Heavy-Ion Reactions: Selected Topics

– Torsten Dahms – Excellence Cluster "Universe" - TU München

55th International Winter Meeting on Nuclear Physics in Bormio Pre-Conference School January 22nd, 2015

ТП

Technische Universität München

Basic Questions

- What happens to matter if you
 - heat it?
 - compress it?
- With increasing temperature
 - ▶ solid → liquid → gas → plasma → QGP
- Emergent phenomena
 - hard to determine the properties of matter from the known properties of its constituents
 - e.g. ice, water, steam from H₂O molecule
- Matter properties:
 - temperature, viscosity, equation of state, degrees of freedom

Compressing Nuclear Matter

▶ with r₀ = 1.15 fm

Compressing Nuclear Matter

Compressing Nuclear Matter

- (charge radius r_n = 0.8 fm)
- nucleons will eventually start to overlap at a critical density
- will see later that the actual value is 4po

Compressing Nuclear Matter

- Normal nuclear matter density:
 - ▶ with r₀ = 1.15 fm
- Compressing nucleons:
 - ► (charge radius r_n = 0.8 fm)
 - nucleons will eventually start to overlap at a critical density
 - will see later that the actual value is 4po

$$\rho_0 = \frac{A}{4\pi/3 R^3} = \frac{1}{4\pi/3 r_0^3} \approx 0.16 \,\mathrm{fm}^{-3}$$

$$\rho_c = \frac{1}{4\pi/3 r_n^3} \approx 0.47 \,\mathrm{fm}^{-3} = 3\rho_0$$

The First QCD Phase Diagram

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

- At low temperature and density (phase I)
 - confinement & chiral symmetry spontaneously broken
- At high temperature and/or density (phase II)
 - deconfinement
 - new state of strongly interacting matter

N. Cabibbo and G. Parisi, PLB 59 (1975) 67 J. C. Collins and M. J. Perry, PRL 34 (1975) 1353

Phases of QCD Matter

- Phase transition at $T_c = 154 \pm 9 \text{ MeV}$
 - → 1 MeV ~ 10^{10} K → T_c = 2×10¹² K
- Centre of the sun: 2×10^7 K
- The QGP is more than 100 000 times hotter than the centre of the sun

Nuclear collisions and the QGP expansion

RHIC at BNL

Relativistic Heavy Ion Collider at Brookhaven National Lab

- Relativistic Heavy Ion Collider
 - 3.83 km circumference, 2 independent rings, superconducting magnets
 - ▶ p+p: $\sqrt{s} \le 500$ GeV (polarized beams), A+A: $\sqrt{s_{NN}} \le 200$ GeV (A = d, Cu, Au, U)

Torsten Dahms: Ultrarelativistic Heavy-Ion Collisions (WS2015/16)

The Large Hadron Collider

- 27 km circumference
- superconducting magnets (8 T)
- up to 100 m below ground
- pp: √s = 0.9, 2.36, 2.76, 5.02, 7, 8, 13 TeV (top: 14 TeV)
- pPb: √s_{NN} = 5.02, 8.16 TeV (top: 8.8 TeV)
- Pb–Pb: √s_{NN} = 2.76, 5.02 TeV (top: 5.5 TeV)

A Large Ion Collider Experiment

ТΠ

+ES+

Heavy-Ion Collision in ALICE

- A central Pb–Pb collision produces ~18000 charged particles
 - at midrapidity: 1800 per unit rapidity

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - N_{part}: number of nucleons undergoing at least one inelastic nucleon-nucleon collision

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - N_{part}: number of nucleons undergoing at least one inelastic nucleon-nucleon collision
- Geometrical quantities simplify comparison btw. data and theory

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - N_{part}: number of nucleons undergoing at least one inelastic nucleon-nucleon collision
- Geometrical quantities simplify comparison btw. data and theory
- Usually not directly measured but derived from Glauber calculations

