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Outline
• The ATLAS detector is designed to investigate very rare high pT processes in 

the environment of high luminosities and large number (several tens) of 
interactions per one bunch crossing

• But ATLAS provides also a window onto important soft QCD processes which 
have large cross sections and the data for such studies are taken in special low 
luminosity runs

• These processes have intrinsic interest. They can not be predicted by a 
perturbative QCD. Various MC models, having a large number of adjustable 
tuning parameters, are used to describe them

• As well they are needed to understand pile-up and underlying event activity in 
all LHC measurements

• This presentation concerns the 4 following recent ATLAS soft QCD studies:
I. Charged-particles distributions in 𝒔𝒔 = 13 TeV pp interactions 

 Phys.Lett. B (2016) 758

II. Measurement of charged-particle distributions sensitive to underlying event in 𝒔𝒔 = 13 TeV 
pp collisions
 arxive:1701.05390

III. Study of hard double-parton scattering in four jet events in pp collisions at 𝒔𝒔 = 7 TeV
 JHEP 11 (2016) 110

IV. Measurement of the total cross section from elastic scattering in pp collisions at 𝒔𝒔 = 8 TeV
 Phys.Lett. B (2016) 158
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I-II. Inner Detector

• Studies I and II are based on the reconstructed in the Inner Detector (ID) (Figure above) charged 
tracks

• ID has full coverage in ϕ and covers the pseudorapidity range |η| < 2.5 and it is placed inside 2T axial 
magnetic field

• Its barrel (end-cap) part consists of
– four (three) pixel layers
– four (nine) double-layers of single-sided silicon microstrips
– 73 (160) layers of TRT (Transition Radiation Tracker) straws

• A typical track in the barrel part has 4 pixel hits, 8 SCT hits and more than 30 TRT straw hits
• Minimum-bias trigger scintillators (MBTS), covering region 2.07 < |η| < 3.86, are used for triggering. 

They are mounted at each end of the ID and segmented into 12 sectors each
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I-II. Data selection, corrections

• Special low luminosity run with <μ> = 0.005, about 9M
events

• Trigger: one or more fired MBTS counters on either side of 
the ID

• A number of corrections used and their uncertainties 
included to the corresponding systematic errors

• The corrections account for inefficiencies due to trigger 
selection, vertex and track reconstruction, background 
from the secondary interactions

• The trigger efficiency is rather high (next slide) as well as a 
vertex reconstruction efficiency
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I-II. Trigger and Track Reconstruction Efficiency

• The primary track reconstruction efficiency, εtrk(pT, η), is determined from the 
simulation

• εtrk depends on the amount of material in the detector, due to particle interactions that 
lead to efficiency losses

• The resulting reconstruction efficiency as a function of η and pT is shown in the above 
Figures together with its uncertainty

• The efficiency is lower at |η| > 1 due to more material in that region
• The total uncertainty due to imperfect knowledge of the detector material is ±0.7% in 

the most central region and ±1.5% in the most forward region
• The Bayesian unfolding is applied to the pT and multiplicity distributions to correct from 

the observed track distributions to those for of primary charged particles
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I-II. Monte Carlo generators used
• PYTHIA8: 

– includes non-diffractive (ND) processes dominated by t-channel gluon exchange
– and diffractive processes involving a color-singlet exchange
– includes multi parton interactions (MPI)
– for a hard scattering uses perturbative 2 → 2  QCD matrix element with leading logarithmic 

initial and final state parton showers
– Lund string hadronization model 

• Herwig:
– for a hard scattering uses perturbative 2 → 2  QCD matrix element with leading logarithmic 

initial and final state parton showers
– includes MPI (simpler parametrization than in PYTHIA)
– a cluster-oriented  color-disruption mechanism is used in hadronization

• EPOS:
– a specialist softQCD/cosmic-ray air-shower MC generator based on an implementation of 

parton-based Gribov-Regge theory
– a QCD inspired effective-field theory describing the hard and soft scattering simultaneously

