Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models

J. Hrtánková, J. Mareš

Nuclear Physics Institute, Řež, Czech Republic

55th International Winter Meeting on Nuclear Physics Bormio, January 23 - 27, 2017

Introduction

- Interactions between K⁻ and nucleon(s) is topical but still not resolved problem
- Existence of the $I = 0 \ \pi \Sigma$ resonance $\Lambda(1405)$ below K^-N threshold $\rightarrow K^-N$ interaction attractive + strongly coupled to $\pi \Sigma$ channel \rightarrow strong K^- absorption
- Are there any (narrow) deeply bound K⁻-nucler states?
 no decisive answer so far

Introduction

- Self-consistent calculations of K⁻-nuclear quasi-bound states using the following chiral meson-baryon interaction models:
 - Prague (P)
 (A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115)
 - Kyoto-Munich (KM) (Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881 (2012) 98)
 - Murcia (M1 and M2) (Z. H. Guo and J. A. Oller, Phys. Rev. C 87 (2013) 035202)
 - Bonn (B2 and B4) (M. Mai and U.-G. Meißner, Nucl. Phys. A 900 (2013) 51)

Free-space K^-p amplitudes

Fig.1: Energy dependence of real (left) and imaginary (right) parts of free-space K^-p amplitudes in considered models.

Free-space K^-n amplitudes

Fig.2:Energy dependence of real (left) and imaginary (right) parts of free-space K^-n amplitudes in considered models.

Model

Model

• Klein-Gordon equation for K^-

$$\left[\tilde{\omega}_{K}^{2}+\vec{\nabla}^{2}-m_{K}^{2}-\Pi_{K}(\vec{p}_{K},\omega_{K},\rho)\right]\phi_{K}=0$$

complex energy $\tilde{\omega}_{\mathcal{K}}=m_{\mathcal{K}}-B_{\mathcal{K}}-\mathrm{i}\Gamma_{\mathcal{K}}/2-V_{\mathcal{C}}=\omega_{\mathcal{K}}-V_{\mathcal{C}}$

Self-energy operator

$$\Pi_{\mathcal{K}} = 2\operatorname{\mathsf{Re}}(\omega_{\mathcal{K}^{-}})V_{\mathcal{K}^{-}}^{(1)} = -4\pi \frac{\sqrt{s}}{m_{N}}\left(F_{0}\frac{1}{2}\rho_{\mathcal{P}} + F_{1}\left(\frac{1}{2}\rho_{\mathcal{P}} + \rho_{n}\right)\right),$$

 ${\it F}_0$ and ${\it F}_1$ – isospin 0 and 1 scattering amplitudes from a chiral meson-baryon interaction model

- Nucleus described within an RMF model
- Static self-consistent calculations core polarization effect up to ≃ 5 MeV in K⁻ binding energies (D. Gazda, J. Mareš, Nucl. Phys. A 881, 159 (2012))

Model

Model

 Free space amplitudes → in-medium amplitudes - WRW method (T. Wass, M. Rho, W. Weise, Nucl. Phys. A 617 (1997) 449)

$$F_{1} = \frac{F_{K^{-}n}(\sqrt{s})}{1 + \frac{1}{4}\xi_{k}\frac{\sqrt{s}}{m_{N}}F_{K^{-}n}(\sqrt{s})\rho}, \quad F_{0} = \frac{[2F_{K^{-}p}(\sqrt{s}) - F_{K^{-}n}(\sqrt{s})]}{1 + \frac{1}{4}\xi_{k}\frac{\sqrt{s}}{m_{N}}[2F_{K^{-}p}(\sqrt{s}) - F_{K^{-}n}(\sqrt{s})]\rho}$$

where

$$\xi_k = \frac{9\pi}{p_f^2} 4 \int_0^\infty \frac{dt}{t} \exp(iqt) j_1^2(t), \qquad q = \frac{1}{p_f} \sqrt{\omega_{K^-}^2 - m_{K^-}^2}$$

P + Pauli + SE model
 (A. Cieply, J. Smejkal, Nucl. Phys. A 881 (2012) 115)

$$F_{ij}(p,p';\sqrt{s}) = -\frac{g_i(p)g_j(p')}{4\pi f_i f_j} \sqrt{\frac{M_i M_j}{s}} \left[(1 - C(\sqrt{s}) \cdot G(\sqrt{s})^{-1}) \cdot C(\sqrt{s}) \right]_{ij} ,$$

$$G_i(\sqrt{s};\rho) = \frac{1}{f_i^2} \frac{M_i}{\sqrt{s}} \int_{\Omega_i(\rho)} \frac{d^3\vec{p}}{(2\pi)^3} \frac{g_i^2(p)}{p_i^2 - p^2 - \prod_i (\sqrt{s},\vec{p};\rho) + i0} .$$

Model

In-medium modified $\bar{K}N$ amplitudes

Fig.3: Energy dependence of reduced free-space (dotted line) $f_{\bar{K}N} = \frac{1}{2}(f_{K^-p} + f_{K^-n})$ amplitude compared with WRW modified amplitude (solid line), Pauli (dashed line), and Pauli + SE (dot-dashed line) modified amplitude for $\rho_0 = 0.17 \text{ fm}^{-3}$ in the P model.