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - N_{part}: number of nucleons undergoing at least one inelastic nucleon-nucleon collision
- Geometrical quantities simplify comparison btw. data and theory
- Usually not directly measured but derived from Glauber calculations

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - N_{part}: number of nucleons undergoing at least one inelastic nucleon-nucleon collision
- Geometrical quantities simplify comparison btw. data and theory
- Usually not directly measured but derived from Glauber calculations

Produced particles: multiplicity at central rapidity

- Centrality of a collision:
 - "impact parameter" b
 - N_{coll}: number of inelastic nucleonnucleon collisions
 - N_{part}: number of nucleons undergoing at least one inelastic nucleon-nucleon collision
- Geometrical quantities simplify comparison btw. data and theory
- Usually not directly measured but derived from Glauber calculations

Spectators: energy in very forward (beam) direction

Produced particles: multiplicity at central rapidity

Determining Centrality

- Collision centrality (overlap of the nuclei) related to the energy deposit in forward calorimeters
- Relate to geometrical quantities
 with a Glauber MC model
 - N_{part} = number of participating nucleons

- N_{coll} = number of binary collisions
- Yield of hard probes is expected to scale with N_{coll} in absence of medium effect

$$R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{N_{\text{coll}} \cdot dN_{pp}/dp_T}$$

How to Probe the Structure of Matter?

- Rutherford experiment:
 - $\alpha \rightarrow$ atom: discovery of the nucleus
 - elastic collisions
- SLAC electron scattering:
 - $e \rightarrow$ proton: discovery of quarks
 - inelastic collisions

Rutherford Experiment on a QGP?

Rutherford Experiment on a QGP?

How to Probe the QGP?

vacuum

hadronic matter

QGP

- Has to be well understood in pp collisions
 - hard probes calculable in pQCD

- Effect of hadronic matter has to be understood and accounted for
 - measure in p-A collisions

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

control probes (γ, W[±], Z)

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

(y, W[±], Z) (hadrons, jets, open heavy flavour)

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

control probes density ⇔ energy loss temperature ⇔ dissociation
(γ, W[±], Z) (hadrons, jets, open heavy flavour) (quarkonia)

- Create the probes as part of the collision
- Create probes before the QGP forms
- Control probes not affected by the QGP to calibrate measurements
- Collisions without QGP to test cold nuclear matter effects
 - pp collisions, p-nucleus collisions, light-ion collisions

Production of Hard Probes

- QCD Factorization Theorem: cross section factorizes in
 - Probability to find parton with momentum fraction x (non-perturbative)
 - scattering cross section given partons with momenta x₁ and x₂ (perturbative)
 - Fragmentation function of outgoing partons (non-perturbative)

Electroweak Bosons

٦Ш Electroweak Particle Production at LO

- Direct photons ullet
 - Quark-gluon Compton scattering or quark-antiquark annihilation

- W[±] boson
 - quark-antiquark annihilation with different flavours

First Z boson ever in Heavy lons

CMS Experiment at LHC, CERN

Data recorded: Sun Nov 14 04:29:43 2010 CEST Run/Event: 151058 / 4096951 Lumi section: 747

ECal 358, pt: 18.9 GeV

ECal 357, pt: 22.6 GeV

ECal 2339, pt: 37.9 GeV

date of birth: November 14, 2010 time of birth: 4h29 weight: ~80 GeV (1.410⁻²⁵ kg)

- Pb–Pb data and Pythia (pp) agree in invariant mass spectrum
- R_{AA} = 1: Yield scales with number of binary collisions

