The study of nuclear structure far from stability

Pierre Capel

22 January 2017

Introduction

Stable nuclei are qualitatively described by "simple" models

- (semi-empirical) liquid-drop model
- (basic) shell model

New techniques enable ab-initio methods (A-body models)

What happens far from stability?

- Experimentally, Radioactive-Ion Beams (RIB) available since 80s
- \Rightarrow study of structure far from stability
- \Rightarrow discovery of exotic structures
 - super-heavy elements
 - halo nuclei
 - shell inversions

Nuclear Landscape

Basic features in nuclear structure

- Liquid-drop model
- Shell model
- 2 Ab-initio nuclear models
- 3 Radioactive-Ion Beams
- Oddities far from stability
 - Halo nuclei
 - Tetraneutron

5 Summary

Charge distributions in (stable) nuclei

- constant density ρ_0 out to the surface (saturation)
- same skin thickness t

(Stable) nuclei look like liquid drops of radius $R \propto A^{1/3}$

Liquid-drop model Bethe-Weizsäcker semi-empirical mass formula

$$B(Z, N) = a_v A - a_s A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_{\text{Sym}} \frac{(A-2Z)^2}{A}$$

Exoenergetic reactions :

- fission of heavy nuclei (nuclear power plants, atomic bomb)
- fusion of light nuclei (stars, thermonuclear weapons)

Variation from the semi-empirical mass formula

More bound systems at Z or N = 2, 8, 28, 50, 82, 126magic numbers

 \Rightarrow shell structure in nuclei as in atoms?

Two-nucleon separation energy

Same magic numbers in S_{2p} and S_{2n}

 \Rightarrow more bound at shell closure cf. ionisation energies of atoms

Shell model

Developed in 1949 by M. Goeppert Mayer, H. Jensen and E. Wigner

As electrons in atoms, nucleons in nuclei feel a mean field and arrange into shells

Spin-orbit coupling is crucial to get right ordering of shells

Example

Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei and some of their excited levels, e.g. $^{17}{\rm O}$ and $^{17}{\rm F}$

Nowadays

Can we go beyond these models? Can we build <u>ab-initio</u> models? i.e. based on first principles

- nucleons as building blocks
- realistic N-N interaction

What happens away from stability?

- Is nuclear density similar for radioactive nuclei?
- Is there a tetraneutron ?
- Are magic numbers conserved?

Basic features in nuclear structure Liquid-drop model

Shell model

2 Ab-initio nuclear models

- 3 Radioactive-Ion Beams
- Oddities far from stability
 Halo nuclei
 - Tetraneutron

5 Summary

A-body Hamiltonian

Nuclear-structure calculations : A nucleons (Z protons+N neutrons) Relative motion described by the A-body Hamiltonian

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{i_j}$$

 \Rightarrow solve the A-body Schrödinger equation

$$H|\Psi_n\rangle = E_n|\Psi_n\rangle$$

 $\{E_n\}$ is the nucleus spectrum

Realistic N-N interactions

 V_{ij} not (yet) deduced from QCD \Rightarrow phenomenological potentials fitted on *N*-*N* observables : d binding energy, *N*-*N* phaseshifts Ex. : Argonne V18, CD-Bonn,...

Light nuclei calculations

[R. Wiringa, Argonne]

Three-body force

Need three-body forces to get it right...

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} + \cdots$$

But there is no such thing as three-body force...

They simulate the non-elementary character of nucleons \Rightarrow include virtual Δ resonances, \bar{N} ...

$$\begin{array}{c|c} \hline \pi,\rho,\omega \\ \hline \Delta,N^* \\ \hline \pi,\rho,\omega \end{array} \qquad \hline \hline \pi,\rho,\omega \\ \hline \hline \hline \hline \hline \\ \pi,\rho,\omega \\ \hline \hline \end{array}$$

Phenomenological 3-body interaction fitted on A > 2 levels : IL2 Alternatively, derived from EFT

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries with resolution scale Λ that selects appropriate degrees of freedom : nuclear physics is not built on quarks and gluons, but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/Λ

- gives an estimate of theoretical uncertainty
- naturally includes many-body forces

[see E. Eppelbaum's talk on Tuesday morning and S. Bacca's on Thursday morning]

Expansion of the EFT force

Solving the Schrödinger equation

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

 Ψ usually developed on a basis $\{|\Phi_{[\nu]}\rangle\}$:

$$\Psi_n \rangle = \sum_{[\nu]} \langle \Phi_{[\nu]} | \Psi_n \rangle | \Phi_{[\nu]} \rangle$$

