 261	2480 ± 160	$4313.8 \pm 5.3 \pm 7.3$	$38^{+30}_{-15}\pm 16$		
2013 D0	10.4 fb ⁻¹ Pl	RD89, 012004	215 ± 37	4328.5 ± 12.0	30 fixed		
2014 BaBa	r 422 fb ⁻¹ Pl	RD91, 012003	189 ± 14	4274.4 fixed	32.3 fixed	1.2σ	$< 18.1 @ 90\% {\rm CL}$
2010 Belle	825 fb ⁻¹ PR	RL 104, 112004	$\gamma\gamma \rightarrow J/\psi \phi$	$4350.6^{+4.6}_{-5.1}{\pm}0.7$	$13^{+18}_{-9}\pm 4$	3.2σ	

27/01/2017

55th International Winter Meeting on Nuclear Physics

Standard hadron spectroscopy

- LHCb also contributed a lot to standard hadron spectroscopy. ۲ Very recent results include:
- Study of D_s^{(*)+} mesons (prompt production) JHEP 02 (2016) 133
- Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ decays PRD94 (2016) 072001 ۰
- Properties of the Ξ_{h}^{*0} baryon ۲
 - ★ Confirmation of Ξ_{h}^{*0}
 - Precise mass and first natural width measurements

 $\delta m = 15.727 \pm 0.068(\text{stat}) \pm 0.023(\text{syst}) \text{ MeV}/c^2$ $\Gamma(\Xi_b^{*0}) = 0.90 \pm 0.16(\text{stat}) \pm 0.08(\text{syst}) \text{MeV}$

Observation of $\Xi_{b}^{-} \rightarrow J/\psi \Lambda K^{-}$ decay \bullet just released on arXiv:1701.05274, subm. to PLB May decay through P_c states with strangeness

55th International Winter Meeting on Nuclear Physics

27/01/2017

LHCb: heavy flavours and heavy ions

- INFN
- Most of the analyses (for heavy flavour) consist in measuring the ratio of production in pPb collisions to pp collisions: R_{pPb}.
- pp collisions: hard process cross-section
- pPb collisions: hard process + "cold" nuclear matter (CNM) effects
 - Shadowing and anti-shadowing: parton density functions of protons and neutrons are modified when they are in a Pb nucleus compared to a single proton
 - ★ Energy loss: quarks loose energy in the medium of the collision before forming hadrons
- pPb collisions allow to understand the "background" mechanisms to the ones due to QGP in PbPb collisions and are also interestingin theirown rights.
- PbPb collisions: hard process + "cold" nuclear matter effects+ "hot" nuclear matter effects (due to Quark Gluon Plasma, free quarks during a short time after the collision):
 - Recombination: a lot of other heavy quarks are present in the medium and enhance the production of quarkonium (heavy quark bound states)
 - ★ Dissociation: quarkonium melt in the medium

27/01/2017

55th International Winter Meeting on Nuclear Physics

Hick pPb collisions: production of heavy quarkonia

• Nuclear modification factor is the key observable

JHEP 02 (2014) 072

- Prompt J/ ψ : strongly suppressed in forward region, significant signs of CNM effects \rightarrow data well described by energy loss models w/ and w/o shadowing
- J/ ψ from b: modest suppression in forward region \rightarrow Suggests suppression of b-hadron production
- Backward rapidity: compatible with no suppression

27/01/2017

55th International Winter Meeting on Nuclear Physics

Cosmic ray physics at LHCb

- More conservative estimates on the related uncertainties show that the results could still fit with secondary production
- □ Largest uncertainty comes from σ (pHe $\rightarrow \overline{p}X$)

27/01/2017

- In fixed target mode, proton beam (6.5 TeV) on He at rest suits well the physics case
- Also possibility to investigate intrinsic charm at large x: important for backgrounds in high energy neutrino astrophysics (for IceCube experiment)

55th International Winter Meeting on Nuclear Physics

 Measurement in the forward region of two-particle correlations (Δφ, Δη), as a function of the event activity (estimated with number of tracks in the VELO)

27/01/2017

LHCb detector upgrade

- higher granularity and radiation tolerance

27/01/2017

55th International Winter Meeting on Nuclear Physics

27/01/2017

LHCb trigger upgrade performance on hadrons

Hadronic yields > 10-20x Run I (~lumi * ε_{trigger})

LHCC 2014-016

27/01/2017

55th International Winter Meeting on Nuclear Physics