W bosons in pPb at 5.02 TeV

- W $\rightarrow \mu v_{\mu}$
 - neutrino escapes undetected
 - Harder to detect, but 10× more than Z
- Energy conservation: $\Sigma E_T = 0$
 - neutrino = missing E_T
 - $\Sigma E_z \neq 0$ (because $x_1 \neq x_2$)
- Missing E_T background
 - Z with only one reconstructed µ
 - $\blacktriangleright W \to \tau$
 - Multi-jet events (QCD) with a jet outside acceptance
- Calculate m_T using missing E_T

$$m_T = \sqrt{p_T^{\mu} E_T (1 - \cos \phi)}$$

$\sqrt{s_{NN}} = 5.02 \text{ TeV}$ pPb 34.6 nb⁻¹ Number of events / 4 GeV **CMS** μ^+ $-0.5 < \eta_{lab} < 0.0$ Data $W^+ \rightarrow u^+ v$ $Z \rightarrow \mu\mu$ $W^+ \rightarrow \tau^+ \nu$ 10 🖹 QCD Fit 1 N(Data)/N(Fit) 2.0 2.0 $Prob(\chi^2) = 0.92$ 20 80 120 40 60 100 140 0

CMS, PLB 750 (2015) 565

∉_⊤ [GeV]

W bosons in pPb at 5.02 TeV

• W $\rightarrow \mu v_{\mu}$

CMS, PLB 750 (2015) 565

Direct Photons at RHIC

- No strong nuclear modifications down to $p_T = 5 \text{ GeV/c}$
 - systematic uncertainties limit measurement at low pT

Direct Photons at RHIC

$$R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{N_{\text{coll}} \cdot dN_{pp}/dp_T} \begin{cases} > 1 & \text{enhancement} \\ = 1 & \text{no medium effect} \\ < 1 & \text{suppression} \end{cases}$$

- No strong nuclear modifications down to $p_T = 5 \text{ GeV/c}$
 - ► systematic uncertainties limit measurement at low pT

Summary: EWK Probes

Yield of electroweak bosons scales with the N_{coll}

- confirmation of Glauber model
- validates concept of R_{AA} to measure modifications of hard probes
- W and Z bosons new probes at the LHC
- Nuclear PDF effects at the level of 10–15%

- Naive scaling of hard probes with number of inelastic NN collisions
 - Pb-Pb = many independent pp collisions

- Naive scaling of hard probes with number of inelastic NN collisions
 - Pb-Pb = many independent pp collisions
- Strong suppression of high-p_T hadrons in central Pb–Pb
 - energy loss in the QGP

- Naive scaling of hard probes with number of inelastic NN collisions
 - Pb–Pb = many independent pp collisions
- Strong suppression of high-p_T hadrons in central Pb–Pb
 - energy loss in the QGP
- Model QGP energy loss: fundamental properties of the strong interaction

Dihadron Correlations

 $pp \rightarrow jet+jet$ ($\sqrt{s} = 200 \text{ GeV}$) Au–Au \rightarrow X ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

Dihadron Correlations

 $pp \rightarrow jet+jet$ ($\sqrt{s} = 200 \text{ GeV}$)

 $Au-Au \rightarrow X$ ($\sqrt{s_{NN}} = 200 \text{ GeV}$)

Dihadron Correlations

Two peaks in angular distribution of hadron-hadron correlations

- near side: hadrons in the same jet
- away side: hadrons in back-to-back jets

Back-to-back correlations disappear in Au–Au collisions

near side correlation remains: "trigger bias"

- Suppression increases with $\sqrt{s_{NN}}$
- SPS data at $\sqrt{s_{NN}} = 17.3$ GeV consistent with unity
- Onset of suppression close to $\sqrt{s_{NN}} = 20 \text{ GeV}$
- LHC: increase of R_{AA} at high p_T though still strong suppression at 100 GeV

Jets at the LHC

Run 168875, Event 1577540 Time 2010-11-10 01:27:38 CET

Heavy Ion Collision Event with 2 Jets

50-

30-

20-

ATLAS

EXPERIMENT

Jet Quenching at the LHC

٦Π

Jet Quenching at the LHC

Finding Jets

- Measure final state hadrons
- Goal: find the initial parton energy and direction
- Cluster energy deposited in calorimeters
- Two classes of jet clustering algorithm
 - cluster based on proximity in space (cone algorithm)
 - cluster based on proximity in momentum (k_T, anti-k_T algorithm)

search in cone with $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ around seed particle

recombine particles close in momentum

Jet RAA

Strong modification of the dijet asymmetry

more dijets with large asymmetry

ТΠ

• surface bias: leading jet is quenched less \rightarrow larger asymmetry

CMS, PLB 712 (2012) 176

Jet Fragmentation & Jet Shape

ТШ

- Excess of low-p_T particles (high ξ) and long distance from the jet axis
- Depletion at intermediate p_T and distance from the jet axis
- No modification at high p_T (low ξ) and close to the jet axis

