

Open heavy-flavour measurements in Pb-Pb collisions with ALICE at the LHC

André Mischke Utrecht University for the ALICE Collaboration

55th International Winter Meeting on Nuclear Physics, Bormio, Italy – 23-28 January 2017

Outline

- Strongly interacting matter in extremes
- ALICE experiment
- Recent open heavy-flavour measurements

- Probes: D mesons and heavy-flavour decay leptons (e and μ)
- Collision systems
 - pp: test QCD and important baseline for heavy-ion measurements

J. Norman, Wed. afternoon

- p-Pb: study cold nuclear matter effects (initial state)
- Pb-Pb: study hot QCD matter (final state); determine medium properties
- Observables: nuclear modification factor and azimuthal anisotropy
- Conclusions

Overview talk on heavy-flavor probes J. Stachel, Tue. morning

Matter in extremes: the QGP

• Study strongly interacting matter under extreme conditions: high temperature and high density

• Lattice QCD predicts a phase transition from hadronic matter to a deconfined state, the quark-gluon plasma

• Experimental access via high energy heavy-ion collisions

Probing hot and dense QCD matter

General picture

- parton energy loss through medium-induced gluon radiation
- collisions with medium constituents

- "Simplest way" to establish the properties of a system
 - calibrated probe
 - calibrated interaction
 - modification of the transverse momentum distribution tells about density profile
- Heavy-ion collision
 - hard processes serve as calibrated probe (pQCD)
 - partons traverse through the medium and interact strongly
 - suppression provides density measurement

Heavy quarks are ideal probes

Formation time: $\tau \sim 1/2m_Q \sim 0.1 \text{fm} << \tau_{QGP} \sim 5-10 \text{ fm}$

• Symmetry breaking

- Higgs mass: electro-weak symmetry breaking → current quark mass

- QCD mass: chiral symmetry breaking → constituent quark mass

 Charm and beauty quark masses are not affected by QCD vacuum
 → ideal probes to study QGP

• Test QCD at transition from perturbative to non-perturbative regime: charm and beauty quarks provide hard scale for QCD calculations

Radiative parton energy loss

Quantification of medium effects

Comparison of the production yield in heavy-ion collisions with the one in proton-proton collisions

Nuclear modification factor

 $R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle N_{bin} \rangle_{AA} \text{Yield}_{pp}(p_T)}$

Expectation:

- $R_{AA} = 1$ for photons
- R_{AA} < 1 for hadrons

 $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Number of binary collisions from Glauber calculations

A Large Ion Collider Experiment

At the CERN Large Hardon Collider

Sub-detector systems ITS, TPC, TOF, HMPID, TRD, FMD, PMD, T0, V0, ZDC, EMCAL, DCAL, PHOS, Muon arm, DAQ, HLT (High Level Trigger)

- PID over a very broad momentum range (> ~100 MeV/c)
- Large acceptance in azimuth
- Mid-rapidity coverage ($|\eta|$ < 0.9) and -4 < η < -2.5 in forward region

Trigger and data samples

- Minimum bias, based on interaction trigger:
 - SPD or V0-A side or V0-C side
 - at least one charged particle in 8 η units
 - 95% efficient on σ_{inel}
- Vertex determination: SPD
- Centrality in Pb-Pb: Glauber fit to V0 signal amplitude
- Single-muon trigger ($p_T > 0.5$ and 4.2 GeV/c)

Year

2010

2011

2015

- forward muon in coincidence with MB

√s_{NN} (TeV)

2.76

2.76

5.02

In addition (not covered in this talk):

Integrated luminosity

 $10 \ \mu b^{-1}$

0.1 nb⁻¹

202.3 μb⁻¹ (muon data)

- pp collisions at \sqrt{s} = 0.9, 2.76, 7, 8 and 13 TeV
- p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 and 8.16 TeV 9

Detection of open heavy-flavour particles

e.g.: $D^0 \rightarrow K^- + \pi^+$ BR = 3.89%, $c\tau$ = 123 µm

- direct clean probe: signal in invariant mass distribution
- difficulty: large combinatorial background especially in a high multiplicity environment
- techniques of background subtraction and vertex tracker needed
- 2. Semi-leptonic decay of D and B mesons

BR = 9.6%
BR = 6.87%
BR = 6.5%
BR = 10.9%

- robust electron trigger
- needs handle on photonic electron background

3. Beauty via non-prompt J/ ψ and hadronic decays

B

Typical event display Pb-Pb at √s_{NN} 5.02 TeV

Prompt D-meson R_{AA} in 2.76 TeV Pb-Pb

- Above 5 GeV/c strong suppression (factor 4-5) of D-meson yield in central Pb-Pb collisions, compared to binary scaling from pp collisions
- First $D_s^+(c\bar{s})$ measurement in heavy-ion collisions
- Expectation: enhancement of strange D-meson yield at intermediate $p_{\rm T}$ if charm hadronises via recombination in the medium

R_{AA} : light versus heavy-quark hadrons

- Slight enhancement of D at low p_{T} for 10% most central collisions
- Indication for rising R_{AA}

