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Introduction
Stable nuclei are qualitatively described by “simple” models

@ (semi-empirical) liquid-drop model
@ (basic) shell model
New techniques enable ab-initio methods (A-body models)
What happens far from stability ?
Experimentally, Radioactive-lon Beams (RIB) available since 80s

= study of structure far from stability
= discovery of exotic structures

@ super-heavy elements
@ halo nuclei
@ shell inversions
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Basic features in nuclear structure Liquid-drop model

Charge distributions in (stable) nuclei
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e constant density p, out to the surface (saturation)
@ same skin thickness ¢

(Stable) nuclei look like liquid drops of radius R « A!/?
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Exoenergetic reactions :

e fission of heavy nuclei
(nuclear power plants,
atomic bomb)

e fusion of light nuclei
(stars, thermonuclear
weapons)
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Basic features in nuclear structure Liquid-drop model

Variation from the semi-empirical mass formula

S. E. Mass Formula
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More bound systems at Z or N = 2,8, 28,50, 82,126

magic numbers
= shell structure in nuclei as in atoms ?



Basic features in nuclear structure Shell model

Two-nucleon separation energy '
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Basic features in nuclear structure Shell model

Shell model
Developed in 1949 by M. Goeppert Mayer, H. Jensen and E. Wigner

. (NP 1963)
As electrons in atoms, S =
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Example
Shell model explains the higher stability at some Z and N

It predicts the spin and parity of ground state of most nuclei
and some of their excited levels, e.g. 'O and '"F
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Basic features in nuclear structure Shell model

Nowadays
Can we go beyond these models ?

Can we build ab-initio models ?
i.e. based on first principles

@ nucleons as building blocks
e realistic N-N interaction

What happens away from stability ?

@ Is nuclear density similar for radioactive nuclei ?
@ Is there a tetraneutron ?

@ Are magic numbers conserved ?
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Ab-initio nuclear models

@ Ab-initio nuclear models
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Ab-initio nuclear models

A-body Hamiltonian
Nuclear-structure calculations : A nucleons (Z protons+N neutrons)

Relative motion described by the A-body Hamiltonian
A A
H = Z T; + Z V,‘j
i=1 j>i=1
= solve the A-body Schrédinger equation

{E,} is the nucleus spectrum
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Realistic N-N interactions
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Ab-initio nuclear models

Light nuclei calculations
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Ab-initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV,J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thlng as three-body force. ..

They simulate the non-elementary character of nucleons
= include virtual A resonances, N...

Phenomenological 3-body interaction fitted on A > 2 levels : IL2
Alternatively, derived from EFT
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Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :

nuclear physics is not built on quarks and gluons,
but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
e naturally includes many-body forces

[see E. Eppelbaum’s talk on Tuesday morning
and S. Bacca’s on Thursday morning]

17/41



Expansion of the EFT force
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Ab-initio nuclear models

Solving the Schrédinger equation

HY,) = E,|¥,)

¥ usually developed on a basis {|®y,)} :
W) = D (D P,) D)

]
Solving the Schrédinger equation reduces to matrix diagonalisation

(O|HIY,) = Z<q)m]|H|q’[v]><q’[v]|‘Pn>
[v]
= E, <(I)[/1]|\Pn>

= need to build an efficient set of basis states {|®,)}
Clear short review paper : [Bacca EPJ Plus 131, 107 (2016)]
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Ab-initio nuclear models

No-Core Shell Model

One should be able to account for the fermion nature of nucleons
= wave function must be antisymmetric

= basis states built as Slater determinants

of 1-body mean-field wave functions ¢,,

6162 . Eal@py) = APy (1) $1,(82) - 1, (E4)

v (&1) @y (&2) - By(En)

1 ¢v2(§l) ¢v2(62) e ¢vz(§A)
A P

¢VA (é‘:l) ¢VA (§2) T ¢VA (é:A)

The shell model uses harmonic-oscillator wave functions for ¢,,
The basis size increases with A = limited to light nuclei
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Ab-initio nuclear models

Coupled-cluster theory

Instead of building a huge basis and diagonalise the Hamiltonian,
one can start from a reference Slater determinant @

and build the wave function as

¥ = @,

where T = T, [T1:Zt§‘ aZa,-J (1p-1h excitation)

ij

+ T, [T2 = Z 19 alaZajai] (2p-2h excitation)
ijab
+

Converges quickly = less computational expensive than NCSM
= available for heavier nuclei
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Example : oxygen isotopes
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[Hebeler et al. Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)]

Different ab initio models predict similar result
All require 3N forces to reproduce the dripline at *O
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Ab-initio nuclear models

What happens far from stability ?
Liquid-drop and shell models are fair models of stable nuclei
What happens away from stability ?

In 80s Radioactive-lon Beams were developed
Enable study of nuclear structure
[see A. Cowley’s talk on Thursday]

e are radioactive nuclei compact ?
e are shells conserved far from stability ?