CMS PAS HIN-12-013

Open Heavy Flavour

Heavy Quarks

from http://www.isgtw.org/spotlight/go-particle-quest-first-cern-hackfest

from http://www.isgtw.org/spotlight/go-particle-quest-first-cern-hackfest

from http://www.isgtw.org/spotlight/go-particle-quest-first-cern-hackfest

Heavy Quarks

from http://www.isgtw.org/spotlight/go-particle-quest-first-cern-hackfest

Heavy Quarks

from http://www.isgtw.org/spotlight/go-particle-quest-fire

٦Π

calculable in pQCD

0.15 fm

Energy Loss of Heavy Quarks

- Radiative energy loss $\Delta E_{\rm rad}^{
 m LPM} \propto lpha_s C_R \hat{q} L^2$
- Dead cone effect suppresses gluon radiation for small angles

$$\omega \frac{dI_{\text{rad}, Q}}{d\omega \, dk_T^2} = \frac{\alpha_s C_R}{\pi} \frac{k_T^2}{(k_T^2 + \omega^2 \theta_0^2)^2} \approx \omega \frac{dI_{\text{rad}}}{d\omega \, dk_T^2} \left(1 + \frac{\theta_0^2}{\theta^2}\right)^{-2}$$
with $\theta_0 = \frac{M_Q}{E_Q} = \frac{1}{\gamma}$
Yu. L. Dokshitzer et al., JPG, 17(1991) 1602
Yu. L. Dokshitzer et al., JPG, 17(1991) 1602
Yu. L. Dokshitzer et al., JPG, 17(1991) 1602
Yu. L. Dokshitzer et al., JPG, 17(1991) 1602

- \blacktriangleright and gluon transverse momentum $k_T\approx \omega\theta$
- Mass dependent energy loss:

$$\Delta E_g \stackrel{C_R}{>} \Delta E_q > \Delta E_c > \Delta E_b$$

• Expect mass ordering of suppression:

 $\Rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

D mesons at the LHC

No suppression in pPb

- variations in agreement with expected nuclear PDF modifications
- Strong suppression in Pb–Pb is a final state hot medium effect

D meson azimuthal anisotropy

High p_T: path length dependent suppression

Model Comparison for D mesons

- Need radiative & collisional energy loss to describe RAA
- Radiative energy loss does not produce enough v₂, challenge to models
- Charm quarks interact strongly with the medium and participate in the collective motion

Heavy vs. light flavour

- Similar suppression of D mesons and light hadrons at high p_{T}

Mass ordering is not observed

٦Π

200

50

Ń

30

E(GeV)

20

10

ALI-DER-52746

250

∜_{part} ₩eighted with N

300

350

400

Similar suppression of D mesons and light hadrons at high p_T

Mass ordering is not observed

Solution: we compare hadron p_T and not parton p_T

p_{_} (GeV/c)

- fragmentation functions differ for light and heavy partons
- ▶ probe different parton p_T

ТΠ

لم الم س 1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

ALI-DER-56048

0

Charm vs. Beauty

- CMS observes suppression of non-prompt J/ ψ from b hadron decays
- Matching p_T intervals to probe similar D and B p_T ranges
 - $J/\psi p_T \sim 3 \text{ GeV}$ lower than B p_T
- Observe mass ordering of suppression in central Pb–Pb collisions
 - could be fragmentation but mass dependence reproduced in models