Theoretical interpretation: *M.Djordjevic, PRL 112, 042302 (2014)*

100 150 200 250 300 350 400 50 N_{part}

ф

þ

 Comparison of prompt D mesons (ALICE) with J/ψ from beauty decays (CMS)

Prompt D and B-meson R_{AA} in 2.76 TeV Pb-Pb

√s_{NN} = 2.76 TeV

 $B \rightarrow J/\Psi$

ALICE, JHEP 11 (2015) 205 CMS, sub. to Eur. Phys. J. C (arXiv:1610.00613)

Open charm: prompt D (ALICE)

Open beauty: nonprompt J/ψ

 $6.5 < p_{_{T}} < 30$ GeV/c, lyl < 1.2

 $8 < p_{\perp} < 16 \text{ GeV/c}, \text{ lyl} < 0.5$

ф

¢

- D and B meson $< p_T > \sim 10$ GeV/c
- Described by theoretical model calculations including quark-mass dependent energy loss $(R_{AA}^{D} < R_{AA}^{B})$ in the studied p_{T} range

Theoretical interpretation: M.Djordjevic, Phys. Lett.B 737 (2014) 298)

CMS

ВА

1.4

12

0.8

0.6

0.4

0.2

'n

D mesons: initial-state effects

- Important baseline measurement of **cold nuclear matter effects** (e.g., Cronin effect, nuclear shadowing, gluon saturation)
- D-meson $R_{\rm pA}$ shows consistency with unity and predictions from shadowing and CGC model predictions

• High- p_T suppression of particle yield in Pb-Pb is a final-state effect

TCF

Single electron R_{AA} at 2.76 TeV

- Strong suppression of single electron yield up to 18 GeV/c observed in 10% most central Pb-Pb collisions, unlike in p-Pb
- \rightarrow Substantial energy loss of heavy quarks in the medium
- Constrain theoretical models (with D-meson R_{AA} and v_2) \rightarrow Extraction of heavy-quark transport coefficients

Single muon R_{AA} at 2.76 and 5.02 TeV

Phys. Rev. Lett. 109 (2012) 112301

- Strong suppression in 10% most central collisions reaching a factor ~3 in 7 < p_T < 12 GeV/*c*
- R_{AA} at 5.02 TeV consistent with that at 2.76 TeV in the overlap $p_{\rm T}$ region
- Suppression increases with increasing centrality

- Multiple interactions lead to thermalisation
 → hydrodynamic behaviour of the system
- Pressure gradient generates collective expansion of the medium → anisotropy in momentum space

• Fourier decomposition:

$$\frac{dN}{d(\varphi - \psi_n)} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n[\varphi - \psi_n])$$
where $v_n = \langle \cos(n[\varphi - \psi_n]) \rangle$

Azimuthal anisotropy of prompt D mesons

- Due to the large mass, long thermalisation process is expected for heavy quarks
- → less influenced by collective expansion
- Indication (3-5σ confidence level) for non-zero charm elliptic flow in the p_T range 2-6 GeV/c
- → Significant interaction of charm quarks with the medium
- Improved measurement with Run-2 data

Comparison with model calculations: D mesons

Comparison with model calculations: single muons

Phys. Lett. B753 (2016) 41

- Simultaneous description of R_{AA} in central collisions and v_2 in semi-central collisions is challenging
- *R*_{AA} and *v*₂ measurements provide constraints on energy-loss models

Summary

- LHC ideal for studying the properties of hot dense QCD matter
 - large volume, long lifetime, high production rates for rare probes
- Heavy quarks are particularly good probes to study transport properties (e.g. drag and diffusion coefficient) and degree of thermalisation
 - R_{AA} and v_2 of prompt D mesons and single leptons (run-2 muons)
 - strong suppression of the yield at high p_T (>6 GeV/c) observed in central collisions → more insight on energy-loss mechanisms
 - non-zero elliptic flow \rightarrow suggest strong re-interactions within the medium
 - Quark-mass dependence: $R_{AA}(\pi) \sim R_{AA}(D, \text{ single leptons}) < R_{AA}(B \rightarrow J/\psi)$
 - Precision measurements in extended $p_{\rm T}$ ranges needed to further constraint theoretical model calculations
- Many more exciting results ahead of us
 - Run-2 Pb-Pb data at $\sqrt{s_{NN}}$ = 5.02 TeV and after upgrades in 2019/20
 - p-Pb data taking at $\sqrt{s_{NN}}$ = 5.02 and 8.16 TeV in 2016

Upgrade of the ALICE Inner Tracker

12.5 G-pixel camera (~10 m²)

Also upgrade of the Muon Forward Tracker at forward rapidity

- 7-layer barrel geometry based on CMOS pixel sensors
- Factor ~3 improvement in impact parameter resolution
- η coverage: $|\eta| \le 1.22$
- Low material budget; goal
 - $X/X_0 \le 0.3\%$ for first 3 inner silicon layers
 - $X/X_0 \sim 1\%$ for for outer barrel
- Installation in 2019/2020
- Design requirements: event readout rate
 - Pb-Pb: 100 kHz
 - pp: >400 kHz