• QGSJET-II:
– Provides a phenomenological treatment of hadronic and nuclear interactions  in the Reggeon

field theory framework
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I. Mean charged particle density as a function of η and pT

• The mean particle density is approximately constant at 2.9 for |η| < 1 and decreases at 
higher |η|

– EPOS describes the data well for |η| < 1 but predicts slightly larger multiplicities for larger |η|
– QGSJET-II and PYTHIA8 Monash predict too large multiplicities (by 15% and 5%)
– PYTHIA8 A2 – by about 3% too low in the central region but is OK in the forward region

• The distribution on pT decreases by about 9 orders of value 
– EPOS describes the data well over the entire pT spectrum
– The PYTHIA 8 tunes describe the data well but are slightly above at large pT

– QGSJET-II gives a poor prediction over the entire spectrum
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I. The charged particle multiplicity distribution and <pT> vs nch

• The charged particle multiplicity distribution decreases by 5 orders. The high nch region 
has significant contribution from events with numerous MPI

– All the models describes the data satisfactory in the region nch < 30-50 but fail at higher nch

– At high nch the strongest deviations are for QGSJET-II and PYTHIA8 A2

• <pT> rises with nch from 0.8 to 1.2 GeV. The increase is modelled by a color reconnection 
mechanism in PYTHIA8 or by the hydrodynamical evolution model used in EPOS

– EPOS predicts slightly lower <pT>, but describes the dependence on nch well
– The PYTHIA8 tunes predict a steeper rise of <pT> with nch than the data
– QGSJET-II predicts <pT>  of  ~ 1 GeV, with very little dependence on nch

25.01.2017 A.Minaenko 8



I. Energy dependence of the charged particles density at η = 0

Conclusions
• Primary-charged-particle multiplicity measurements with the ATLAS detector 

using pp interactions at 𝒔𝒔 = 13 TeV are presented
• The results highlight clear difference between MC models and the measured 

distributions
• EPOS reproduces data the best, PYTHIA8 A2 and Monash give reasonable 

descriptions of the data and QGSJET-II provides the worst description
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• The mean number of primary charged 
particles in the central region is 2.874 ±
0.001 (stat.) ± 0.033 (syst.) 

• The value increases by a factor of 2.2 when 
𝒔𝒔 increases by a factor of about 14 from 

0.9 TeV to 13 TeV 
• EPOS and PYTHIA8 A2 describe the 

dependence very well
• PYTHIA8 Monash and QGSJET-II predict 

a steeper rise in multiplicity with c.m.s. 
energy



II. Underlying event with leading pT charged particle
• Underlying event is defined as activity 

accompanying any hard scattering in a event
• It includes

– Partons not participating in a hard scattering (beam 
remnants)

– Multiple parton interactions
– Initial state gluon radiation (ISR)

• It is impossible to separate the UE from the 
hard scattering process on an event by event 
base

• However distributions have been measured 
which are sensitive to the properties of the UE

• These are the distributions of particles in the 
transverse regions (Figure)

• The figure illustrates distribution of charged 
particles in the transverse to the beam plane 
with respect to the leading pT charged particle

• The towards and away regions contain products 
of the hard scatter mostly
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II. Trans-min region 

• Trans-min region most sensitive to MPI and hard process contamination is 
small: the distributions are rather flat above pT = 5 GeV

• EPOS and PYTHIA8 A2 are too low at the plateau region
• Herwig7 gives one of the best descriptions at the plateau but severe 

undershoots transition region below pT = 5 GeV
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II. Trans-max region

• The trans-max region has larger hard process contamination: the rise in the 
plateau region is stronger and its mean level is noticeably larger

• In general MC generators describes the data better than for the trans-min
• EPOS strongly undershoots data at pT > 10 GeV
• Herwig7 again undershoots pT < 5 GeV
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II. Conclusions 