Solving the Schrödinger equation reduces to matrix diagonalisation

$$\langle \Phi_{[\mu]} | H | \Psi_n \rangle = \sum_{[\nu]} \langle \Phi_{[\mu]} | H | \Phi_{[\nu]} \rangle \langle \Phi_{[\nu]} | \Psi_n \rangle$$

= $E_n \langle \Phi_{[\mu]} | \Psi_n \rangle$

⇒ need to build an efficient set of basis states $\{|\Phi_{\nu}\rangle\}$ Clear short review paper : [Bacca EPJ Plus **131**, 107 (2016)]

No-Core Shell Model

One should be able to account for the fermion nature of nucleons

- \Rightarrow wave function must be antisymmetric
- \Rightarrow basis states built as Slater determinants
- of 1-body mean-field wave functions ϕ_{v_i}

$$\begin{aligned} \langle \xi_{1}\xi_{2}\dots\xi_{A} | \Phi_{[\nu]} \rangle &= \mathcal{A} \phi_{\nu_{1}}(\xi_{1}) \phi_{\nu_{2}}(\xi_{2})\dots\phi_{\nu_{A}}(\xi_{A}) \\ &= \frac{1}{A!} \begin{vmatrix} \phi_{\nu_{1}}(\xi_{1}) & \phi_{\nu_{1}}(\xi_{2}) & \cdots & \phi_{\nu_{1}}(\xi_{A}) \\ \phi_{\nu_{2}}(\xi_{1}) & \phi_{\nu_{2}}(\xi_{2}) & \cdots & \phi_{\nu_{2}}(\xi_{A}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{\nu_{A}}(\xi_{1}) & \phi_{\nu_{A}}(\xi_{2}) & \cdots & \phi_{\nu_{A}}(\xi_{A}) \end{vmatrix} \end{aligned}$$

The shell model uses harmonic-oscillator wave functions for ϕ_{ν_i} The basis size increases with $A \Rightarrow$ limited to light nuclei

Coupled-cluster theory

Instead of building a huge basis and diagonalise the Hamiltonian, one can start from a reference Slater determinant Φ_0 and build the wave function as

$$\Psi = e^{T} \Phi_{0}$$
where $T = T_{1} \left(T_{1} = \sum_{ia} t_{i}^{a} a_{a}^{\dagger} a_{i}\right)$ (1*p*-1*h* excitation)
$$+ T_{2} \left(T_{2} = \sum_{ijab} t_{ij}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}\right)$$
 (2*p*-2*h* excitation)
$$+ \dots$$

Converges quickly \Rightarrow less computational expensive than NCSM \Rightarrow available for heavier nuclei

[Hebeler et al. Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)]

Different *ab initio* models predict similar result All require 3N forces to reproduce the dripline at ²⁴O

What happens far from stability?

Liquid-drop and shell models are fair models of stable nuclei What happens away from stability ?

In 80s Radioactive-Ion Beams were developed Enable study of nuclear structure

[see A. Cowley's talk on Thursday]

- are radioactive nuclei compact?
- are shells conserved far from stability?

Reactions involving radioactive nuclei useful in astrophysics [see 2nd part, J. Jose's talk on Monday, M. Aliotta's talk on Wednesday]

Basic features in nuclear structure

- Liquid-drop model
- Shell model
- 2 Ab-initio nuclear models
- 3 Radioactive-Ion Beams
- Oddities far from stability
 Halo nuclei
 - Tetraneutron

5 Summary

How?

Idea : break a heavy nuclei into pieces to produce exotic isotopes

• ISOL : Fire a proton at a heavy nucleus

• In-flight : Smash a heavy nucleus on a target

Where?

ISOL : Isotope Separation On Line

high-energy/intensity primary beam of light nuclei (e.g. protons) on thick target of heavy elements (Ta or UC_x) \Rightarrow spallation/fragmentation produces exotic fragments Diffuse in the target and effuse to an ion source Then selected using dipole magnet (A/Q) Either used directly (mass measurement, radioactive decay...) or post-accelerated for reactions (e.g. astrophysical energy) Examples : ISOLDE (CERN), TRIUMF, SPIRAL (GANIL)

In-flight projectile fragmentation

high-energy primary beam of heavy ions (e.g. ${}^{18}O, {}^{48}Ca, U...)$ on thin target of light elements (Be or C) \rightarrow fragmentation/fission produces many exotic fragments at $\approx w$

⇒ fragmentation/fission produces many exotic fragments at $\approx v_{beam}$ Sorted in fragment separator

Used for high-energy reactions (KO, breakup...)