CMS PAS HIN-12-014

Charm vs. Beauty

- CMS observes suppression of non-prompt J/ ψ from b hadron decays
- Matching p_{T} intervals to probe similar D and B p_{T} ranges
 - $J/\psi p_T \sim 3 \text{ GeV}$ lower than B p_T
- Observe mass ordering of suppression in central Pb–Pb collisions
 - could be fragmentation but mass dependence reproduced in models

CMS PAS HIN-12-014

Charm vs. Beauty

- CMS observes suppression of non-prompt J/ ψ from b hadron decays
- Matching p_{T} intervals to probe similar D and B p_{T} ranges
 - $J/\psi p_T \sim 3 \text{ GeV}$ lower than B p_T
- Observe mass ordering of suppression in central Pb–Pb collisions
 - could be fragmentation but mass dependence reproduced in models

CMS PAS HIN-12-014

Quarkonia

Quarkonia

- Charmonium: bound states of charm anti-charm pairs
- Bottomonium: bound states of bottom anti-bottom pairs
- Vector S states can decay into a lepton pair:
 - ▶ e⁺e⁻ or µ⁺µ⁻

ТШ

LMU

Quarkonia

- Unusual hadrons
 - heavy: $m_c \approx 1.2-1.4$ GeV, $m_b \approx 4.6-4.9$ GeV
 - stable: $m_{cc} < 2 M_D$ and $m_{bb} < 2 M_B$ (E_{binding} > Λ_{QCD} ~0.2 GeV)

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)	Υ (1S)	χ_b (1P)	Υ´ (2S)	χ'_{b} (2P)	Ϋ́ (3S)
m (GeV/c ²)	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
<i>r</i> ₀ (fm)	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

- Compared to usual hadrons
 - made of light quark
 - loosely bound: $m_{\rho} > 2 \ m_{\pi}$, $m_{\varphi} > 2 \ m_{K}$
 - hadronic size: $1/\Lambda_{QCD} \sim 1$ fm, independent of mass
 - relative production rates roughly energy independent, described well by statistical hadronization

In a QGP with T~300 MeV: quarkonia cannot be produced thermally

\mathbb{A} Y candidate in Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV

$I = J/\psi$ as the Golden Probe of the QGP

- Presence of QGP leads to Debye screening of colour charges
- Debye radius increases with temperature
- When binding radius length exceeds Debye radius:

Screening: Melting of bound state

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)	0
m (GeV/c ²)	3.10	3.53	3.68	
<i>r</i> ₀ (fm)	0.50	0.72	0.90	

J/ψ

J/ψ as the Golden Probe of the QGP

- Presence of QGP leads to Debye screening of colour charges
- Debye radius increases with temperature
- When binding radius length exceeds Debye radius:

Screening: Melting of bound state

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)	0
m (GeV/c ²)	3.10	3.53	3.68	
<i>r</i> ₀ (fm)	0.50	0.72	0.90	

QGP

J/ψ as the Golden Probe of the QGP

- Presence of QGP leads to Debye screening of colour charges
- Debye radius increases with temperature
- When binding radius length exceeds Debye radius:

Screening: Melting of bound state

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)	0
m (GeV/c ²)	3.10	3.53	3.68	
<i>r</i> 0 (fm)	0.50	0.72	0.90	

J/ψ as the Golden Probe of the QGP

- Presence of QGP leads to Debye screening of colour charges
- Debye radius increases with temperature
- When binding radius length exceeds Debye radius:
 - Screening: Melting of bound state

State	J/ψ (1S)	χ_c (1P)	ψ' (2S)
m (GeV/c ²)	3.10	3.53	3.68
<i>r</i> ₀ (fm)	0.50	0.72	0.90

QGP

Bottomonia as Thermometer

Sequential suppression in order of binding energy

• Smoking gun for screening?

Bottomonia as Thermometer

- Sequential suppression in order of binding energy
- Smoking gun for screening?