• A number of distributions sensitive to properties of the UE are presented
• Present measurement completes previous ATLAS measurements at lower 

energies (above figures)
• An increase of UE activity of approximately 20% is observed when going from 

7 TeV to 13 TeV pp collisions
• Comparison against prediction from several MC generator tunes indicate that 

for most observables the models describe UE data to better than 5% accuracy
• EPOS gives the worst predictions
• The data can be used to improve MC tunes 
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III. Hard double parton scattering in 4-jet events 

• σeff is an effective cross section (to be found)
– phenomenological parameter describing the effective overlap between the interacting hadrons
– determines the overall size of DPS cross section
– Assumed to be process and cut independent

• Data taken in pp collisions at 𝒔𝒔 = 7 TeV during 2010, <μ> = 0.41, integrated 
luminosity 37.3 pb-1
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III. Event selection, templates 

• Single vertex events only
• Use anti-kT jets with R = 0.6 found in calorimeters at |η| < 4.4
• 4-jet event selection: Njet ≥ 4, 𝒑𝒑𝑻𝑻𝟏𝟏 > 42.5 GeV, 𝒑𝒑𝑻𝑻

𝟐𝟐,𝟑𝟑,𝟒𝟒 > 20 GeV

• Di-jet samples Njet ≥ 2, A: 𝒑𝒑𝑻𝑻
𝟏𝟏,𝟐𝟐 > 20 GeV; B: 𝒑𝒑𝑻𝑻𝟏𝟏 > 42.5 GeV, 𝒑𝒑𝑻𝑻𝟐𝟐 > 20 GeV

• 4-jet and B samples are subsamples of sample A
• AHJ MC: Alpgen (2 → n, n up to 5) + Jimmi (MPI) + Herwig (hadronization)
• Event record of AHJ is used to distinguish between (2 → 4) and (two 2 → 2) 

processes
• Sample SPS: all 4 jets from one hard scatter, based on AHJ MC
• Sample complete DPS (cDPS): 2 jets from 1st hard scatter, 2 jets from 2nd one. 

Obtained by overlaying two di-jet data events
• Sample semi DPS (sDPS): 3 jets from 1st hard scatter, 1 jet from 2nd one. 

Obtained by overlaying two di-jet data events
• Template fit is used to determine fDPS = fcDPS + fsDPS
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III. Discriminating variables 
• 21 discriminating variables are used to classify events as belonging to SPS 

(ξSPS), cDPS (ξcDPS), or sDPS (ξsDPS): ξSPS + ξcDPS + ξsDPS = 1
• Neural network is used for event classification 
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III. NN output for test samples 
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III. Results
• χ2 minimization with Minuit to find fcDPS and fsDPS

• D = (1 – fcDPS - fsDPS)*MSPS + fcDPS*McDPS + fsDPS*MsDPS

• Here D is ternary data distribution
• MSPS, McDPS and MsDPS are ternary distributions in test samples normalized to 

measured 4-jet cross section
• Different sources of systematic uncertainties were taken in to account and 

propagated to the final results
• The dominating source is jet energy scale (JES) uncertainty: about 4.5% in the 

central region and rising to about 10% in the forward one. It gives about 30% 
uncertainty in the final results

25.01.2017 A.Minaenko 18



III. Results overview 
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IV. Total and elastic cross sections

• Optical theorem relates total pp cross section to the elastic-
scattering amplitude extrapolated to the forward direction