Reactions involving radioactive nuclei useful in astrophysics
[see 2nd part, J. Jose’s talk on Monday,
M. Aliotta’s talk on Wednesday]
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Radioactive-lon Beams

© Radioactive-lon Beams

24/41



Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus
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Where ?
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Radioactive-lon Beams

ISOL : Isotope Separation On Line

PFII’Y: L
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\. Post- acce\emmr =

“A Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)

Either used directly (mass measurement, radioactive decay...)
or post-accelerated for reactions (e.g. astrophysical energy)

Examples : ISOLDE (CERN), TRIUMF, SPIRAL (GANIL)
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Radioactive-lon Beams

ISOLDE @ CERN
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Proton Beam

Robot Control



Radioactive-lon Beams

In-flight projectile fragmentation

vt y In-flight |

—‘,Ié‘" Fragment
separator

Thin target

7%;{\,

high-energy primary beam of heavy ions (e.g. '*0, ¥*Ca, U...)

on thin target of light elements (Be or C)

= fragmentation/fission produces many exotic fragments at ® vpeam
Sorted in fragment separator

Used for high-energy reactions (KO, breakup. . .)

Examples : RIKEN, NSCL (MSU), GSI, GANIL

\Radloactwe
4 lonbeam
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RIBF @ RIKEN

e-RI scattering with SCRIT

18GHZECRIS

LACII
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Radioactive-lon Beams

Superconducting Ring Cyclotron

Largest superconducting cyclotron in the world
Delivers a U beam at 350AMeV
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Radioactive-lon Beams

Properties
ISOL
@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
» Chemically limited
e Good beam quality :
can use chemistry and atomic
physics to select fragments

In-flight
e High beam energy
Viragments ~ Vbeam
e High beam intensity

e Efficient production
» Fast
» Chemically independent
e Many fragments in beam
= needion ID
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Radioactive-lon Beams

Choose according what you want to measure
80

- 100 kW, E/A = 400 MeV

70

N4o£

30
= Stable isotopes
= Fragmentation

20 ¢ - ISOL ]
F = In-flight fission
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Oddities far from stability Halo nuclei

@ Oddities far from stability
@ Halo nuclei
@ Tetraneutron
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Oddities far from stability Halo nuclei

Halo structure
Seen as core + one or two neutrons at large distance
[P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987)]

Peculiar structure of nuclei due to small S, or S»,
= neutrons tunnel far from the core to form a halo

Halo only appears for low centrifugal barrier (low ¢)

1

§ —

Vel (MeV)

| (fm=1/2)
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Oddities far from stability Halo nuclei

Halo nuclei
e Light, neutron-rich "Li
nuclei

e small S, or S,,
o low-¢ orbital

One-neutron halo
1IBe = 1'Be + n
BC="C+n

Two-neutron halo
*He=*He +n+n
Hi=%i+n+n

[ m]m{w] ]

Two-neutron halo nuclei are Borromean. ..
c+n+n is bound but not two-body subsystems
e.g. ''Li bound but not '°Li nor ?n [see A. Cowley’s talk on Thursday]
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Oddities far from stability Halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]
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Oddities far from stability Tetraneutron

Tetraneutron
Can 4 neutrons be bound together ? or form a resonance ?
It would be a strong test of nuclear models far from stability

Various experiments have been performed to look for such a state
In 2002, Marqués et al. have reported to have found a bound “n
using the breakup of the (very) neutron rich “Be :

“Be+C — "Be+ “n+C @ 35AMeV (GANIL)
[Marqués et al. PRC 65, 044006 (2002)]

They found 6 unexplained counts
= possible “n W T

N [counts]

PID [arb. units]




Oddities far from stability Tetraneutron

Double-charge exchange reaction
More recently, Kisamori et al. have measured
SHe + “He — 22 + “n @186AMeV (RIKEN)
[Kisamori et al. PRL 116, 052501 (2016)]
They measure 2 « in coincidence
and deduce E4, by the missing-mass method

12 [T T e e e
F(a) —— continuum + bac.kgmund
L e background x 10
10 wave packet 50
r just after reaction
s L resonance A" "4 direct decay
o
ERN
E T & &
O 4r
1 M
0 -x-m-r'r"'r'\'?'r“'l' M\E N CNN NNNT
-20 -10 0 10 20 30 40 50 60
Ein(Mev)

= low-energy “n resonance (E4n = 0.83 £0.65 MeV I'y, < 2.6 MeV)
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Oddities far from stability Tetraneutron

On the theory side. ..
Since Marqués’ measurement, theoretical models have been tested
Within GFMC Pieper predicted  Within NCSM Shirikov et al. find

4
a “n resonance at ~ 2 MeV E,, = 0.844 MeV T = 1.378 MeV
47‘””‘””‘””‘””HH‘? 150
2l AVIS8 +IL2 + external well A e — ST T TSI T
r ] ] 150 //' E
0 /
I !
~ 2F 4 120 A
>t 7 I
s 4 ] 5 oop
s r S 4n, gs <« N,=10
= 6 - 2 i v 12
8 60 14 H
3 a Resonance pole 16
L . 18 ]
a 30H — SSHORSE H
T —-_Resonance term |1
- 1 1 1 1
1275 = 3 I R % 5 10 15 20 25 30

Vy (MeV) EMeV]

[Pieper PRL 90, 252501 (2003)] [Shirikov et al. PRL 117, 182502 (2016)]
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Summary
Liguid-drop and shell model describe qualitatively stable nuclei
Nowadays ab-initio nuclear-structure models from first principles

RIB enable study nuclear structure far from stability
Low intensities require new experimental techniques :
KO reactions, in-beam y spectroscopy,. . .

e discovery of halo nuclei
diffuse halo around a compact core

@ shell inversions or shell collapse
RIB can be used to study reactions of astrophysical interest
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