Quarkonium Thermometer

- Sequential suppression in order of binding energy
- Smoking gun for screening?
- Caveat: charmonia measured at high p_T

Low p_T J/ψ

Sequential dissociation:

higher energy density
 → stronger suppression

Regeneration:

- larger charm cross section
 - → more regeneration
 - → less suppression
- Less suppression at LHC than at RHIC (×10 increase in energy)
 - ▶ RHIC: √s_{NN} = 200 GeV
 - ► LHC: √s_{NN} = 2.76 TeV
- RHIC: dominated by dissociation
- LHC: significant regeneration

Low pT J/ ψ

- RHIC: suppression almost independent of p_{T}
- LHC: much less suppression at low p_{T}
- Regeneration component quasi thermal, i.e. dominates low p_T
- Regeneration picture confirmed in p_T dependence

Complications for Bottomonia

CMS HIN-13-003 JHEP 04 (2014) 103

- pPb ratio less than pp:
 - double ratio less than unity (significance <3σ)
 - Different CNM on excited states?

pPb ratio larger than in Pb–Pb

- suggests additional final effects in Pb–Pb
- but: model dependent extrapolation from pPb to Pb–Pb
- On top: multiplicity dependence in pp and pPb

Summary

- Electroweak probes confirm binary scaling of hard probes
 - shadowing effects at 10% level
- Jet tomography of the QGP provides new insights about QGP properties
 - no change of jet direction
 - jet energy goes into (isotropic) soft particle production
- Open heavy flavour suppression shows first signs of mass dependence of QCD energy loss
 - complicated by parton dependent fragmentation functions
- Quarkonia: 30 years of "golden signature" but "all that glisters is not gold"
 - Not a simple thermometer
 - Regeneration component requires partonic medium
- Future:
 - γ/Z-jet to avoid surface bias
 - HF correlation studies

Enjoy the Conference

Backup

Nuclear PDF

 PDF inside nucleons modified by Antishadowing presence of surrounding nucleons Shadowing EMC experimentally poorly constrained $R_S^{\rm Pb}$ $R_G^{\rm Pb}$ R_V^{Pt} $R_i^{\text{Pb}}(x,Q^2=1.69 \text{ GeV}^2)$ 1.4 $Q^2 = 1.69 \text{ GeV}^2$ 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 ╎╞╎╎╢ 1.4 1.4 $R_i^{\text{Pb}}(x,Q^2=100 \text{ GeV}^2)$ $Q^2 = 100 \text{ GeV}^2$ 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 This work, EPS09NLO 0.4 0.4 HKN07 (NLO) 0.2 0.2 nDS (NLO) 0.0 0.0 10^{-1} $10^{-\vec{4}}$ $10^{-\vec{3}}$ $10^{-\overline{2}}$ 10^{-3} 10^{-3} 10^{-2} 10^{-2} 10^{-1} 10^{-1} 10^{-4} 10 xxEskola, Paukkunen, Salgado, JHEP 04 (2009) 065

The Large Hadron Collider

- 9593 magnets 1232 dipole magnets Super conducting magnets kept at 1.9 K Power consumption 120 MW
 - (~50% of CERN total)
- Construction cost: 4.6 billion CHF

Particle Reconstruction in CMS

- Muons reconstructed with information from inner tracker and muon stations
- Inner track reconstruction provides excellent momentum and vertexing information

Multiplicity in p+A Collisions

• For pA collisions:

ТШ

- ► N_{part} = N_{coll} + 1
- How do particles scale?
 - with N_{coll} or N_{part}
- Observation:
 - Particle production scales with N_{part}

$$\langle N_{\rm ch}^{p+A} \rangle \approx \frac{N_{\rm part}}{2} \langle N_{\rm ch}^{p+p} \rangle$$

(wounded nucleon model)

 However: step in N_{ch}/N_{part} from pA to A–A!

- Relative increase of multiplicity with N_{part} independent of collision energy
 - same at RHIC and LHC spanning 2 orders of magnitude of $\sqrt{s_{NN}}$

ТШ

Sources of Prompt Photons

How to Find Isolated Photons?

