A Large Ion Collider Experiment

The Upgrade of the Alice Inner Tracking System

Ivan Ravasenga, for the ALICE collaboration Politecnico di Torino and I.N.F.N.

NFN 55th International Winter Meeting on Nuclear Physics, Bormio | 23-27.01.2017 | Ivan Ravasenga

New ITS layout (2019-2020)

7 layers of Monolithic Active Pixel Sensors (MAPS) → ALPIDE

- □ 3 Inner Layers (Inner Barrel)
- □ 2 Middle + 2 Outer layers (Outer Barrel)
- Total active area: $\sim 10 \ m^2$
- $|\eta|$ coverage: $|\eta| < 1.22$
- *r* coverage: 22 400 *mm*

ALPIDE chip characterization (final version: August 2016)

- Production Readiness Review in December 2016 \rightarrow Ok! Production started
- Chip characteristics: 512x1024 pixels ($\sim 27 \times 29 \ \mu m^2$ each), signal discriminated at pixel level, reverse back-bias to increase the depletion region in the sensitive silicon volume
- Full characterization performed: examples below

55th International Winter Meeting on Nuclear Physics, Bormio | 23.01.2017 | I. Ravasenga 3

AI PIDF: 1 5 x 3 0

... In the poster

- Details on the Monolithic Active Pixel Sensors that will be used for the new ITS
- Details on Stave components
- Examples of expected physics performance with the new ITS

Thank you