σtot = 4π*Im(fel)t→0
• ATLAS uses optical theorem and luminosity-dependent 

method of the total cross section extraction. With this 
method

σ𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐 = 𝟏𝟏𝟏𝟏π 𝒉𝒉𝒉𝒉 𝟐𝟐

𝟏𝟏+ ρ𝟐𝟐
𝒅𝒅σ𝒆𝒆𝒆𝒆
𝒅𝒅𝒕𝒕

|t→0

• Where ρ = 0.1362 represents a small correction arising 
from the ratio of the real to the imaginary part of the 
elastic-scattering amplitude
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IV. ALFA detector, data taking
• ALFA detector is used to record elastic-scattering data
• Consists of Roman Pot (RP) tracking detector stations placed at 237 m (inner) 

and 241 m (outer) on either side of the ATLAS IP
• Each station houses  two scintillating fibre detectors with a spatial resolution of 

about 35 μm
• The detectors are supplemented with trigger counters consisting of plain 

scintillator tiles
• The data recorded in a single low luminosity run with special high β* optics for 

pp interactions at 𝒔𝒔 = 8 TeV
• 3.8 M selected elastic events
• Measure elastic track positions at ALFA to get the scattering angle Θ and 

thereby the t-spectrum dσ/dt
• To calculate Θ from the measured tracks the transport matrix elements of the 

beam optics are used
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IV. ALFA detector 
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IV. Analysis of elastic data
• Data-driven method to calculate the reconstruction efficiency of about 90%
• Tuning of the beam optics model with ALFA constrains → effective optics
• Trigger efficiency is very high ~99.9%; determined from data stream with 

looser conditions
• Dedicated luminosity determination resulting in a small uncertainty of 1.5%
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• Δti : the width of the bins in t
• A : acceptance(t)
• M-1: symbolizes the unfolding procedure applied to the background subtracted 

number of events Ni – Bi

• εreco: event reconstruction efficiency
• εtrig: trigger efficiency
• εDAQ: the dead time correction
• Lint: the integrated luminosity



IV. Fitting formula for dσ/dt
• The theoretical prediction used to fit the elastic data consists of the 

Coulomb term, the Coulomb-Nuclear-Interference term and the 
dominant Nuclear term
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Fit results 
• The fit includes experimental systematic 

uncertainties in the χ2

• Main systematics
– t-independent: luminosity ±1.5%
– t-dependent: beam energy ±0.65%

• The fit range is set to –t[0.014, 0.1] GeV2, 
where possible deviations from exponential 
form of the nuclear amplitude are expected 
to be small

• The extrapolation uncertainty is evaluated 
by a variation of the fit range
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• σtot = 96.07 ± 0.18(stat.) ± 0.85(exp.) ± 0.31(extr.)
• B = 19.74 ± 0.05(stat.) ± 0.16(exp.) ± 0.15(extr.)



IV. Energy evolution 

• Comparison with COMPETE model 
Chin.Phys. C, 38, 090001 (2014) for 
the evolution of the total cross 
section. High accuracy of the ATLAS 
data due to precise luminosity 
measurement
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• Comparison with a model from  
Schegelsky and Ryskin Phys.Rev. 
D85, 094024 (2012) for the 
evolution of the nuclear slop



Summary 
• Primary-charged-particle multiplicity measurements with the ATLAS detector using pp 

interactions at 𝒔𝒔 = 13 TeV were done
• The results highlight clear difference between MC models and the measured 

distributions
• EPOS reproduces data the best, PYTHIA8 A2 and Monash give reasonable descriptions 

of the data and QGSJET-II provides the worst description
• A number of distributions sensitive to properties of the UE are presented for pp 

interactions at 𝒔𝒔 = 13 TeV 
• EPOS fails to describe the data properly contrary to the minimum bias event 

description, for which EPOS is the best 
• Comparison against prediction from several other MC generator tunes indicate that for 

most observables the models describe UE data to better than 5% accuracy
• Hard double parton scattering in 4-jet events is investigated in pp interactions at 𝒔𝒔 = 7

TeV 
• The phenomenological DPI parameter σeff is extracted
• Distribution dσ/dt for proton-proton elastic scattering at 𝒔𝒔 = 8 TeV is 

measured and used to  estimate σtot = 96.07 ± 0.18(stat.) ± 0.85(exp.) ±
0.31(extr.)
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