Energy dependence

- $K^- N$ amplitudes are a function of \sqrt{s} $(s = (E_N + E_{K^-})^2 - (\vec{p}_N + \vec{p}_{K^-})^2)$
- K^-N cms frame $\rightarrow K^-$ -nucleus frame $\vec{p}_N + \vec{p}_{K^-} \neq 0$ (A. Cieplý, E. Friedman, A. Gal, D. Gazda, J. Mareš PLB 702 (2011) 402)
- Low-density limit $\delta\sqrt{s}
 ightarrow$ 0 as ho
 ightarrow 0 where $\delta\sqrt{s} = \sqrt{s} E_{th}$

$$\sqrt{s} = E_{th} - B_N \frac{\rho}{\bar{\rho}} - \xi_N \left[B_{K^-} \frac{\rho}{\rho_{max}} + 23 \left(\frac{\rho}{\bar{\rho}} \right)^{2/3} + V_C \left(\frac{\rho}{\rho_{max}} \right)^{1/3} \right] + \xi_{K^-} \operatorname{Re} V_{K^-}(r) ,$$

where $B_N=8.5~{
m MeV}$ and $\xi_{N(K^-)}=m_{N(K^-)}/(m_N+m_{K^-})$.

Energies probed in the calculations

Fig.4: Subthreshold energies probed in the ${}^{16}O+K^-$ nucleus as a function of relative density ρ/ρ_0 , calculated self-consistently using K^-N amplitudes in the P, KM, M1, and M2 models.

Results

K^- 1s binding energies and widths

Fig.5: 1s K^- binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently in the P, KM, M1, and M2 models.

Multinucleon processes

• K^- interactions with two and more nucleons - recent analysis of kaonic atom data including branching ratios of K^- absorption by Friedman and Gal (*NPA 959 (2017) 66*)

$$2\operatorname{Re}(\omega_{K^{-}})V_{K^{-}}^{(2)} = -4\pi B(\frac{\rho}{\rho_{0}})^{\alpha}\rho , \qquad (1)$$

where B is a complex amplitude and α is positive

- Only P and KM models preferred by the analysis (P1, KM1 for $\alpha = 1$ and P2, KM2 for $\alpha = 2$)
- $K^-NN \rightarrow \Sigma N$ dominant K^- absorption mode in the nuclear interior \rightarrow ImB multiplied by a kinematical suppression factor $f_{\Sigma N}$

Multinucleon processes

- Total K^- optical potential $V_{K^-} = V_{K^-}^{(1)} + V_{K^-}^{(2)}$
- Experiments with kaonic atoms probe the K^- optical potential (mainly its imaginary part) up to \sim 50% of ρ_0
- We consider two limiting cases for $V_{K^-}^{(2)}$ in our calculations
 - form (1) in the entire nucleus full density option (FD)
 - fix $V_{K^-}^{(2)}$ at constant value $V_{K^-}^{(2)}(0.5\rho_0)$ for $\rho(r)\geq 0.5\rho_0$ half density limit (HD)

Total K^- optical potential

Fig.6: The real and imaginary parts of the K^- optical potential in the ²⁰⁸Pb+ K^- nucleus, calculated self-consistently in the KM1 model for two versions of the K^- multinucleon potential. The single-nucleon K^- potential (green solid line) calculated in the corresponding model is shown for comparison.

Results

Contributions to the total K^- optical potential

Fig.7: The respective contributions from K^-N and K^-NN potentials to the total real and imaginary K^- optical potential in the ²⁰⁸Pb+ K^- nucleus, calculated self-consistently in the KM1 model and FD variant. The single-nucleon K^- potential (green solid line) calculated in the corresponding model is shown for comparison.

K^- 1s binding energies and widths

Fig.8: 1s K^- binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently for two options of $V_{K^-}^{(2)}$ in the KM1 model.

Ratios of K^- absorption in medium

Fig.9: Ratios of $\operatorname{Im} V_{K^-}^{(1)}$ and $\operatorname{Im} V_{K^-}^{(2)}$ potentials to the total K^- imaginary potential $\operatorname{Im} V_{K^-}$ as a function of radius, calculated self-consistently for ²⁰⁸Pb+ K^- system in the KM1 model and different option for the K^- multinucleon potential (left) and the comparison of these ratios calculated in different meson-baryon interaction models for FD option (right). The vertical lines denoting ~ 15% of ρ_0 are shown for comparison.

Conclusions

- Calculations of K⁻-nuclear quasi-bound states in various nuclei
- K⁻ single-nucleon potentials based on chiral meson-baryon interaction models yield:
 - large model dependence of K^- binding energies
 - small K⁻ widths
- Sizeable contribution from K⁻ multinucleon interactions inside the nucleus:
 - K^- widths significantly larger than binding energies, if ever bound

Conclusions

Thank you for your attention!

backup slides

K^- optical potential

Fig.10: K^- optical potential in ⁴⁰Ca calculated self-consistently for in-medium \sqrt{s} and at threshold E_{th} using WRW modified amplitudes in the P NLO model compared with P NLO + Pauli + SE model.

K^- optical potential

Fig.11: 1s K^- binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently for different options of $V_{K^-}^{(2)}$ in the KM1 model.

backup

K^- 1s binding energies and widths

Fig.12: 1s K^- binding energies (left) and corresponding widths (right) in various nuclei calculated self-consistently for two options of $V_{K^-}^{(2)}$ in the KM2 model.

Multinucleon processes

Table : Values of the complex amplitude B and exponent α used to evaluate $V_{K^-}^{(2)}$ for all chiral meson-baryon interaction models considered in this work.

	B2	B4	M1	M2	P1	KM1	P2	KM2
α	0.3	0.3	0.3	1	1	1	2	2
Re <i>B</i> (fm)	2.4	3.1	0.3	2.1	-1.3	-0.9	-0.5	0.3
lm <i>B</i> (fm)	0.8	0.8	0.8	1.2	1.5	1.4	4.6	3.8