Examples : RIKEN, NSCL (MSU), GSI, GANIL

RIBF @ RIKEN

Superconducting Ring Cyclotron

Largest superconducting cyclotron in the world Delivers a U beam at 350AMeV

Properties

Low beam energy may require post-acceleration

ISOL

- Low beam intensity
- Not all elements produced
 - Slow
 - Chemically limited
- Good beam quality : can use chemistry and atomic physics to select fragments

In-flight

High beam energy

 $v_{\rm fragments} \approx v_{\rm beam}$

- High beam intensity
- Efficient production
 - Fast
 - Chemically independent
- Many fragments in beam ⇒ need ion ID

Choose according what you want to measure

Basic features in nuclear structure Liquid-drop model

- Shell model
- 2 Ab-initio nuclear models
- 3 Radioactive-Ion Beams
- Oddities far from stability
 Halo nuclei
 - Tetraneutron

5 Summary

Halo structure

Seen as core + one or two neutrons at large distance

[P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987)]

Peculiar structure of nuclei due to small S_n or S_{2n} \Rightarrow neutrons tunnel far from the core to form a halo

Halo only appears for low centrifugal barrier (low ℓ)

Halo nuclei

- Light, neutron-rich nuclei
- small S_n or S_{2n}
- Iow-ℓ orbital

One-neutron halo ${}^{11}\text{Be} \equiv {}^{10}\text{Be} + n$ ${}^{15}\text{C} \equiv {}^{14}\text{C} + n$

Two-neutron halo ${}^{6}\text{He} \equiv {}^{4}\text{He} + n + n$ ${}^{11}\text{Li} \equiv {}^{9}\text{Li} + n + n$

 208 Pb 11 Li $12_{\rm M}$ 18_M 19_N $20_{\rm M}$ $21_{\rm N}$ 18 Ζ 13p 14p Novau stable Novau riche en neutrons Novau riche en protons Novau halo d'un neutron Noyau halo de deux neutrons Noyau halo d'un proton

Two-neutron halo nuclei are Borromean... c+n+n is bound but not two-body subsystems e.g. ¹¹Li bound but not ¹⁰Li nor ²n [see A. Cowley's talk on Thursday]

Borromean nuclei

Named after the Borromean rings...

[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]

Tetraneutron

Can 4 neutrons be bound together? or form a resonance? It would be a strong test of nuclear models far from stability

Various experiments have been performed to look for such a state In 2002, Marqués *et al.* have reported to have found a bound ⁴n using the breakup of the (very) neutron rich ¹⁴Be :

3

 E_p/E_n

[Marqués et al. PRC**65**, 044006 (2002)]They found 6 unexplained counts $\Rightarrow \text{ possible } {}^{4}n$ [Marqués et al. PRC**65**, 044006 (2002)]

N [counts]

PPAC

20

Double-charge exchange reaction

More recently, Kisamori et al. have measured

⁸He + ⁴He
$$\rightarrow 2\alpha$$
 + ⁴n @186AMeV (RIKEN)
[Kisamori *et al.* PRL 116, 052501 (2016)]

They measure 2 α in coincidence and deduce E_{4n} by the missing-mass method

 \Rightarrow low-energy ⁴n resonance ($E_{4n} = 0.83 \pm 0.65$ MeV $\Gamma_{4n} < 2.6$ MeV)

On the theory side...

Since Marqués' measurement, theoretical models have been tested Within GFMC Pieper predicted a ⁴n resonance at ~ 2 MeV $E_{4n} = 0.844$ MeV $\Gamma = 1.378$ MeV

[Pieper PRL 90, 252501 (2003)]

[Shirikov et al. PRL 117, 182502 (2016)]

Summary

Liquid-drop and shell model describe qualitatively stable nuclei Nowadays <u>ab-initio</u> nuclear-structure models from first principles

RIB enable study nuclear structure far from stability Low intensities require new experimental techniques : KO reactions, in-beam γ spectroscopy,...

- discovery of halo nuclei diffuse halo around a compact core
- shell inversions or shell collapse

RIB can be used to study reactions of astrophysical interest