- Trigger on ECAL clusters
 - fully efficient for $E_T > 20 \text{ GeV}$
- Subtract underlying event
 - estimate event-by-event from same η strip
- Consider only isolated clusters
 - remove bremsstrahlung and jet fragmentation
- Fit shower shape

PLB 710 (2012) 256 72

Isolated Photon RAA

$$R_{AA}(p_T) = \frac{dN_{AA}/dp_T}{N_{\text{coll}} \cdot dN_{pp}/dp_T} \begin{cases} > 1 & \text{enhancement} \\ = 1 & \text{no medium effect} \\ < 1 & \text{suppression} \end{cases}$$

- Normalised by pp data
- Consistent with binary scaling
 - photons are unmodified
- Uncertainties dominated by background
 - not precise enough (yet) to constrain nuclear PDFs

CMS HIN-11-002 PLB 710 (2012) 256

Hadron Suppression PHENIX: PRL 88 (2002) 022301

- Direct photons are not suppressed: binary scaling for unmodified probes
- π^0 strongly suppressed by a factor of 5
 - only hadrons produced on the surface escape (N_{part} scaling)
- Same suppression for other hadrons (e.g. $\eta)$ at high p_T
 - Indicates that suppression occurs at parton level and not during fragmentations

Simple Model for constant RAA vs. pT

Hard Probes at the LHC

Jet Evolution

Jet Cluster Algorithms

Cacciari et al., JHEP 04 (2008) 063

Charged particles from $p_T = 50-100$ GeV: typical $z = p_T(track)/p_T(jet) = 0.4-0.6$

"Non-photonic" electrons

- Measure inclusive electrons
- Subtract "cocktail" of hadron decays
 - as for dileptons
 - hadronic decays via virtual photon
 → "photonic"

- Result: non-photonic electrons
 - from semileptonic D and B decays

Torsten Dahms: Ultrarelativistic Heavy-Ion Collisions (WS2016/17)

"Non-photonic" electrons

ТΠ

PHENIX, <u>PRC 84 (2011) 044905</u> PHENIX, <u>PRL 98 (2007) 172301</u>

- Total charm cross section scales with number of binary collisions
- Charm suppression at high p_{T}
 - slightly less suppressed than π⁰ as expected from dead cone effect

"Non-photonic" electrons PHENIX, PRC 84 (2011) 044905

- Strong suppression and elliptic flow challenge for models
 - above ~4 GeV mass ordering of suppression disappears
- Need to include collisional energy loss mechanisms
 - for heavy quarks as large as radiative energy loss

PHENIX, PRL 98 (2007) 172301

• What happens to b quarks?

The Charmed Meson Zoo

K. Schweda, <u>arXiv:1402.1370</u>

D mesons in Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV

- Strong suppression of various D mesons up to 16 GeV
 - suppression factor 3–4 in 0–20% centrality
 - less suppression in peripheral collisions

b jets in Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV

- Identify b jets via the invariant mass of particles forming a secondary vertex
 - $m_B > m_D > m_h$

CMS, PRL 113 (2014) 132301

- b-jets show same suppression in Pb–Pb as light jets
- Favours models with small mass dependence of energy loss

- Identify b jets via the invariant mass of particles forming a secondary vertex
 - $m_B > m_D > m_h$

CMS, PRL 113 (2014) 132301

- b-jets show same suppression in Pb–Pb as light jets
- Favours models with small mass dependence of energy loss

- Centrality independent increase from 2.76 TeV to 5.02 TeV (<1 σ)
 - expected from regeneration as charm cross section increases by ~10%
- No change at low p_T
- Increase for p_T>2 GeV, regeneration + radial flow effects?

Low p_T J/ψ

- Centrality independent increase from 2.76 TeV to 5.02 TeV (<1 σ)
 - expected from regeneration as charm cross section increases by ~10%
- No change at low p_T

ТΠ

Increase for p_T>2 GeV, regeneration + radial flow effects?